JPH0776653B2 - Direct contact type condenser and heat cycle device using the same - Google Patents
Direct contact type condenser and heat cycle device using the sameInfo
- Publication number
- JPH0776653B2 JPH0776653B2 JP2031590A JP3159090A JPH0776653B2 JP H0776653 B2 JPH0776653 B2 JP H0776653B2 JP 2031590 A JP2031590 A JP 2031590A JP 3159090 A JP3159090 A JP 3159090A JP H0776653 B2 JPH0776653 B2 JP H0776653B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- liquid
- gas
- condenser
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,直接接触型凝縮器並びにこれを用いた熱サイ
クル装置に関する。The present invention relates to a direct contact condenser and a heat cycle device using the same.
従来より,冷凍機や冷暖房機器などのヒートポンプ装
置,さらには地熱バイナリー発電,海洋温度差発電等の
熱回収装置の凝縮器としては,凝縮すべき気体熱媒と冷
却流体とを金属壁を介して間接的に熱交換する方式が多
用されている。例えばバイナリー発電等に提案されてい
る凝縮器では,凝縮室の内部に配設した冷却流体の通流
する伝熱管の外表面に,凝縮すべき気体を接触させて気
体を凝縮液化する方式が用いられ,一般的には伝熱面積
を増すように管表面に溝を付けたりフイン付き管を用い
たシエルアンドチューブ型熱交換器が用いられている。
すなわち,伝熱管であるチューブ内に冷却水を通流し,
シエル内に導入された気体熱媒をチューブ外壁に凝縮さ
せるものであり,金属性チューブ外壁と気体との固体−
気体間の熱伝達で凝縮していた。この固体−気体間の熱
伝達は液体−気体間の熱伝達に比べて熱伝達特性が低い
ので,伝熱面積を増加させるために凝縮器を大型化した
り,チューブの表面に溝や凹凸を形成する工夫がなされ
たりしていた。Conventionally, as a condenser of a heat pump device such as a refrigerator or an air conditioner, or a heat recovery device such as geothermal binary power generation or ocean temperature difference power generation, a gas heat medium to be condensed and a cooling fluid are passed through a metal wall. A method of indirectly exchanging heat is often used. For example, in a condenser proposed for binary power generation, a method of condensing and liquefying a gas is used by bringing the gas to be condensed into contact with the outer surface of a heat transfer tube in which a cooling fluid flows inside the condensing chamber. Generally, a shell-and-tube heat exchanger is used that has grooves on the tube surface or finned tubes to increase the heat transfer area.
That is, the cooling water is passed through the tube that is the heat transfer tube,
The gas heat transfer medium introduced into the shell is condensed on the outer wall of the tube.
It was condensed due to heat transfer between gases. Since this solid-gas heat transfer has lower heat transfer characteristics than liquid-gas heat transfer, the condenser is enlarged to increase the heat transfer area, and grooves or irregularities are formed on the tube surface. Some ideas were made to do so.
前記のような理由から,従来の凝縮器にあっては,凝縮
器の大型化に伴って,また伝熱管表面の加工に伴ってコ
ストアップを招くといった問題があった。さらに伝熱管
の外表面に凝縮液や,熱媒中の油等の不純物が付着して
熱伝達性能が著しく低下するといった問題も生じてい
た。For the above-mentioned reasons, the conventional condenser has a problem that the size of the condenser is increased and the cost of the heat transfer tube surface is increased. Furthermore, there has been a problem that condensate and impurities such as oil in the heat medium adhere to the outer surface of the heat transfer tube, resulting in a significant decrease in heat transfer performance.
本発明は上記の問題点を解決するためになされたもの
で,その目的とするところは,凝縮すべき気体を,冷却
した液体に直接接触させて凝縮することにより,凝縮器
の熱伝達性能を向上せしめ,もって,小型且つ安価な凝
縮器を提供し,ひいては効率のよい熱サイクル装置を提
供することにある。The present invention has been made to solve the above problems, and its object is to improve the heat transfer performance of a condenser by directly condensing a gas to be condensed with a cooled liquid to condense it. Therefore, it is an object of the present invention to provide a compact and inexpensive condenser that is improved, and to provide an efficient heat cycle device.
上記の目的を達成するため,内部に冷却流体の通流する
複数本の伝熱管(チューブ)を配設した凝縮室内に,凝
縮すべき気体を導入して該気体の凝縮を行う凝縮器にお
いて,本発明に従う凝縮器は,該凝縮室内に該伝熱管に
より冷却される液体を充填し,この充填液体中に凝縮す
べき気体を気泡状で導入するための気泡発生手段を該凝
縮室底部に設けたことを特徴とする。In order to achieve the above object, a condenser for introducing a gas to be condensed into a condensing chamber having a plurality of heat transfer tubes (tubes) through which a cooling fluid flows, and condensing the gas, The condenser according to the present invention is provided with bubble generating means at the bottom of the condensing chamber for filling the condensing chamber with the liquid cooled by the heat transfer tube and introducing the gas to be condensed into the filling liquid in the form of bubbles. It is characterized by that.
そして,本発明はまた,クローズド配管系内に配置され
た蒸発器と凝縮器との間を熱媒を強制的に循環させ,該
蒸発器で気化した気体熱媒を該凝縮器で液化させ,この
液体熱媒を再び蒸発器に循環するようにした熱サイクル
装置において,該凝縮器がシエル内に多数本のチユーブ
を横方向に配置してなるシエルアンドチューブ型熱交換
器からなり,この熱交換器のシエル側に該熱媒が,そし
てチユーブ側に放熱用流体が通流されることにより該シ
エル内が凝縮室に構成され,この凝縮室内に該熱媒が液
体状態で且つ該チユーブの管壁表面の実質上全てを覆う
に充分な量で充填され,この凝縮室内に充填された液層
の下部に前記の蒸発器で気化した気体熱媒を気泡状で導
入するための気体熱媒導入手段が設けられ,該手段より
も上方の液層位置から液の一部を蒸発器に向けて抜き出
すための液体熱媒導出口が該凝縮室に設けられたことを
特徴とする熱サイクル装置を提供する。そのさい,蒸発
器から凝縮器に至る気体熱媒通路に動力回収用タービン
を配置すれば,地熱や工場廃熱などから動力を回収する
装置に構成することができる。系内に循環させる熱媒と
しては,最も一般的にはフロン,アンモニアなどの低温
度差エネルギー回収サイクルで利用される作動熱媒体を
使用することができる。And the present invention also forcibly circulates the heat medium between the evaporator and the condenser arranged in the closed piping system, liquefying the gas heat medium vaporized by the evaporator by the condenser, In the heat cycle device in which the liquid heat medium is circulated to the evaporator again, the condenser comprises a shell-and-tube heat exchanger in which a plurality of tubes are laterally arranged in the shell. The heat medium flows through the shell side of the exchanger and the heat radiation fluid flows through the tube side to form a condensing chamber inside the condensing chamber, and the heat medium is in a liquid state and the tube of the tube is in the condensing chamber. Introducing a gas heat transfer medium for introducing the gas heat transfer medium vaporized in the evaporator in the form of bubbles into the lower part of the liquid layer packed in the condensation chamber, which is packed in an amount sufficient to cover substantially all of the wall surface. Means is provided and the liquid layer position above the means Liquid heating medium outlet port for withdrawing part of al liquid toward the evaporator to provide a thermal cycling apparatus is characterized in that provided in the condensation chamber. At that time, if a power recovery turbine is arranged in the gas heat transfer medium passage from the evaporator to the condenser, it can be configured as a device for recovering power from geothermal heat or factory waste heat. As the heat medium to be circulated in the system, the most commonly used is a working heat medium used in a low temperature difference energy recovery cycle such as CFC or ammonia.
上記の構成により,凝縮室内において気体熱媒(気泡)
が,多数本の伝熱管によって冷却される液体熱媒と直接
接触して気体−液体間の熱伝達で凝縮させるため,従来
の凝縮器の気体−固体間の熱伝達に比べて熱伝達性能が
向上する。そして,凝縮室内に導入された気体熱媒は,
同一物質の凝縮室内の液体熱媒と一体化するので,この
液を抜き出す操作も安定化する。さらに,熱媒気体は気
泡発生手段によって微細な気泡状となって凝縮室内部の
液体中に導入されるので気体の冷却速度が高まると共
に,発生した気泡により伝熱管周辺の液体が攪拌される
ので,液体と伝熱管との伝熱性能も向上する。従って,
小型でも極めて凝縮効率のよい凝縮器が構成でき,これ
を用いることによって,非常に効率のよい熱サイクル装
置および動力回収装置を構成できる。With the above configuration, the gas heat transfer medium (air bubbles) in the condensing chamber
However, since it directly contacts the liquid heat medium cooled by a large number of heat transfer tubes and condenses it by heat transfer between gas and liquid, the heat transfer performance is better than that of the conventional gas-solid heat transfer in a condenser. improves. The gas heat medium introduced into the condensing chamber is
Since it is integrated with the liquid heat medium in the condensation chamber of the same substance, the operation of extracting this liquid is also stabilized. Furthermore, since the heat transfer medium gas is made into fine bubbles by the bubble generating means and is introduced into the liquid in the condensation chamber, the cooling rate of the gas is increased, and the generated bubbles stir the liquid around the heat transfer tube. , The heat transfer performance between the liquid and the heat transfer tube is also improved. Therefore,
It is possible to configure a condenser that is compact and has extremely high condensation efficiency. By using this, a very efficient heat cycle device and power recovery device can be configured.
以下に,本発明を図示の実施例にもとづいて説明する。 Hereinafter, the present invention will be described based on illustrated embodiments.
第1図は,本発明に係る凝縮器の縦断面図,第2図は,
第1図の一部を破断したA−A線拡大横断面図である。
図示のように本発明の凝縮器は,中心軸を水平方向に向
けた略円筒状の凝縮器本体1の両端開口を端板2a,2bで
閉塞するとともに,その内部を隔壁3により区分して凝
縮室4と冷却水供給室5を形成している。FIG. 1 is a longitudinal sectional view of a condenser according to the present invention, and FIG.
FIG. 2 is an enlarged cross-sectional view taken along the line AA in which a part of FIG. 1 is broken.
As shown in the figure, in the condenser of the present invention, both end openings of a substantially cylindrical condenser body 1 whose central axis is oriented in the horizontal direction are closed by end plates 2a and 2b, and the inside is divided by a partition wall 3. The condensing chamber 4 and the cooling water supply chamber 5 are formed.
凝縮室4の内部には,凝縮室4内を周回し,その両端部
が隔壁3を貫通するU字形の伝熱管6がそれらの軸をほ
ぼ水平方向にして多数本配設されている。また凝縮室4
の下面部には気体流入口7が,上面部の一方端には不活
性ガスを抜くためのガス抜き口8が,側面ほぼ中央部に
は凝縮液取出し口9が,それぞれ凝縮器4の半径方向外
方に突出するように形成されている。そしてこの凝縮室
4内には,後述の凝縮すべき気体と同一の物質であるフ
ロン液10が,伝熱管6の実質上全てがその液中に浸漬さ
れるように充填されている。なお11は,凝縮フロン液10
の流れを制御する制御板である。略長方形状の板状体か
らなる該制御板11は,第2図に見られるように,左端と
右端に位置するU字形の伝熱管6に対して,その長辺側
の上下縁を巻きつけてほぼ垂直方向に取り付けられてい
る。この制御板11の存在によって,稼働中は伝熱管6の
群の側方に凝縮液が循環下降する流れが形成される。Inside the condensing chamber 4, a large number of U-shaped heat transfer pipes 6 that circulate in the condensing chamber 4 and have both ends penetrating the partition wall 3 are arranged with their axes substantially horizontal. Also the condensation chamber 4
Has a gas inlet 7 on the lower surface, a gas outlet 8 for discharging an inert gas on one end of the upper surface, and a condensate outlet 9 on the side surface substantially in the center, and a radius of the condenser 4 respectively. It is formed so as to project outward in the direction. The condensing chamber 4 is filled with a CFC liquid 10, which is the same substance as the gas to be condensed, which will be described later, so that substantially all of the heat transfer tube 6 is immersed in the liquid. In addition, 11 is condensed CFC liquid 10
It is a control plate for controlling the flow of. As shown in FIG. 2, the control plate 11 composed of a substantially rectangular plate-like body has the upper and lower edges on the long side wound around the U-shaped heat transfer tubes 6 located at the left end and the right end. Installed almost vertically. Due to the presence of the control plate 11, during operation, a flow in which the condensate circulates and descends is formed on the side of the group of heat transfer tubes 6.
冷却水供給室5は,第1図に見られるように,上部に冷
却水流出口12が,また下部に冷却水流入口13が,それぞ
れ冷却水供給室5の半径方向外方に突出するように形成
されるとともに,内部が遮蔽板14により上室5aと下室5b
とに分離され,この上室5aと下室5bに各伝熱管6の両端
が開口している。したがって,下室5bが各伝熱管6への
冷却水送入ヘッダー室,上室5aが各伝熱管6からの冷却
水送出ヘッダー室を構成している。As shown in FIG. 1, the cooling water supply chamber 5 has a cooling water outlet 12 at an upper portion and a cooling water inlet 13 at a lower portion so as to project outward in the radial direction of the cooling water supply chamber 5. In addition, the inside of the upper chamber 5a and the lower chamber 5b is protected by the shield plate 14
Both ends of each heat transfer tube 6 are opened in the upper chamber 5a and the lower chamber 5b. Therefore, the lower chamber 5b constitutes a cooling water inlet header chamber for each heat transfer pipe 6, and the upper chamber 5a constitutes a cooling water outlet header chamber for each heat transfer pipe 6.
凝縮室4の底面部には,前記した気体流入口7の上方位
置において,気泡発生板15が水平方向に設置されてい
る。この気泡発生板15は凝縮室4の底面部のほぼ長手方
向全長にわたる大きさを有しており,この気泡発生板15
と凝縮器本体1との間には,給気室16が形成される。気
泡発生板15は,図示の実施例では,第3図に示すよう
に,長方形の平板部に直径4ミリの孔15aを,横方向に5
8個形成したものを縦方向に7列設けた多孔板からなっ
ている。この気泡発生板15の孔15aの個数並びに径は,
凝縮する流体物質の熱物性値によって適正に決める必要
があるが,気体がこの孔を通過するときの流動抵抗を極
力小さくするために,孔15aの総面積が気体流入口7の
口径断面積にほぼ等しくなるくらいが適当である。また
列数およびその位置は,伝熱管群の最下部の管数などに
関連させて,気泡による伝熱管周辺の液体の攪拌効果を
高める配置とする。これによって液体と伝熱管との伝熱
性能を格段に向上させることができる。なお長手方向に
沿った15cが気泡発生板15の裏面に垂直に取付けられ,
薄板からなる気泡発生板15の強度を補強している。な
お,気泡発生手段としては,既述の気泡発生板のほか多
孔管を使用することもできる。A bubble generating plate 15 is horizontally installed on the bottom surface of the condensing chamber 4 above the gas inlet 7. The bubble generating plate 15 has a size that extends over substantially the entire length of the bottom surface of the condensing chamber 4 in the longitudinal direction.
An air supply chamber 16 is formed between the condenser body 1 and the condenser body 1. In the illustrated embodiment, the bubble generating plate 15 has, as shown in FIG. 3, a rectangular flat plate portion with holes 15a having a diameter of 4 mm and 5 holes in the lateral direction.
It consists of 8 perforated plates with 7 rows in the vertical direction. The number and diameter of the holes 15a of the bubble generating plate 15 are
It is necessary to properly determine the thermophysical property value of the fluid substance to be condensed, but in order to minimize the flow resistance when the gas passes through this hole, the total area of the hole 15a is set to the diameter cross-sectional area of the gas inlet 7. It is suitable that they are almost equal. In addition, the number of rows and their positions are related to the number of tubes at the bottom of the heat transfer tube group, etc., and are arranged to enhance the stirring effect of the liquid around the heat transfer tubes by the bubbles. As a result, the heat transfer performance between the liquid and the heat transfer tube can be significantly improved. In addition, 15c along the longitudinal direction is vertically attached to the back surface of the bubble generating plate 15,
The strength of the bubble generating plate 15 made of a thin plate is reinforced. In addition to the above-described bubble generating plate, a porous tube can be used as the bubble generating means.
以上の構成からなる凝縮器の作用を,凝縮すべき気体と
してフロンガスを使用した場合を例にとって説明する。
先ず,冷却水流入口13より冷却水17を冷却水供給室5の
下室5b内に流入せしめると該冷却水17が伝熱管6内を通
流し,再び冷却水供給室5の上室5a内を通過して冷却水
流出口12より排出される。これによって伝熱管6が冷却
されると,凝縮室4内に充填されているフロン液10が該
伝熱管6により冷却される。そのさい,伝熱管6とフロ
ン液10との熱伝達は,固体−液体間の熱伝達となってい
るので固体−気体間の熱伝達に比べて熱伝達性能が良
い。The operation of the condenser configured as described above will be described by taking as an example the case where chlorofluorocarbon gas is used as the gas to be condensed.
First, when the cooling water 17 is made to flow from the cooling water inlet 13 into the lower chamber 5b of the cooling water supply chamber 5, the cooling water 17 flows through the heat transfer tube 6 and again in the upper chamber 5a of the cooling water supply chamber 5. It passes through and is discharged from the cooling water outlet 12. When the heat transfer tube 6 is cooled by this, the CFC liquid 10 filled in the condensing chamber 4 is cooled by the heat transfer tube 6. At that time, the heat transfer between the heat transfer tube 6 and the chlorofluorocarbon liquid 10 is heat transfer between the solid and the liquid, so that the heat transfer performance is better than that between the solid and the gas.
この冷却されたフロン液10内に,気泡発生板15を通じて
フロンガスが気泡20(第2図)として導入されると,こ
の気泡20が凝縮室4の上方へ上昇していく過程でフロン
液10によって冷却されて凝縮する。また,本発明の凝縮
器ではフロンガスをフロン液の下部から吹き込むので,
この気泡吹き込みによる攪拌が強力に発生し,特に伝熱
管6と液との界面に拡散流が発生することによって伝熱
管6とフロン液10との熱伝達が非常に促進される。この
ようにして,フロンガス気泡20とフロン液10とが直接接
触する熱伝達によって凝縮が行われるため,従来の気体
−固体間の熱伝達による凝縮に比べて熱伝達性能が非常
に良い。即ち,従来の気体−固体間の凝縮による熱透過
係数は300乃至千数百kcal/m2℃hであったが,本発明の
気体−液体間の凝縮では熱伝達性能を数千kcal/m2℃h
とすることが可能である。When CFC gas is introduced as bubbles 20 (Fig. 2) into the cooled CFC liquid 10 through the bubble generation plate 15, the CFC liquid 10 is generated by the CFC liquid 10 as it rises above the condensing chamber 4. Cools and condenses. Further, in the condenser of the present invention, since the CFC gas is blown from the lower part of the CFC liquid,
The agitation due to the blowing of the bubbles strongly occurs, and particularly, the diffusion flow is generated at the interface between the heat transfer tube 6 and the liquid, so that the heat transfer between the heat transfer tube 6 and the chlorofluorocarbon liquid 10 is greatly promoted. In this way, since the condensation is performed by the heat transfer in which the CFC gas bubble 20 and the CFC liquid 10 are in direct contact with each other, the heat transfer performance is very good as compared with the conventional condensation by the gas-solid heat transfer. That is, the conventional heat transfer coefficient due to condensation between gas and solid was 300 to several thousand and several hundreds kcal / m 2 ° C. However, in the condensation between gas and liquid of the present invention, the heat transfer performance was several thousand kcal / m. 2 ℃ h
It is possible to
凝縮液化された凝縮液は凝縮室4上方部まで上昇した後
下降してくるが,その下降流れ18は制御板11により凝縮
室4の内周面沿いに流れるように制御され,再び室内中
央部に移動して上昇流となる。かような液の攪拌と循環
が行われる間において,凝縮分に相当する液は,室のほ
ぼ中央側部に存在する凝縮液取出し口9から,気泡は実
質的に流れ出さずに取り出される。またフロンガスに不
活性ガス19が混合していた場合,該不活性ガス19は不活
性ガス取出し口8より凝縮室4外部へ適宜排出される。The condensate that has been condensed and liquefied rises to the upper part of the condensing chamber 4 and then descends. The descending flow 18 is controlled by the control plate 11 so as to flow along the inner peripheral surface of the condensing chamber 4, and again the central part of the room. It moves to and becomes an upflow. During such stirring and circulation of the liquid, the liquid corresponding to the condensed portion is taken out from the condensed liquid take-out port 9 which is present in the substantially central portion of the chamber without bubbles substantially flowing out. When the CFC gas is mixed with the inert gas 19, the inert gas 19 is appropriately discharged from the inert gas outlet 8 to the outside of the condensing chamber 4.
この液体−気体の直接接触の動作は連続して行われる
が,稼働初期においては,凝縮室4のフロン液10を充分
に冷却したあと,気体流入口7からフロンガスを導入す
る。このフロン液10の予冷は給気室16内にもフロン液10
を充満した状態で行なうことができる。そして,このフ
ロン液10が給気室16内に充満した状態でフロンガスの導
入を開始すると,給気室16内のフロン液は,導入される
フロンガスが有する圧で排出させられフロンガスが有す
る熱によって蒸発し該空間はやがてフロンガスで占める
ことになり,以後はその状態で連続動作が行われる。Although this liquid-gas direct contact operation is continuously performed, in the initial stage of operation, the CFC liquid 10 in the condensing chamber 4 is sufficiently cooled and then CFC gas is introduced from the gas inlet 7. The pre-cooling of the CFC liquid 10 is performed in the air supply chamber 16 as well.
Can be performed in a full state. Then, when the introduction of the CFC gas is started in a state where the air supply chamber 16 is filled with the CFC liquid 10, the CFC liquid in the gas supply chamber 16 is discharged at the pressure of the CFC gas introduced and is heated by the heat of the CFC gas. After evaporating, the space will eventually be filled with CFC gas, and thereafter, continuous operation will be performed in that state.
第4図は,前述の凝縮器を使用した熱サイクル装置を示
したものである。第4図において,1は前述の凝縮器を,2
2は蒸発器を示しており,凝縮器1の液取出し口19から
蒸発器22に通ずる液配管23にポンプ24および絞り弁25を
介装し,蒸発器22から凝縮器1の気体流入口7に高圧配
管26を配設し,熱媒としててフロンがその中を循環する
クローズド熱サイクルを形成したものである。第4図に
おける蒸発器22は高温水を抜熱流体とする熱交換器であ
り,例えばシエルアンドチューブ型熱交換器を使用し,
チューブ内に高温水をそしてシエル内に熱媒液を通流す
ることによりシエル内を蒸発器に構成することができ
る。また通常のフインチューブ型のコイルを使用し,コ
イル内に熱媒液を通流するようにしてもよい。この場合
には,第5図に示すように,高温気体を抜熱流体として
熱交換コイル22aの表面に通過させるようにすることも
できる。いずれにしても,蒸発器22は抜熱用二次流体を
冷却する機能をもつことから,冷凍機や冷房機の吸熱機
器を構成することになる。FIG. 4 shows a thermal cycler using the above-mentioned condenser. In Fig. 4, 1 is the above-mentioned condenser and 2
Reference numeral 2 denotes an evaporator. A pump 24 and a throttle valve 25 are provided in a liquid pipe 23 leading from the liquid outlet 19 of the condenser 1 to the evaporator 22, and the evaporator 22 is connected to the gas inlet 7 of the condenser 1. A high-pressure pipe 26 is arranged in the interior of the cylinder to form a closed heat cycle in which CFCs circulate as a heat medium. The evaporator 22 in FIG. 4 is a heat exchanger that uses high-temperature water as a heat removal fluid, and uses, for example, a shell-and-tube heat exchanger,
An evaporator can be formed in the shell by passing hot water in the tube and a heat transfer liquid in the shell. Further, a normal fin tube type coil may be used, and the heat transfer liquid may be passed through the coil. In this case, as shown in FIG. 5, high temperature gas may be passed through the surface of the heat exchange coil 22a as a heat removal fluid. In any case, since the evaporator 22 has a function of cooling the heat removal secondary fluid, it constitutes a heat absorbing device such as a refrigerator or an air conditioner.
この熱サイクル装置の特徴は,前述のように凝縮器1が
シエル内に多数本のチユーブ6を横方向に配置してなる
シエルアンドチューブ型熱交換器からなり,この熱交換
器のシエル側に熱媒(フロン)が,そしてチユーブ6内
に放熱用流体(冷却水)が通流されることにより該シエ
ル内が凝縮室に構成され,この凝縮室内に該熱媒を液体
状態で且つ該チユーブ6の管壁表面の実質上全てを覆う
に充分な量で充填したうえ,その液層の下部に,蒸発器
22で気化した気体熱媒を気泡状で導入するための気体熱
媒導入手段15を設け,この手段15よりも上方の液層位置
から液の一部を蒸発器に向けて抜き出すための液体熱媒
導出口19を該凝縮室に設け,運転中は該凝縮室内におい
て常に液体−気体の直接熱交換で凝縮操作を行わせる点
にある。そのさい,稼働中において,チューブ6のほぼ
全ての管壁表面を覆うに充分な液量を凝縮室内に常時滞
留させるには,液面検出計27による検出値を指示値とし
たポンプ24の回転数制御或いはポンプ24の吸込側の液管
路に設けた制御弁28の開度制御によって行うことができ
る。これによって,クローズドサイクル内での熱媒の凝
縮動作は,気体熱媒の気泡と液体熱媒との直接熱交換に
よって行われ,しかも,液体熱媒の攪拌が該気泡によっ
て助成されることから(特にチューブ外壁周囲の液膜が
拡散することから)冷却水と液体熱媒との熱伝達効率が
向上するので凝縮効率が向上し,ひいては気体熱媒から
冷却水への熱伝達が極めて高い効率のもとで行われ,凝
縮器自体の容量がそれほど大きくなくても,意図する凝
縮挙動が完全に実現できる。The feature of this heat cycle device is that, as described above, the condenser 1 is a shell-and-tube heat exchanger in which a large number of tubes 6 are arranged in the shell in the lateral direction. A heat transfer medium (CFC) and a heat dissipation fluid (cooling water) flow through the tube 6 to form a condensing chamber in the shell, and the heat transfer medium is in a liquid state in the condensing chamber. In the bottom of the liquid layer, fill the evaporator with a sufficient amount to cover substantially all of the tube wall surface.
A gas heat medium introducing means 15 for introducing the gas heat medium vaporized in 22 in the form of bubbles is provided, and liquid heat for extracting a part of the liquid from the liquid layer position above this means 15 toward the evaporator. The medium outlet 19 is provided in the condensing chamber, and during operation, the condensing operation is always performed by direct heat exchange of liquid-gas in the condensing chamber. At that time, during operation, in order to always retain a sufficient amount of liquid in the condensing chamber so as to cover almost all the tube wall surfaces of the tubes 6, the rotation of the pump 24 with the detection value by the liquid level detector 27 as the indicated value. The control can be performed by the number control or the opening control of the control valve 28 provided in the liquid pipe line on the suction side of the pump 24. Thereby, the condensing operation of the heat transfer medium in the closed cycle is performed by direct heat exchange between the gas heat transfer medium bubbles and the liquid heat transfer medium, and further, the stirring of the liquid heat transfer medium is assisted by the bubbles ( In particular, since the liquid film around the outer wall of the tube diffuses), the heat transfer efficiency between the cooling water and the liquid heat medium is improved, so that the condensation efficiency is improved, and the heat transfer from the gas heat medium to the cooling water is extremely high. The original condensing behavior can be completely realized even if the capacity of the condenser itself is not so large.
第6図は,蒸発器22で得られた高圧気体熱媒を利用して
動力を回収するようにした以外は,第4図と同様の熱サ
イクル装置を示したものである。すなわち,蒸発器22か
ら凝縮器1に通ずる高圧ガス管路26にタービン30を介装
し,このタービン30によって発電機31で電力を取り出す
ようにしたものである。かような動力回収装置は,温泉
や工場等での過剰な熱水を熱源とするのに適用され,こ
のため,蒸発器22は熱水と効率よく熱交換できるものを
使用する。FIG. 6 shows a thermal cycler similar to that of FIG. 4 except that the power is recovered by using the high pressure gas heat medium obtained in the evaporator 22. That is, a turbine 30 is provided in a high-pressure gas pipe line 26 that leads from the evaporator 22 to the condenser 1, and electric power is taken out by a generator 31 by the turbine 30. Such a power recovery device is applied to use excess hot water in a hot spring or a factory as a heat source, and therefore, the evaporator 22 uses one that can efficiently exchange heat with the hot water.
例えば,第7図に示したように,熱水槽33の底部に熱水
またはスチームを噴出する噴出管34を配置することによ
って,槽33内の熱水を攪拌しつつ高温を維持せしめ,こ
の熱水槽33内に凝縮器1で得られた液体熱媒が通流する
熱交換コイル35を浸漬する。さらに,該熱水槽33内には
内容積の大きなチヤンバー36(蒸発器)も浸漬してお
き,このチヤンバー36内にコイル35を通過して昇温した
熱媒を噴射して気化させる。このチヤンバー36内には適
宜槽内の熱水が通流する伝熱管を配置しておくこともで
きる。これによってチヤンバー36(蒸発器)では高圧の
熱媒蒸気が効率よく得られ,この高圧蒸気を利用してタ
ービン30を駆動する。タービン30を通過した熱媒気体は
再び凝縮器1に戻って液化される。For example, as shown in FIG. 7, by arranging a jet pipe 34 for jetting hot water or steam at the bottom of the hot water tank 33, the hot water in the tank 33 is stirred and the high temperature is maintained. The heat exchange coil 35 through which the liquid heat medium obtained in the condenser 1 flows is immersed in the water tank 33. Further, a chamber 36 (evaporator) having a large internal volume is also immersed in the hot water tank 33, and the heating medium which has passed through the coil 35 and is heated is injected into the chamber 36 to be vaporized. Inside the chamber 36, a heat transfer tube through which hot water in the tank flows can be appropriately arranged. As a result, in the chamber 36 (evaporator), high-pressure heat medium vapor is efficiently obtained, and the high-pressure vapor is used to drive the turbine 30. The heat medium gas that has passed through the turbine 30 returns to the condenser 1 again and is liquefied.
なお前述の実施例では作動媒体としてフロンを用いた例
を示したが,アンモニア等の低温度差エネルギー回収サ
イクルで使用される通常の熱媒を使用しても同様に稼働
することができる。In the above-mentioned embodiment, an example in which CFC is used as the working medium has been shown, but the same operation can be performed using a normal heat medium used in the low temperature difference energy recovery cycle such as ammonia.
以上のようにして,本発明に従う凝縮器では気体熱媒は
気泡となって凝縮室内部の冷却された液体熱媒と直接接
触し,気体(気泡)−液体間の熱伝達で凝縮されるので
従来の凝縮器の気体−固体(伝熱管)の熱伝達に比べて
熱伝達性能が格段に向上し,しかも気体熱媒の気泡によ
って凝縮室内の液体熱媒の攪拌が行われるので伝熱管表
面での固体−液体間の熱伝達も極めて良好となり,少な
い伝熱面積でも大きな凝縮効果が得られる。このため,
凝縮器を小型化することができ,熱サイクル装置に使用
したときに,安価でしかも効率の良い装置に構成するこ
とができる。特に熱水からの動力回収装置等は,装置が
大掛かりになるためにその実用化の妨げになっていた
が,本発明によって効率のよう小型の凝縮器が得られた
ことは,かような動力回収装置の改善に大きく貢献でき
る。As described above, in the condenser according to the present invention, the gas heat transfer medium becomes bubbles and comes into direct contact with the cooled liquid heat transfer medium in the condensation chamber, and is condensed by heat transfer between the gas (bubble) and liquid. Compared with the conventional gas-solid (heat transfer tube) heat transfer in a condenser, the heat transfer performance is significantly improved, and the liquid heat transfer medium inside the condensing chamber is agitated by the bubbles of the gas heat transfer medium. The heat transfer between the solid and liquid is extremely good, and a large condensation effect can be obtained even with a small heat transfer area. For this reason,
The condenser can be downsized, and when used in a heat cycle device, it can be configured as an inexpensive and efficient device. In particular, a power recovery device from hot water has been a hindrance to practical use because of the large size of the device, but the fact that a compact condenser with high efficiency was obtained by the present invention is such a power source. It can greatly contribute to the improvement of the recovery device.
第1図は,本発明に従う凝縮器の例を示す縦断面図, 第2図は,第1図の一部を破断したA−A線拡大横断面
図, 第3図(イ)乃至(ハ)は,気泡発生板の構成図で
(イ)は正面図,(ロ)は平面図,(ハ)は側面図, 第4図は,本発明に従う熱サイクル装置の実施例を示す
略断面図, 第5図は,第4図の熱サイクル装置における別の蒸発器
を用いた例を示す略断面図, 第6図は,本発明に従う動力回収熱サイクル装置の実施
例を示す略断面図, 第7図は,第6図における蒸発器の好ましい例を示す略
断面図である。 1……凝縮器本体,4……凝縮室,6……伝熱管,7……気体
流入口,10……凝縮室内に充填された液体,15……気泡発
生板,16……給気室,17……冷却水,20……凝縮すべき気
体の気泡,22……蒸発器,23……液配管,24……ポンプ,25
……絞り弁,26……高圧配管,33……熱水槽,35……熱交
換コイル,36……チヤンバー式蒸発器。FIG. 1 is a vertical cross-sectional view showing an example of a condenser according to the present invention, FIG. 2 is an enlarged cross-sectional view taken along the line AA in which a part of FIG. 1 is broken, and FIGS. ) Is a configuration diagram of a bubble generating plate, (a) is a front view, (b) is a plan view, (c) is a side view, and FIG. 4 is a schematic cross-sectional view showing an embodiment of a heat cycle device according to the present invention. FIG. 5 is a schematic sectional view showing an example using another evaporator in the heat cycle apparatus of FIG. 4, FIG. 6 is a schematic sectional view showing an embodiment of a power recovery heat cycle apparatus according to the present invention, FIG. 7 is a schematic sectional view showing a preferred example of the evaporator in FIG. 1 ... Condenser body, 4 ... Condensing chamber, 6 ... Heat transfer tube, 7 ... Gas inlet, 10 ... Liquid filled in the condensation chamber, 15 ... Bubbling plate, 16 ... Air supply chamber , 17 ... Cooling water, 20 ... Bubbles of gas to be condensed, 22 ... Evaporator, 23 ... Liquid piping, 24 ... Pump, 25
...... Throttle valve, 26 ...... High pressure piping, 33 ...... Hot water tank, 35 ...... Heat exchange coil, 36 ...... Chamber type evaporator.
Claims (6)
を配設した凝縮室内に,凝縮すべき気体を導入して該気
体の凝縮を行う凝縮器において,該凝縮室内に該伝熱管
により冷却される液体を充填し,この充填液体中に凝縮
すべき気体を気泡状で導入するための気泡発生手段を該
凝縮室底部に設けたことを特徴とする直接接触型凝縮
器。1. A condenser in which a gas to be condensed is introduced to condense the gas into a condensing chamber having a plurality of heat transfer tubes through which a cooling fluid flows, and the heat is transferred to the condensing chamber. A direct contact type condenser characterized in that a bubble generating means for filling a liquid cooled by a heat pipe and introducing a gas to be condensed into the filled liquid in the form of bubbles is provided at the bottom of the condensation chamber.
である請求項1に記載の直接接触型凝縮器。2. The direct contact condenser according to claim 1, wherein the filling liquid is the same substance as the gas to be condensed.
凝縮器との間を熱媒を強制的に循環させ,該蒸発器で気
化した気体熱媒を該凝縮器で液化させ,この液体熱媒を
再び蒸発器に循環するようにした熱サイクル装置におい
て, 前記の凝縮器がシエル内に多数本のチユーブを横方向に
配置してなるシエルアンドチューブ型熱交換器からな
り,この熱交換器のシエル側に該熱媒が,そしてチユー
ブ側に放熱用流体が通流されることにより該シエル内が
凝縮室に構成され, この凝縮室内に該熱媒が液体状態で且つ該チユーブの管
壁表面の実質上全てを覆うに充分な量で充填され, この凝縮室内に充填された液層の下部に前記の蒸発器で
気化した気体熱媒を気泡状で導入するための気体熱媒導
入手段が設けられ, 該手段よりも上方の液層位置から液の一部を蒸発器に向
けて抜き出すための液体熱媒導出口が該凝縮室に設けら
れたことを特徴とする熱サイクル装置。3. A liquid heating medium is forcibly circulated between an evaporator and a condenser arranged in a closed piping system, and a gaseous heat medium vaporized by the evaporator is liquefied by the condenser. In a heat cycle device in which the heat medium is circulated to the evaporator again, the condenser comprises a shell-and-tube heat exchanger in which a large number of tubes are laterally arranged in a shell. The heat medium is passed to the shell side of the vessel and the heat radiation fluid is passed to the tube side to form a condensing chamber in the shell, and the heat medium is in a liquid state in the condensing chamber and the tube wall of the tube is formed. A gas heat medium introduction means for introducing the gas heat medium vaporized in the evaporator in the form of bubbles into the lower part of the liquid layer filled in the condensation chamber so as to cover substantially all of the surface. Is provided from the liquid layer position above the means. A heat cycle device, wherein a liquid heat medium outlet for discharging a part of the liquid toward the evaporator is provided in the condensing chamber.
項3に記載の熱サイクル装置。4. The heat cycle device according to claim 3, wherein the heat medium is Freon or ammonia.
力回収用タービンが配置される請求項3または4に記載
の熱サイクル装置。5. The heat cycle apparatus according to claim 3, wherein a power recovery turbine is arranged in a gas heat medium passage extending from the evaporator to the condenser.
記載の熱サイクル装置。6. The thermal cycler according to claim 5, wherein the evaporator is immersed in a hot water tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2031590A JPH0776653B2 (en) | 1989-02-23 | 1990-02-14 | Direct contact type condenser and heat cycle device using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-41593 | 1989-02-23 | ||
JP4159389 | 1989-02-23 | ||
JP2031590A JPH0776653B2 (en) | 1989-02-23 | 1990-02-14 | Direct contact type condenser and heat cycle device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02290478A JPH02290478A (en) | 1990-11-30 |
JPH0776653B2 true JPH0776653B2 (en) | 1995-08-16 |
Family
ID=12612708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2031590A Expired - Fee Related JPH0776653B2 (en) | 1989-02-23 | 1990-02-14 | Direct contact type condenser and heat cycle device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0776653B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3424355B2 (en) * | 1994-11-22 | 2003-07-07 | ダイキン工業株式会社 | Horizontal shell and tube condenser |
CN102645058A (en) * | 2012-05-04 | 2012-08-22 | 太仓市弧螺机电有限公司 | Efficient condenser |
RU2616431C2 (en) * | 2015-07-07 | 2017-04-14 | Акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" | Steam generator |
JP7059664B2 (en) * | 2018-02-06 | 2022-04-26 | 株式会社Ihi | Heat pump system |
CN114599213B (en) * | 2022-03-30 | 2024-01-23 | 苏州浪潮智能科技有限公司 | Dual-phase cold plate liquid cooling system and control method thereof |
-
1990
- 1990-02-14 JP JP2031590A patent/JPH0776653B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02290478A (en) | 1990-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1286121A2 (en) | Absorption chiller-heater and generator for use in such absorption chiller-heater | |
US5335519A (en) | Plant for producing cold by solid/gas reaction, reactor comprising means of cooling | |
US6178293B1 (en) | Method and an apparatus for improving heat transfer | |
JPH0776653B2 (en) | Direct contact type condenser and heat cycle device using the same | |
JP2548380B2 (en) | Heat exchanger | |
JPS5864486A (en) | Heat exchanger | |
US2690058A (en) | Condenser arrangement for absorption refrigeration apparatus | |
JPH10246538A (en) | Gas and liquid separator for absorption refrigerating device | |
JPS60599Y2 (en) | low temperature generator | |
KR940011907A (en) | Refrigerant Gas Injection Air Cooling Absorption System | |
KR100262718B1 (en) | Solution Heat Regenerator Structure of Ammonia Absorption System | |
JP3694575B2 (en) | Heat utilization system using hydrogen storage alloy | |
US4625791A (en) | Apparatus and method for operating solution heat with vertical heat exchangers | |
KR100286833B1 (en) | Heat exchanger for regenerator of cool/heating system | |
KR0147749B1 (en) | Regenerator for absorptive airconditioner | |
JPS6183434A (en) | Condenser for evaporative cooling type engine | |
JP3236721B2 (en) | Regenerator for absorption refrigerator | |
JP2005326130A (en) | Method and device for generating cold and/or hot heat used of heat of dissolution | |
JP2546072Y2 (en) | Submerged vertical steam condenser | |
JPS6135903Y2 (en) | ||
KR0139277Y1 (en) | Absorptive refrigerator | |
JPH08190923A (en) | Carburetor for fuel cell | |
JPH0450504B2 (en) | ||
RU2087824C1 (en) | Thermosiphon heat exchanger | |
KR100314471B1 (en) | Generator of absorption heat pump using ammonia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |