JPS6135903Y2 - - Google Patents

Info

Publication number
JPS6135903Y2
JPS6135903Y2 JP16957981U JP16957981U JPS6135903Y2 JP S6135903 Y2 JPS6135903 Y2 JP S6135903Y2 JP 16957981 U JP16957981 U JP 16957981U JP 16957981 U JP16957981 U JP 16957981U JP S6135903 Y2 JPS6135903 Y2 JP S6135903Y2
Authority
JP
Japan
Prior art keywords
solution
outlet
inlet
radiator
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16957981U
Other languages
Japanese (ja)
Other versions
JPS5874060U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16957981U priority Critical patent/JPS5874060U/en
Publication of JPS5874060U publication Critical patent/JPS5874060U/en
Application granted granted Critical
Publication of JPS6135903Y2 publication Critical patent/JPS6135903Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は吸収冷凍機の発生器、詳しくは、箱形
胴体の底部に、複数の伝熱管をもち、パス数を複
数とした放熱器を配設し、かつ、該放熱器の管板
間に、複数の仕切板を設けて、前記放熱器のパス
数に見合う溶液通路を形成した発生器に関する。
[Detailed description of the invention] The present invention is an absorption refrigerator generator, in particular, a radiator having a plurality of heat transfer tubes and a plurality of passes is disposed at the bottom of a box-shaped body, and The present invention relates to a generator in which a plurality of partition plates are provided between tube plates of a radiator to form solution passages corresponding to the number of passes of the radiator.

一般にこの種発生器においては、前記伝熱管中
を流通する熱源流体と、前記溶液通路を流通する
溶液との熱交換性能を高めて、より多くの冷媒ガ
スを発生させることが望ましく、そのためには、
前記溶液の前記通路中における流速を大きくとる
必要がある。一方、前記溶液は、前記通路入口側
と出口側における前記溶液液面のヘツド差により
流れており、前記溶液流速を大きくするために
は、前記通路入口側における前記溶液の液位を高
くしてやる必要があり、その結果、前記仕切板高
さを高くしてやる必要があつた。
Generally, in this type of generator, it is desirable to improve the heat exchange performance between the heat source fluid flowing through the heat transfer tube and the solution flowing through the solution passage to generate more refrigerant gas. ,
It is necessary to have a high flow rate of the solution in the passage. On the other hand, the solution flows due to the difference in the liquid level of the solution at the entrance side and the exit side of the passage, and in order to increase the solution flow rate, it is necessary to increase the liquid level of the solution at the entrance side of the passage. As a result, it was necessary to increase the height of the partition plate.

他方、前記放熱器により加熱されて発生する冷
媒ガスは、前記溶液上方を流通路となしており、
前記仕切板高さを高くすることは、障壁を設け
て、前記冷媒ガスの流通抵抗を増大させることと
同等であり、前記冷媒ガスをスムースに流通させ
るためには、前記仕切板高さを低くして、前記冷
媒ガスの流通スペースを十分確保することが望ま
しかつたのである。
On the other hand, the refrigerant gas generated by being heated by the radiator has a flow path above the solution,
Increasing the height of the partition plate is equivalent to increasing the flow resistance of the refrigerant gas by providing a barrier, and in order to allow the refrigerant gas to flow smoothly, the height of the partition plate should be lowered. Therefore, it is desirable to ensure sufficient circulation space for the refrigerant gas.

しかして本考案は以上の如き実情に鑑み考案し
たもので、目的とするところは、前記溶液の流通
速度を大きくして、前記熱源流体と溶液との熱交
換性能を高めることができながら、発生する冷媒
ガスの流通をもスムースに行なえ、もつて冷凍能
力を高めることができる吸収式冷凍機の発生器を
提供する点にあり、箱形胴体の底部に、複数の伝
熱管をもち、パス数を複数とした放熱器を配設
し、かつ、該放熱器の管板間に、複数の仕切板を
設けて、前記放熱器のパス数に見合う溶液通路を
形成し、これら各溶液通路にそれぞれバツフル板
を設けると共に、前記伝熱管を流れる熱源流体と
溶液とが対向流になるごとく、熱源流体の出入口
と、流液の出入口とを設ける一方、前記溶液出口
側の溶液通路の上方を凝縮器への冷媒流通路とす
るとともに、前記溶液入口側の仕切板を高さを高
く、前記溶液出口側の仕切板の高さを低くし、か
つ、前記伝熱管の前記各溶液通路における架設高
さを、前記仕切板の高さに合わせて、前記溶液入
口側では高く、前記溶液出口側では低くしたこと
を特徴とするものである。
However, the present invention was devised in view of the above-mentioned circumstances, and its purpose is to increase the flow rate of the solution and improve the heat exchange performance between the heat source fluid and the solution. The purpose of this invention is to provide a generator for an absorption refrigerator that can smoothly circulate refrigerant gas and increase the refrigerating capacity. A plurality of radiators are provided, and a plurality of partition plates are provided between the tube plates of the radiator to form solution passages corresponding to the number of passes of the radiator, and each solution passage is provided with a plurality of partition plates. In addition to providing a baffle plate, an inlet/outlet for the heat source fluid and an inlet/outlet for the flowing liquid are provided so that the heat source fluid and the solution flowing through the heat transfer tube are in counterflow, and a condenser is provided above the solution passage on the solution outlet side. the height of the partition plate on the solution inlet side is made high, the height of the partition plate on the solution outlet side is made low, and the construction height of each of the solution passages of the heat transfer tube is is set higher on the solution inlet side and lower on the solution outlet side in accordance with the height of the partition plate.

以下本考案の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

図面中、1は箱形胴体であり、該箱形胴体1の
底部には放熱器2を設けると共に、上部には凝縮
器3を設ける一方、その上端縁部には断面形状を
円弧形と成すヘツドカバー4を冠着するのであ
る。
In the drawing, 1 is a box-shaped body, and a radiator 2 is provided at the bottom of the box-shaped body 1, a condenser 3 is provided at the top, and the cross-sectional shape of the box-shaped body 1 is arcuate. The head cover 4 is then attached to the head cover 4.

前記放熱器2は、管板21,22間に、太陽熱
利用の温水器や工場低温排水管などに接続する複
数の伝熱管23…を架設すると共に、前記管板2
1,22の外方には、ヘツダー24,25を付設
し、該ヘツダー24,25に区画板26,26…
を内設して4パスと成すものである。
The heat radiator 2 has a plurality of heat transfer tubes 23 installed between the tube sheets 21 and 22, which are connected to a solar water heater, a factory low-temperature drainage pipe, etc.
Headers 24, 25 are attached to the outside of the headers 1, 22, and partition plates 26, 26...
is installed internally to form 4 passes.

さらに、前記管板21,22間には、3枚の仕
切板51,52,53を設けて、前記放熱器2の
パス数に見合う4パスの溶液通路61,62,6
3,64を形成すると共に、これら溶液通路6
1,62,63,64のそれぞれに多数のバツフ
ル板6a…を齟齬するごとくに植設するのであ
る。
Furthermore, three partition plates 51, 52, 53 are provided between the tube plates 21, 22, and four-pass solution passages 61, 62, 6 corresponding to the number of passes of the radiator 2 are provided.
3 and 64, and these solution passages 6
1, 62, 63, and 64, a large number of buttful plates 6a... are planted in such a way as to be inconsistent with each other.

そして前記伝熱管23…中を流れる温水などの
熱源流体と、前記溶液通路61,62,63,6
4を流れる溶液とが対向流になるごとく、前記ヘ
ツダー24に熱源流体の入口71と出口72とを
設けると共に、前記胴体1に溶液の入口81と出
口82とを設けるのである。
The heat source fluid such as hot water flowing through the heat transfer tube 23 and the solution passages 61, 62, 63, 6
The header 24 is provided with an inlet 71 and an outlet 72 for the heat source fluid, and the body 1 is provided with an inlet 81 and an outlet 82 for the solution so that the solution flowing through the main body 1 and the solution flow in opposite directions.

しかして本考案においては、前記溶液出口82
側の溶液通路64の上方を凝縮器3への冷媒流通
路7としており、さらに前記溶液入口81側にお
ける仕切板51の高さを最も高くすると共に、前
記溶液出口82側における仕切板53の高さを最
も低くするのであり、またこれら仕切板51,5
2,53高さにあわせて、前記伝熱管23…を架
設する位置も、前記熱源流体入口71側において
最も低く、前記出口72側において最も高くする
のである。
However, in the present invention, the solution outlet 82
The upper part of the side solution passage 64 is used as the refrigerant flow passage 7 to the condenser 3, and the height of the partition plate 51 on the solution inlet 81 side is made the highest, and the height of the partition plate 53 on the solution outlet 82 side is made the highest. In addition, these partition plates 51, 5
2, 53, the positions at which the heat transfer tubes 23 are installed are also the lowest on the heat source fluid inlet 71 side and the highest on the outlet 72 side.

以上の如く構成する発生器においては、熱源流
体は、前記入口71より流入して第3図矢印のご
とく流れ、前記出口72より流出すると共に、溶
液は、前記入口81より流入して第3図矢印のご
とく、前記バツフル板6a…間を蛇行状に流れ、
前記出口82より流出して吸収器(図示せず)に
導かれる一方、熱源流体より受熱した溶液は、一
部気化して冷媒ガスとなり、前記冷媒流通路7を
通つて、前記凝縮器3に流入し、さらに蒸発器
(図示せず)へと導かれるのである。
In the generator configured as described above, the heat source fluid flows in from the inlet 71 and flows as shown by the arrow in FIG. 3, and flows out from the outlet 72, and the solution flows in from the inlet 81 as shown in FIG. As shown by the arrow, the water flows in a meandering manner between the baffle plates 6a...
While flowing out from the outlet 82 and being guided to an absorber (not shown), the solution that has received heat from the heat source fluid is partially vaporized and becomes refrigerant gas, and passes through the refrigerant flow path 7 to the condenser 3. and is further guided to an evaporator (not shown).

しかしてこの実施例のものでは、前記溶液入口
81側仕切板51の高さを最も高くすると共に、
前記溶液出口82側仕切板53の高さを最も低く
したのであるから、溶液入口81側と出口82側
との溶液液位の液位差を大きくとれ、よつて溶液
の流速を大きくすることができるのであり、しか
も前記バツフル板6a…を形成して溶液流れを蛇
行状のものと成したので、前記伝熱管23…に対
する溶液の相対速度をさらに大きくすることがで
きるのである。よつて、前記熱源流体より溶液へ
の熱の授受を効率的に行なえるのであり、従つ
て、前記熱源流体として工場排水などの低温の温
水を用いても、前溶液中に吸収されている冷媒の
気化が行なえるのである。一方、以上の如く溶液
から気化して発生する冷媒ガスは、前記伝熱管2
3…の入口71側が高温のため、該入口71側に
おいてより多く発生し、出口72側においてより
少なく発生するのであるが、冷媒ガスの発生が多
くなる側の仕切板52,53の高さが順次低くな
つているので、流通抵抗は極めて低くなり、発生
した冷媒ガスは冷媒流通路7を通つてスムースに
前記凝縮器3へと導びかれることになる。さら
に、前記伝熱管23…の架設高さを、前記仕切板
51,52,53高さにあわせて前記入口81側
において高く、前記出口82側において低く構成
したので、前記入口81側における溶液液位が高
くなつたとしても、溶液圧力により冷媒ガスの発
生が困難になるといつたことはおこらないのであ
る。
However, in this embodiment, the height of the partition plate 51 on the side of the solution inlet 81 is made the highest, and
Since the height of the partition plate 53 on the side of the solution outlet 82 is made the lowest, a large difference in the solution level between the solution inlet 81 side and the outlet 82 side can be maintained, and therefore the flow rate of the solution can be increased. Moreover, since the buff-full plates 6a are formed to cause the solution to flow in a meandering manner, the relative velocity of the solution to the heat transfer tubes 23 can be further increased. Therefore, heat can be efficiently transferred from the heat source fluid to the solution. Therefore, even if low-temperature hot water such as factory wastewater is used as the heat source fluid, the refrigerant absorbed in the pre-solution can be efficiently transferred. can be vaporized. On the other hand, the refrigerant gas that is vaporized and generated from the solution as described above is
3... Because the temperature is high on the inlet 71 side, more refrigerant gas is generated on the inlet 71 side and less on the outlet 72 side, but the height of the partition plates 52 and 53 on the side where more refrigerant gas is generated is Since the flow resistance gradually decreases, the flow resistance becomes extremely low, and the generated refrigerant gas is smoothly guided to the condenser 3 through the refrigerant flow path 7. Furthermore, the installation height of the heat transfer tubes 23 is configured to be higher on the inlet 81 side and lower on the outlet 82 side in accordance with the height of the partition plates 51, 52, 53, so that the solution at the inlet 81 side Even if the temperature rises, the solution pressure will not make it difficult to generate refrigerant gas.

尚、以上の実施例ではパス数が4の場合を示し
たが、もちろん4パスのみに限定されるものでは
ない。
In the above embodiment, the number of passes is four, but of course the number of passes is not limited to four.

以上の説明により明らかなごとく、本考案吸収
式冷凍機の発生器は、箱形胴体1の底部に、複数
の伝熱管23…をもち、パス数を複数とした放熱
器2を配設し、かつ、該放熱器2の管板21,2
2間に、複数の仕切板51,52…を設けて、前
記放熱器2のパス数に見合う溶液通路61…を形
成し、これら各溶液通路61…にそれぞれバツフ
ル板6a…を設けると共に、前記伝熱管23…を
流れる熱源流体と溶液とが対向流になるごとく、
熱源流体の出入口72,71と、溶液の出入口8
2,81とを設ける一方、前記溶液出口82側の
溶液通路64の上方を凝縮器3への冷媒流通路7
とするとともに、前記溶液入口81側の仕切板5
1の高さを高く、前記溶液出口82側の仕切板5
3の高さを低くし、かつ、前記伝熱管23……の
前記各溶液通路61…における架設高さを、前記
仕切板51,52,53の高さに合わせて、前記
溶液入口81側では高く、前記溶液出口82側で
は低くしたことを特徴とするものであるから、溶
液入口81側における溶液液位を高くでき、溶液
の流速を大きくできると共に、溶液入口81側で
は勿論、溶液通路61……の全域において、溶液
圧力により冷媒ガスの発生が困難となるのを防止
できるのであつて、しかも、溶液上層部の比較的
低圧力の液層部を加熱することとなるのであるか
ら、効率良く冷媒ガスを発生させることができる
のである。
As is clear from the above explanation, the generator of the absorption chiller of the present invention has a radiator 2 having a plurality of heat transfer tubes 23 and a plurality of passes arranged at the bottom of the box-shaped body 1. And the tube plates 21, 2 of the radiator 2
A plurality of partition plates 51, 52... are provided between the two to form solution passages 61 corresponding to the number of passes of the radiator 2, and a buffer plate 6a is provided in each of these solution passages 61. As if the heat source fluid and the solution flowing through the heat transfer tubes 23 are in counterflow,
Heat source fluid inlet/outlet 72, 71 and solution inlet/outlet 8
2, 81, and a refrigerant flow passage 7 to the condenser 3 above the solution passage 64 on the side of the solution outlet 82.
At the same time, the partition plate 5 on the side of the solution inlet 81
1, and the partition plate 5 on the solution outlet 82 side.
3, and the installation height of the heat transfer tubes 23 in each of the solution passages 61 is adjusted to match the height of the partition plates 51, 52, 53 on the solution inlet 81 side. Since it is characterized by being high and low on the solution outlet 82 side, the solution level on the solution inlet 81 side can be made high, and the flow rate of the solution can be increased. It is possible to prevent the generation of refrigerant gas from becoming difficult due to the solution pressure in the entire range of . It is possible to generate refrigerant gas well.

そのほかにも、本願考案によれば、熱源流体
と、溶液とが対向流となるごくし、かつ、溶液出
口82側で高温の熱源流体と接触させ該溶液出口
82側で冷媒ガスをより多く発出させるべくした
から、全体として熱交換性能を高めるこができ、
低温の熱源流体を用いても、溶液から、冷媒ガス
を良好に発生させることができるのである。
In addition, according to the present invention, the heat source fluid and the solution flow in opposite directions, and the solution outlet 82 side is brought into contact with the high temperature heat source fluid to emit more refrigerant gas at the solution outlet 82 side. By doing so, we were able to improve the heat exchange performance as a whole.
Even if a low-temperature heat source fluid is used, refrigerant gas can be successfully generated from a solution.

また、仕切板51,52,53を、溶液通路6
1……の入口側では高く、出口側では低くしたか
ら、溶液通路61……における溶液の相対速度を
大きくすることができ、従つて、熱源流体との熱
交換性能を高められ、低温の熱源流体を用いて
も、発生する冷媒ガスの流通は、スムースなもの
と成すことができるのである。
In addition, the partition plates 51, 52, 53 are connected to the solution passage 6.
1... is high on the inlet side and low on the outlet side, the relative velocity of the solution in the solution passage 61... can be increased, and therefore the heat exchange performance with the heat source fluid can be improved, and the low temperature heat source Even if a fluid is used, the generated refrigerant gas can flow smoothly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す縦断面図、第
2図は要部の概略斜視図、第3図は熱源流体及び
溶液の流れを示す概略説明図である。 1……箱形胴体、2……放熱器、21,22…
…管板、23……伝熱管、3……凝縮器、51,
52,53……仕切板、61,62,63,64
……溶液通路、7……冷媒流通路、6a……バツ
フル板、71……熱源流体入口、72……熱源流
体出口、81……溶液入口、82……溶液出口。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention, FIG. 2 is a schematic perspective view of the main parts, and FIG. 3 is a schematic explanatory diagram showing the flow of heat source fluid and solution. 1...Box-shaped body, 2...Radiator, 21, 22...
... tube sheet, 23 ... heat exchanger tube, 3 ... condenser, 51,
52, 53... Partition plate, 61, 62, 63, 64
. . . Solution passage, 7 . . . Refrigerant flow path, 6a .

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 箱形胴体1の底部に、複数の伝熱管23……を
もち、パス数を複数とした放熱器2を配設し、か
つ、該放熱器2の管板21,22間に、複数の仕
切板51,52……を設けて、前記放熱器2のパ
ス数に見合う溶液通路61……を形成し、これら
各溶液通路61……にそれぞれバツフル板6a…
…を設けると共に、前記伝熱管23……を流れる
熱源流体と溶液とが対向流になるごとく、熱源流
体の出入口72,71と、溶液の出入口82,8
1とを設ける一方、前記溶液出口82側の溶液通
路64の上方を凝縮器3への冷媒流通路7とする
と共に、前記溶液入口81側の仕切板51の高さ
を高く、前記溶液出口82側の仕切板53の高さ
を低くし、かつ、前記伝熱管23……の前記各溶
液通路61…における架設高さを、前記仕切板5
1,52,53の高さに合わせて、前記溶液入口
81側では高く、前記溶液出口82側では低くし
たことを特徴とする吸収式冷凍機の発生器。
A radiator 2 having a plurality of heat transfer tubes 23 and a plurality of passes is disposed at the bottom of the box-shaped body 1, and a plurality of partitions are provided between the tube plates 21 and 22 of the radiator 2. Plates 51, 52... are provided to form solution passages 61 corresponding to the number of passes of the radiator 2, and a buffer plate 6a is provided for each of these solution passages 61.
... are provided, and the heat source fluid inlets and outlets 72 and 71 and the solution inlets and outlets 82 and 8 are provided so that the heat source fluid and the solution flowing through the heat transfer tubes 23 are in counterflow.
1, the upper part of the solution passage 64 on the solution outlet 82 side is used as the refrigerant flow passage 7 to the condenser 3, and the height of the partition plate 51 on the solution inlet 81 side is increased, so that the solution outlet 82 The height of the side partition plate 53 is lowered, and the installation height of the heat transfer tubes 23 in each of the solution passages 61 is set to be lower than that of the partition plate 53.
1, 52, and 53, the generator is higher on the solution inlet 81 side and lower on the solution outlet 82 side.
JP16957981U 1981-11-13 1981-11-13 absorption refrigerator generator Granted JPS5874060U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16957981U JPS5874060U (en) 1981-11-13 1981-11-13 absorption refrigerator generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16957981U JPS5874060U (en) 1981-11-13 1981-11-13 absorption refrigerator generator

Publications (2)

Publication Number Publication Date
JPS5874060U JPS5874060U (en) 1983-05-19
JPS6135903Y2 true JPS6135903Y2 (en) 1986-10-18

Family

ID=29961565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16957981U Granted JPS5874060U (en) 1981-11-13 1981-11-13 absorption refrigerator generator

Country Status (1)

Country Link
JP (1) JPS5874060U (en)

Also Published As

Publication number Publication date
JPS5874060U (en) 1983-05-19

Similar Documents

Publication Publication Date Title
JPS6342291Y2 (en)
JP2810558B2 (en) Regenerator
US2191551A (en) Refrigeration
JPS6135903Y2 (en)
JP3997594B2 (en) Air-cooled absorber
JP3208161B2 (en) Absorption / evaporator
KR860000523A (en) Air-cooled absorption chiller
US2399916A (en) Refrigeration
CN105953476A (en) Heat pipe falling film generator for low grade heat drive absorption refrigeration
KR100213780B1 (en) Water supply system of absortion type cooler
CN216925198U (en) Partitioned heat exchanger
CN217585453U (en) Drainage cooling device
JPS6119403Y2 (en)
US2690058A (en) Condenser arrangement for absorption refrigeration apparatus
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
US2338223A (en) Refrigeration
CN103185473A (en) Sewage-refrigerant phase-change heat exchanger
CN218155681U (en) Separation type gravity heat pipe capable of preventing steam from flowing back
CN216844742U (en) Flue gas refrigerant heat exchanger
JPH0776653B2 (en) Direct contact type condenser and heat cycle device using the same
JP4903743B2 (en) Absorption refrigerator
JPS6314293Y2 (en)
JP3547883B2 (en) Absorption chiller / heater
JP3236721B2 (en) Regenerator for absorption refrigerator
JP2993454B2 (en) Air-cooled absorption refrigeration system