KR100262718B1 - Solution Heat Regenerator Structure of Ammonia Absorption System - Google Patents

Solution Heat Regenerator Structure of Ammonia Absorption System Download PDF

Info

Publication number
KR100262718B1
KR100262718B1 KR1019970065641A KR19970065641A KR100262718B1 KR 100262718 B1 KR100262718 B1 KR 100262718B1 KR 1019970065641 A KR1019970065641 A KR 1019970065641A KR 19970065641 A KR19970065641 A KR 19970065641A KR 100262718 B1 KR100262718 B1 KR 100262718B1
Authority
KR
South Korea
Prior art keywords
solution
regenerator
heat exchange
heat
refrigerant vapor
Prior art date
Application number
KR1019970065641A
Other languages
Korean (ko)
Other versions
KR19990047288A (en
Inventor
조현철
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019970065641A priority Critical patent/KR100262718B1/en
Publication of KR19990047288A publication Critical patent/KR19990047288A/en
Application granted granted Critical
Publication of KR100262718B1 publication Critical patent/KR100262718B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/04Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/005Regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE: A fluid heating regenerator is provided to improve performance of regenerator and to enable downsizing by preparing an inner shell for increasing speed of refrigerant steam increasing from a lower area and by composing the regenerator into a double pipe type. CONSTITUTION: In a fluid heating regenerator, heat exchange coils(102,102') are equipped within a cylindrical shell(101) and an inlet(103) and an outlet(104) of refrigerant steam generated from the regenerator are prepared. An inlet(105) and an outlet(106) of strong solution and a distribution plate(107) are offered for flowing the solution in a thin film type on a surface of the heat exchange coils(102,102') by uniformly distributing strong solution let in from upper region on a top of the solution heating regenerator. Interior of the solution heating regenerator, an inner shell(110) is constituted for increasing speed of refrigerant steam occurring and increasing from the regenerator. Due to active contact of strong solution in a compact space, heat and substance transfer performance is enhanced and by adopting a double pipe method, a height is lowered during charged amount of solution is decreased.

Description

암모니아 흡수식 시스템의 용액가열 재생기 구조Solution Heat Regenerator Structure of Ammonia Absorption System

본 발명은 암모니아 흡수식 시스템에 관한 것으로서, 특히 용액가열 재생기의 성능 향상 및 소형화를 위한 용액가열 재생기의 구조에 관한 것이다.The present invention relates to an ammonia absorption system, and more particularly, to a structure of a solution heating regenerator for improving performance and miniaturization of a solution heating regenerator.

일반적인 암모니아 흡수식 시스템은 도 1 에 도시된 바와 같이, 열을 발생시키는 버너(1)와, 상기 버너(1)로부터 발생되는 열을 가해줌으로써 강용액(암모니아 농도가 강한 용액)으로부터 냉매증기와 약용액(암모니아 농도가 약한 용액)을 생성하는 재생기(2)와, 상기 재생기(2)에서 생성된 냉매증기와 함께 증발되는 물을 응축시켜 고농도의 냉매증기로 정류하는 정류기(3)와, 상기 정류기(3)로부터 전달된 고농도의 냉매증기를 냉각수(cooling water) 또는 브라인(Brine)등의 중간매체에 의해 냉각시켜 액체상태의 냉매로 응축시키는 응축기(4)와, 상기 응축기(4)로부터 응축된 액냉매를 더욱 과냉시키는 프리쿨러(5)와, 상기 프리쿨러(5)로부터 과냉된 액냉매를 냉방수(chilled water)를 사용하여 다시 증발시켜 2상 상태(액상+기상)의 냉매로 비등시키는 증발기(6)와, 상기 증발기(6)로 유입되는 액냉매를 팽창시키는 팽창밸브(7)와, 상기 증발기(6)에서 증발된 2상 상태의 냉매가 프리쿨러(5)를 지나면서 상대적으로 고온의 액냉매와 열교환을 실시한 후 더욱 비등하여 냉매증기 상태로 되고, 이 냉매증기 및 재생기(2)로부터 생성된 약용액이 유입되는 흡수기(8)와, 상기 흡수기(8)로 유입된 냉매증기와 약용액 간의 대향류(counter current) 접촉으로 흡수현상이 발생하여 원래의 재생기(2) 초기 농도의 강용액이 생성되어 흡수기(8)의 하부에 고이게 되고, 이 강용액을 정류기(3)로 펌핑하는 용액펌프(9)와, 상기 재생기(2)에서 흡수기(8)로 유입되는 약용액을 팽창시키는 팽창밸브(10)로 구성된다.A typical ammonia absorption system is a burner (1) for generating heat, as shown in Figure 1, by applying the heat generated from the burner (1) by the refrigerant vapor from the strong solution (a solution having a high ammonia concentration) and the chemical solution A regenerator 2 for generating a solution having a weak ammonia concentration, a rectifier 3 for condensing water evaporated together with the refrigerant vapor generated in the regenerator 2 and rectifying the refrigerant vapor at a high concentration, and the rectifier ( 3) a condenser 4 for condensing the refrigerant with a high concentration of refrigerant vapor transferred from an intermediate medium such as cooling water or brine and condensing it into a liquid refrigerant, and the liquid condensed from the condenser 4; A precooler 5 for further subcooling the refrigerant, and an evaporator for evaporating the subcooled liquid refrigerant from the precooler 5 again using chilled water to boil the refrigerant in a two-phase state (liquid + gas phase). 6, with Expansion valve (7) for expanding the liquid refrigerant flowing into the evaporator (6), and the two-phase refrigerant evaporated from the evaporator (6) passes through the precooler (5) to exchange heat with the relatively high temperature liquid refrigerant It is further boiled after performing the refrigerant vapor state, and the counter current between the refrigerant vapor introduced into the absorber 8 and the absorber 8 into which the refrigerant vapor generated from the refrigerant vapor and the regenerator 2 flows ( Absorption occurs by contacting the counter current to generate a strong solution of the initial concentration of the original regenerator (2) and collects in the lower part of the absorber (8). And an expansion valve 10 for expanding the chemical solution introduced into the absorber 8 from the regenerator 2.

상기 흡수기(8)는 생성된 강용액이 정류기(3)를 거쳐 재생기(2)로 유입되면서 재생기(2)에서 생성된 약용액과 열교환이 이루어지도록 내부에 강용액이 흐르는 용액냉각흡수기(11)와, 상기 증발기(6)에서 흡수기(8)로 유입된 냉매증기가 상승하면서 열교환이 이루어지도록 내부에 냉각수가 흐르는 수냉각흡수기(12)와, 도 1 의 A부에서 분지된 용액과 약용액과의 열교환에 의해 냉매증기를 발생시켜 재생기에서의 필요열량을 감소시켜주는 GAX흡수기/재생기(13)로 구성된다.The absorber (8) is a solution cooling absorber (11) in which a strong solution flows inside so that the generated strong solution flows into the regenerator (2) through the rectifier (3) and heat exchanges with the medicinal solution produced in the regenerator (2). And a water cooling absorber 12 having a cooling water flowing therein to allow heat exchange while the refrigerant vapor introduced from the evaporator 6 into the absorber 8 rises, and the solution and the medicinal solution branched from part A of FIG. It is composed of a GAX absorber / regenerator 13 to reduce the amount of heat required in the regenerator by generating a refrigerant vapor by heat exchange of the.

그리고, 상기 재생기(2)와 정류기(3)의 사이에는 원통형의 쉘 내에 배플판(14)이 지그재그로 배치된 에널라이저(Analyzer)(15)가 위치하고, 상기 에널라이저(15)와 재생기(2)의 사이에는 상부로부터 유입되는 강용액과, 재생기(2)로부터 발생된 냉매증기 및 약용액을 열교환시켜 재생기(2)의 부하를 줄여주기 위한 용액가열 재생기(16)가 위치한다.And between the regenerator 2 and the rectifier 3 is located an analyzer (15) in which a baffle plate (14) is zigzag arranged in a cylindrical shell, and the analyzer (15) and the regenerator (2) are located. ) Is a solution heating regenerator 16 for reducing the load of the regenerator 2 by heat-exchanging the strong solution flowing from the upper portion, the refrigerant vapor and the medicinal solution generated from the regenerator 2.

이를 위해 상기 용액가열 재생기(16)는 도 2 에 도시된 바와 같이, 원통형의 쉘(17) 내에 열교환 코일(18)이 위치하며, 농도의 성층화와, 상부로부터 유입되는 강용액과 하부로부터 상승하는 냉매증기의 유로를 형성시켜주기 위한 배플판(19)이 지그재그로 배치된다.To this end, the solution heating regenerator 16, as shown in Figure 2, the heat exchange coil 18 is located in the cylindrical shell 17, the stratification of the concentration, the strong solution flowing from the top and the bottom rises The baffle plate 19 for forming the flow path of the refrigerant steam is arranged in a zigzag.

이와같이 구성된 종래의 흡수식 시스템은 재생기(2)내에 있는 강용액이 연소부인 버너(1)에 의해 가열되어 냉매증기와 약용액이 발생되고, 이때 발생된 약용액은 비중이 강용액 보다 높아 재생기 하부로 가라앉게 되며, 용액가열 재생기(16)의 열교환 코일(18) 유입구로 유입되어 그 내부를 유동하고, 냉매증기는 상승하게 된다.In the conventional absorption type system configured as described above, the steel solution in the regenerator 2 is heated by the burner 1, which is a combustion unit, to generate refrigerant vapor and a medicinal solution, and the generated medicinal solution has a specific gravity higher than that of the steel solution to the bottom of the regenerator. It sinks, flows into the heat exchange coil 18 inlet of the solution heating regenerator 16 and flows therein, and the refrigerant vapor rises.

이때, 약용액은 시스템 내부에서 최고온이므로 열교환 코일(18) 내부를 유동하면서 열교환 코일(18) 외부의 강용액과 열교환작용을 하게 되며, 이에 의해 강용액에게 그 열을 빼앗기게 되어 온도가 저하된다.At this time, since the chemical solution is the highest temperature in the system, the heat exchanger acts as a heat exchanger with the steel solution outside the heat exchange coil 18 while flowing inside the heat exchange coil 18, thereby depriving the heat of the steel solution, thereby lowering the temperature. do.

이와 같이, 용액가열 재생기(16)는 열교환 코일(18) 내부의 약용액과 외부 강용액의 열교환을 통하여 재생기(2)에서의 재생열량을 감소시키는 역할을 하는 것이다.As such, the solution heating regenerator 16 serves to reduce the amount of regeneration heat in the regenerator 2 through heat exchange between the chemical solution in the heat exchange coil 18 and the external strong solution.

여기서, 용액가열 재생기(16)의 배플판(19)은 상부로부터 떨어지는 강용액과, 하부로부터 상승하는 냉매증기의 유로를 형성하게 되며, 냉매증기가 이 유로를 따라 상승하여 에널라이저(15)로 유입된다.Here, the baffle plate 19 of the solution heating regenerator 16 forms a steel solution falling from the upper portion and a flow path of the refrigerant vapor rising from the lower portion, and the refrigerant vapor rises along the flow path to the analyser 15. Inflow.

에널라이저(15)는 그 내부에 배플판(14)이 지그재그로 배치되어 있는 구조로서, 에널라이저(15) 상부로부터 강용액이 유입되면 에널라이저(15) 내부의 배플판(14)을 따라 중력 방향으로 흐르게 되며, 재생기(2)로부터 발생된 냉매증기는 반대로 상승하면서 이 강용액과 접촉하여 흡수제 성분을 빼앗기고 냉매증기의 농도가 높아지게 된다.The analyzer 15 has a structure in which the baffle plate 14 is arranged in a zigzag manner, and when steel solution flows from the upper portion of the analyzer 15, gravity is along the baffle plate 14 inside the analyzer 15. Direction, the refrigerant vapor generated from the regenerator 2 rises in the opposite direction, in contact with the strong solution, desorbs the absorbent component and increases the concentration of the refrigerant vapor.

이후, 냉매증기는 정류기(3)로 유입되며, 상기 정류기(3) 내로 유입된 냉매증기는 흡수기(8)로부터 용액펌프(9)의 펌핑을 통해 정류기(3)의 내부로 유입되는 강용액과 열교환을 한 후 증발되는 물과 함께 응축되어 고농도의 냉매증기로 정류되어 진다.Thereafter, the refrigerant vapor is introduced into the rectifier (3), and the refrigerant vapor introduced into the rectifier (3) and the strong solution flowing into the rectifier (3) through the pumping of the solution pump (9) from the absorber (8) After heat exchange, it is condensed with the evaporated water and rectified with high concentration of refrigerant vapor.

그리고, 용액가열 재생기(16)의 열교환 코일(18)을 따라 유동하는 약용액은 고압부인 재생기(2)와 저압부인 흡수기(8)간의 압력차에 의해 팽창밸브(10)에서 팽창된 후 흡수기(8)의 상부로 유입된다.The medicinal solution flowing along the heat exchange coil 18 of the solution heating regenerator 16 is expanded in the expansion valve 10 by the pressure difference between the regenerator 2 which is the high pressure part and the absorber 8 which is the low pressure part, and then the absorber ( Inflow to the top of 8).

상기 정류기(3)에서 정류된 고농도의 냉매증기는 응축기(4)로 유입되어 응축기(4) 주위를 흐르는 저온의 냉각수와 열교환을 하여 액냉매 상태로 응축되고, 이 액냉매는 프리쿨러(5)를 지나면서 더욱 과냉 상태의 액냉매가 되고, 과냉된 액냉매는 팽창밸브(7)를 통해 팽창된 후 증발기(6)로 유입된다.The high concentration refrigerant vapor rectified by the rectifier (3) flows into the condenser (4) and exchanges heat with the low temperature cooling water flowing around the condenser (4) to condense in the liquid refrigerant state, the liquid refrigerant is precooler (5) After passing through the liquid refrigerant in a more subcooled state, the subcooled liquid refrigerant is expanded through the expansion valve (7) and then flows into the evaporator (6).

상기 증발기(6)내로 유입된 액냉매는 증발기(6) 주위를 흐르는 고온의 냉수와 열교환을 하여 2상 상태(액상+기상)의 냉매로 비등하고, 이 2상 상태의 냉매는 다시 프리쿨러(5)를 지나면서 상대적으로 고온인 액냉매와 열교환을 하고 더욱 비등하여 냉매증기가 되고, 이 냉매증기는 흡수기(8)의 하부로 유입된다.The liquid refrigerant introduced into the evaporator 6 is boiled into a refrigerant in a two-phase state (liquid + gaseous phase) by exchanging heat with hot cold water flowing around the evaporator 6, and the refrigerant in this two-phase state is again a precooler ( As it passes through 5), it heat-exchanges with the liquid refrigerant which is relatively hot, and further boils to form refrigerant vapor, which flows into the lower part of the absorber (8).

상기 흡수기(8)로 유입된 냉매증기는 상승하면서 재생기(2)로부터 유입된 약용액과 대향류(counter current)로 접촉하면서 약용액에 흡수되어 강용액이 생성되고, 이때 발생되는 흡수열은 수냉각흡수기(12)내를 흐르는 냉각수와 용액냉각흡수기(11)내를 흐르는 저온의 강용액에 의해 상쇄된다.The refrigerant vapor introduced into the absorber 8 is absorbed by the medicinal solution while rising in contact with the medicinal solution introduced from the regenerator 2 in a counter current while generating a strong solution. It is offset by the cooling water flowing in the cooling absorber 12 and the low temperature strong solution flowing in the solution cooling absorber 11.

여기서, 재생기(2)에서 생성된 약용액은 흡수기(8) 상부로 유입된 후 저온의 강용액이 흐르는 용액냉각흡수기(11)의 열교환코일 표면에 분산 낙하되면서 냉각되어 냉매증기의 흡수를 가속시킨다.Here, the medicinal solution generated in the regenerator 2 is cooled while being dispersed and dropped on the surface of the heat exchange coil of the solution cooling absorber 11 in which the low temperature strong solution flows after flowing into the upper part of the absorber 8 to accelerate the absorption of the refrigerant vapor. .

이때, 상기 흡수기(8)의 하부에 고인 강용액은 용액펌프(9)의 펌핑에 의하여 정류기(3)로 유입되었다가 용액냉각흡수기(11)로 유입되고, 이 강용액은 열교환코일 내부를 흐르면서 재생기(2)로부터 생성되어 유입되는 고온의 약용액과 열교환을 하여 온도가 상승된 후 다시 재생기(2)로 유입되어 상기와 같은 작동을 순차적으로 반복하게 된다.At this time, the steel solution accumulated in the lower part of the absorber (8) is introduced into the rectifier (3) by the pumping of the solution pump (9) is introduced into the solution cooling absorber (11), the steel solution flows through the heat exchange coil inside The heat is exchanged with the high temperature chemical solution generated from the regenerator 2 and the temperature is raised and then flowed back into the regenerator 2 to repeat the above operation sequentially.

이러한 흡수식 사이클은 냉방 및 난방 기능의 히트펌프(heat pump)로서, 냉방의 경우에는 증발기(6)에서 냉매의 증발잠열로부터 냉방수를 얻을 수 있고, 난방의 경우에는 응축기(4)의 응축잠열 및 수냉각흡수기(12)의 흡수열로부터 난방수를 얻을 수 있다.This absorption cycle is a heat pump of cooling and heating function. In the case of cooling, the cooling water can be obtained from the latent heat of evaporation of the refrigerant in the evaporator 6, and in the case of heating, the latent heat of condenser 4 Heating water can be obtained from the heat of absorption of the water cooling absorber 12.

이와 같은 동작은 시스템이 작동하는 동안 평형이 이루어진 상태에서 연속적으로 순환되면서 이루어 진다.This is accomplished by continuously cycling in equilibrium while the system is operating.

그러나 이러한 종래 암모니아 흡수식 시스템에 있어 용액가열 재생기는 용액속에 잠겨 있는 풀 보일링(pool boiling) 형상을 이루고 있어 용액의 충진량이 많아지게 되고, 농도의 성층화를 위해 열교환 코일의 사이 사이에 배치된 배플판으로 인해 높이가 증가하는 문제점이 있었다.However, in this conventional ammonia absorption system, the solution heating regenerator has a pool boiling shape immersed in the solution, thus increasing the amount of filling of the solution, and a baffle plate disposed between the heat exchange coils for the stratification of the concentration. Due to the problem of increasing the height.

본 발명은 이러한 점을 감안하여 용액가열 재생기를 2중관식으로 구성하고, 하부로부터 상승하는 냉매증기의 속도를 높여주기 위한 내부쉘을 구비함으로써 용액가열 재생기의 성능 향상 및 소형화를 가능하게 하는 데 그 목적이 있다.In view of this point, the present invention provides a solution heating regenerator in a double tube type, and has an inner shell for increasing the speed of refrigerant vapor rising from the bottom thereof, thereby improving performance and miniaturization of the solution heating regenerator. There is a purpose.

도 1 은 일반적인 암모니아 흡수식 시스템의 사이클도.1 is a cycle diagram of a typical ammonia absorption system.

도 2 는 종래 암모니아 흡수식 시스템의 용액가열 재생기 구성도.2 is a configuration of a solution heating regenerator of the conventional ammonia absorption system.

도 3 은 본 발명에 의한 암모니아 흡수식 시스템의 용액가열 재생기 구성도.3 is a configuration of a solution heating regenerator of the ammonia absorption system according to the present invention.

도 4 는 본 발명에 의한 용액가열 재생기의 열교환 코일 구성도.Figure 4 is a block diagram of a heat exchange coil of the solution heating regenerator according to the present invention.

도 5 는 본 발명에 의한 용액가열 재생기의 내부쉘 구성도.5 is an internal shell configuration of the solution heating regenerator according to the present invention.

*** 도면의 주요 부분에 대한 부호의 설명 ****** Explanation of symbols for the main parts of the drawing ***

101 : 쉘 102, 102' : 열교환 코일101: shell 102, 102 ': heat exchange coil

103 : 냉매증기 입구 104 : 냉매증기 출구103: refrigerant steam inlet 104: refrigerant steam outlet

105 : 강용액 입구 106 : 강용액 출구105: steel solution inlet 106: steel solution outlet

107 : 분배판 108 : 약용액 입구107: distribution plate 108: chemical solution inlet

109 : 약용액 출구 110 : 내부쉘109: chemical solution outlet 110: inner shell

이하, 본 발명을 첨부한 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3 은 본 발명에 의한 암모니아 흡수식 시스템의 용액가열 재생기 구성도로서, 원통형의 쉘(101) 내에 열교환 코일(102, 102')이 구비된 구조이며, 재생기(도면상에 미도시)로부터 발생된 냉매증기의 입구(103) 및 출구(104)와, 상부로부터 유입되는 강용액의 입구(105) 및 출구(106)와, 상기 용액가열 재생기의 상단에는 상부로부터 유입되는 강용액을 고르게 분배하여 열교환 코일(102, 102')의 표면에 얇은 막 형태로 흐르게 하기 위한 분배판(107)이 구비된다.3 is a configuration diagram of a solution heating regenerator of the ammonia absorption system according to the present invention, in which heat exchange coils 102 and 102 'are provided in a cylindrical shell 101, and are generated from a regenerator (not shown in the drawing). The inlet 103 and the outlet 104 of the refrigerant vapor, the inlet 105 and the outlet 106 of the steel solution flowing from the upper portion, and the steel solution flowing from the upper portion are uniformly distributed at the upper end of the solution heating regenerator. A distribution plate 107 is provided on the surfaces of the coils 102, 102 ′ for flowing in a thin film form.

그리고, 상기 열교환 코일(102, 102')은 도 4 와 같이 2중관식으로 구성되며, 이 열교환 코일(102, 102')에는 재생기(도면상에 미도시)로부터 발생된 약용액의 입구(108) 및 출구(109)가 형성된다.In addition, the heat exchange coils 102 and 102 'have a double tube type as shown in FIG. 4, and the heat exchange coils 102 and 102' have an inlet 108 for the chemical solution generated from a regenerator (not shown). ) And an outlet 109 are formed.

또한, 도 5 와 같이 상기 용액가열 재생기의 내부에는 재생기로부터 발생되어 상승하는 냉매증기의 속도를 높여주기 위한 내부쉘(110)이 구성된다.In addition, as shown in FIG. 5, an inner shell 110 is formed inside the solution heating regenerator to increase the speed of the refrigerant vapor generated and rising from the regenerator.

이와 같이 구성된 본 발명의 작용을 설명하면 다음과 같다.Referring to the operation of the present invention configured as described above is as follows.

먼저, 재생기 내부의 강용액이 가열되어 냉매증기와 약용액 상태로 분리되고, 약용액은 2중관식의 열교환 코일(102, 102') 약용액 입구(108)로 유입되어 열교환 코일(102, 102')의 내부를 유동하게 된다.First, the strong solution inside the regenerator is heated and separated into a refrigerant vapor and a medicinal solution state, and the medicinal solution flows into the medicinal solution inlet 108 of the double tube type heat exchange coils 102 and 102 'and exchanges heat exchange coils 102 and 102. ') Will flow inside.

한편, 냉매증기는 상승하여 용액가열 재생기의 냉매증기 입구(103)로 유입되며, 상부의 강용액 입구(105)로는 강용액이 유입되어 분배판(107)에 의해 분배되며, 이를 통해 열교환 코일(102, 102')의 표면에 얇은 막 형태로 흐르게 된다.Meanwhile, the refrigerant vapor rises and flows into the refrigerant vapor inlet 103 of the solution heating regenerator, and the strong solution flows into the upper liquid solution inlet 105 and is distributed by the distribution plate 107, thereby allowing the heat exchange coil ( 102, 102 ') in a thin film form.

이때, 열교환 코일(102, 102')의 표면에 얇은 막 형태로 흐르는 강용액은 열교환 코일(102, 102')의 내부를 유동하는 약용액과 열교환을 실시하는 동시에 냉매증기와 열전달 및 물질전달을 수행하게 되는데, 용액가열 재생기의 내부에 장착된 내부쉘(110)에 의해 하부로부터 상승하는 냉매증기의 속도가 높아져 축소된 공간에서 활발한 열전달 및 물질전달을 수행할 수 있는 것이다.At this time, the steel solution flowing in the form of a thin film on the surface of the heat exchange coils 102 and 102 'exchanges heat with the medicinal solution flowing through the heat exchange coils 102 and 102', and also transfers refrigerant vapor, heat transfer, and mass transfer. The inner shell 110 mounted inside the solution heating regenerator is performed to increase the speed of the refrigerant vapor rising from the bottom, thereby enabling active heat transfer and mass transfer in the reduced space.

여기서, 열교환 코일(102, 102')을 2중관식으로 구성한 것은 종래의 용액가열 재생기에 비해 동등한 열량을 얻으면서 높이를 축소하기 위한 것이다.Here, the configuration of the heat exchange coils 102 and 102 'in a double tube type is to reduce the height while obtaining an equivalent amount of heat as compared to the conventional solution heating regenerator.

이상에서 설명한 바와 같이 본 발명은 재생기 하부로부터 상승하는 냉매증기와 용액가열 재생기 상부로부터 유입되는 강용액을 보다 컴팩트한 공간에서 활발히 접촉하게 하여 열 및 물질전달 성능을 향상시킬 수 있으며, 2중관식을 채용함으로써 높이를 감소시킴과 동시에 용액의 충진량 또한 감소시킬 수 있는 효과가 있다.As described above, the present invention can improve the heat and mass transfer performance by actively contacting the refrigerant vapor rising from the lower part of the regenerator and the strong solution flowing from the upper portion of the solution heating regenerator in a more compact space. Employment can reduce the height and at the same time reduce the amount of filling of the solution.

Claims (3)

상부로부터 유입되는 강용액과, 재생기로부터 발생된 약용액 및 냉매증기와 열교환시켜 재생기의 부하를 줄이는 역할을 수행하며, 이를 위해 원통형의 쉘 내에 재생기로부터 발생된 약용액이 유입되어 유동하는 열교환 코일이 구비된 암모니아 흡수식 시스템의 용액가열 재생기에 있어서,It exchanges heat with the strong solution flowing from the upper part, the medicinal solution and the refrigerant vapor generated from the regenerator to reduce the load of the regenerator. For this purpose, the heat exchange coil in which the medicinal solution generated from the regenerator flows into the cylindrical shell is flowed. In the solution heating regenerator of the equipped ammonia absorption system, 상기 용액가열 재생기의 열교환 코일이 2중관식으로 구성된 것을 특징으로 하는 암모니아 흡수식 시스템의 용액가열 재생기 구조.Solution heat regenerator structure of the ammonia absorption system, characterized in that the heat exchange coil of the solution heating regenerator is configured in a double tube type. 제 1 항에 있어서,The method of claim 1, 상기 용액가열 재생기의 내부에는 하부로부터 상승하는 냉매증기의 속도를 높여주기 위한 내부 쉘이 구비된 것을 특징으로 하는 암모니아 흡수식 시스템의 용액가열 재생기 구조.The solution heating regenerator structure of the ammonia absorption system, characterized in that the inside of the solution heating regenerator is provided with an inner shell for increasing the speed of the refrigerant vapor rising from the bottom. 제 1 항에 있어서,The method of claim 1, 상기 용액가열 재생기의 상단에는 상부로부터 유입되는 강용액을 고르게 분배하여 열교환 코일의 표면에 얇은 막 형태로 흐르게 하기 위한 분배판이 구비된 것을 특징으로 하는 암모니아 흡수식 시스템의 용액가열 재생기 구조.The solution heating regenerator structure of the ammonia absorption system, characterized in that the upper end of the solution heating regenerator is provided with a distribution plate for evenly distributing the strong solution flowing from the top to flow in the form of a thin film on the surface of the heat exchange coil.
KR1019970065641A 1997-12-03 1997-12-03 Solution Heat Regenerator Structure of Ammonia Absorption System KR100262718B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970065641A KR100262718B1 (en) 1997-12-03 1997-12-03 Solution Heat Regenerator Structure of Ammonia Absorption System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970065641A KR100262718B1 (en) 1997-12-03 1997-12-03 Solution Heat Regenerator Structure of Ammonia Absorption System

Publications (2)

Publication Number Publication Date
KR19990047288A KR19990047288A (en) 1999-07-05
KR100262718B1 true KR100262718B1 (en) 2000-08-01

Family

ID=19526352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970065641A KR100262718B1 (en) 1997-12-03 1997-12-03 Solution Heat Regenerator Structure of Ammonia Absorption System

Country Status (1)

Country Link
KR (1) KR100262718B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102524858B1 (en) * 2020-08-24 2023-04-21 원철호 Heat Exchanger

Also Published As

Publication number Publication date
KR19990047288A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US3690121A (en) Absorption refrigeration system
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
JP2881593B2 (en) Absorption heat pump
KR100290709B1 (en) The structure of rectifier column for Ammonia Absorption System
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
KR100229318B1 (en) Precooler system of absorption type
JPH0776653B2 (en) Direct contact type condenser and heat cycle device using the same
KR100208181B1 (en) Refrigerant vapor of absorption type cycle
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
KR0147749B1 (en) Regenerator for absorptive airconditioner
KR19990008915A (en) Analyzer structure of ammonia absorption system
US3514970A (en) Absorption refrigeration machine
KR0184216B1 (en) Ammonia absorptive refrigerator
KR100240285B1 (en) Absorption system added rapid boiling function
JPH0517571Y2 (en)
KR100213794B1 (en) Ammonia absorption type cooler
JPH08219575A (en) Absorption refrigerating device
KR100297053B1 (en) Absorption Cooling and Heating System
KR19990008916A (en) Absorption system with plate heat exchanger
JP3236721B2 (en) Regenerator for absorption refrigerator
JP3236722B2 (en) Regenerator for absorption refrigerator
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
JP4282225B2 (en) Absorption refrigerator
JPS60599Y2 (en) low temperature generator
JPH0743033A (en) Double-effect absorption refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080319

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee