JPH08254373A - Horizontal type evaporator for nonazeotropic mixture refrigerant - Google Patents

Horizontal type evaporator for nonazeotropic mixture refrigerant

Info

Publication number
JPH08254373A
JPH08254373A JP5886795A JP5886795A JPH08254373A JP H08254373 A JPH08254373 A JP H08254373A JP 5886795 A JP5886795 A JP 5886795A JP 5886795 A JP5886795 A JP 5886795A JP H08254373 A JPH08254373 A JP H08254373A
Authority
JP
Japan
Prior art keywords
refrigerant
shell
liquid
evaporator
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5886795A
Other languages
Japanese (ja)
Inventor
Akira Matsui
▲晧▼ 松井
Ichiro Sakuraba
一郎 櫻場
Isamu Aoki
勇 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5886795A priority Critical patent/JPH08254373A/en
Publication of JPH08254373A publication Critical patent/JPH08254373A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To facilitate the surface control of a mixture refrigerant, to facilitate the production of an evaporator, and to prevent the change of the mixture refrigerant constituent ratio of a refrigerant inlet to a refrigerant outlet, by providing headers with partition walls whereby the flowing direction of a fluid to be refrigerated in a plurality of tubes passing through a shell is reversed against the flowing direction of the mixture refrigerant. CONSTITUTION: A space in a shell 11 is divided into a plurality of small spaces, both end faces of each of the small spaces are the end faces of the shell 11, and the volume of the small space at the upper side is formed larger than that of the small space at the lower side. Opening parts 17 through which the small spaces neighboring with each other communicate are formed on either side of the end faces. Obliquely placed plates forming a refrigerant flow way in zigzag shape, continuing from an liquid refrigerant inlet 14 at the lower part of the shell 11 to a gaseous refrigerant outlet 15 at the upper part thereof are provided. Furthermore, headers 12 having partition walls 23, 24 are formed so that the flowing direction of a fluid to be refrigerated in a plurality of tubes 13 axially passing through the shell 11 can be reversed against the flowing direction of a refrigerant in the refrigerant flow-way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シェル側に冷媒を流
し、チューブ側に被冷却流体を流す満液式シェルアンド
チューブ形の非共沸混合冷媒用横形蒸発器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-filled shell-and-tube type horizontal evaporator for non-azeotropic mixed refrigerants in which a refrigerant flows on the shell side and a fluid to be cooled flows on the tube side.

【0002】[0002]

【従来の技術】従来、被冷却流体の流れ方向に沿った複
数の蒸発室と、被冷却流体の最下流側に位置する蒸発室
に非共沸混合冷媒の供給口と、被冷却流体の最上流側に
位置する蒸発室に冷媒ガスの取出口とを備えるととも
に、被冷却流体の流れ方向に隣接する蒸発器間に冷媒液
用導通路と冷媒ガス用導通路とを備えた非共沸混合冷媒
用蒸発器が公知である(特開昭61−262568号公
報)。一定の圧力下で露点,沸点が異なる複数の冷媒
(単一冷媒)を混合させた非共沸混合冷媒を用いた冷凍
装置では、蒸発器での伝熱性能を向上させるために、通
常、冷媒と被冷却流体(水,ブライン等)のそれぞれに
おいて生じる出入口温度差を利用した対向流、さらに具
体的には1パス対向流の熱交換器が採用されている。な
お、本明細書において流体が入口から出口に向かって流
動する間に、流動方向を変えない場合、即ち流動方向を
一定に保つ場合を1パス、一度だけ変える場合を、即ち
流動方向を正,逆と変える場合を2パスという。3パス
以上についても同様であり、例えば流動方向を正,逆,
正と変える場合を3パス,正,逆,正,逆と変える場合
を4パスという。
2. Description of the Related Art Conventionally, a plurality of evaporation chambers along the flow direction of a fluid to be cooled, a supply port for a non-azeotropic mixed refrigerant in an evaporation chamber located on the most downstream side of the fluid to be cooled, and Non-azeotropic mixing provided with an outlet for the refrigerant gas in the evaporation chamber located on the upstream side, and with a refrigerant liquid communication path and a refrigerant gas communication path between the evaporators adjacent in the flow direction of the fluid to be cooled. An evaporator for a refrigerant is known (Japanese Patent Laid-Open No. 61-262568). In a refrigeration system using a non-azeotropic mixed refrigerant in which a plurality of refrigerants (single refrigerant) having different dew points and boiling points under a constant pressure are mixed, in order to improve heat transfer performance in the evaporator, the refrigerant is usually And a counterflow utilizing the temperature difference between the inlet and outlet of the fluid to be cooled (water, brine, etc.), more specifically, a one-pass counterflow heat exchanger is employed. In this specification, when the fluid flows from the inlet to the outlet, the flow direction is not changed, that is, the flow direction is kept constant for one pass, and the flow direction is changed only once, that is, the flow direction is positive, The case of changing it to the opposite is called 2 pass. The same is true for three or more passes. For example, the flow direction is forward, reverse,
The case of changing to positive is called 3 pass, and the case of changing to positive, reverse, normal, and reverse is called 4 pass.

【0003】図6は、非共沸混合冷媒を用いた場合にお
ける1パス対向流の蒸発器の出入口での、冷媒と被冷却
流体の望ましい温度変化の様子を示したものである。冷
媒と被冷却流体とは、互いに逆方向に流動しつつ熱交換
し、冷媒はその入口から出口に向かって温度上昇してゆ
く一方、被冷却流体はその入口から出口に向かって温度
降下してゆく。そして、蒸発器内での各位置で冷媒と被
冷却流体との間で一定の温度差を保ち、上記各位置で同
じように熱交換が行われる。
FIG. 6 shows desirable temperature changes of the refrigerant and the fluid to be cooled at the inlet and outlet of the evaporator in the one-pass counterflow when the non-azeotropic mixed refrigerant is used. The refrigerant and the fluid to be cooled exchange heat with each other while flowing in opposite directions, and the temperature of the refrigerant increases from the inlet to the outlet, while the temperature of the fluid to be cooled decreases from the inlet to the outlet. go. Then, a constant temperature difference is maintained between the refrigerant and the fluid to be cooled at each position in the evaporator, and heat exchange is similarly performed at each position.

【0004】この場合、冷媒入口(即ち、冷媒液入口)
および冷媒出口(冷媒ガス出口)での冷媒の成分比を同
一にするのがよく、この点で、蒸発器としては、シェル
側が被冷却流体で、チューブ側が冷媒で、チューブ側の
出口に至る前に冷媒を完全に蒸発させる直膨式のものが
望ましい。一方、伝熱性能を向上させる為には、シェル
側が冷媒で、チューブ側が被冷却流体で、シェル内で冷
媒を流動させることはしない満液式か望ましい。
In this case, the refrigerant inlet (that is, the refrigerant liquid inlet)
It is preferable to make the component ratio of the refrigerant at the refrigerant outlet (refrigerant gas outlet) the same. In this respect, as the evaporator, the shell side is the cooled fluid, the tube side is the refrigerant, and before reaching the tube side outlet. A direct expansion type that completely evaporates the refrigerant is desirable. On the other hand, in order to improve the heat transfer performance, it is desirable that the shell side is a refrigerant, the tube side is a fluid to be cooled, and a liquid-filled type that does not cause the refrigerant to flow in the shell.

【0005】上記公報に記載の従来公知の蒸発器は、上
記チューブ式と直膨式を兼ね備えたものであって、冷媒
を移動させ、複数の冷却室である蒸発室を通過させる過
程で混合冷媒液の成分比を低沸点冷媒が大の状態から高
沸点冷媒が大の状態に段階的に変化させるようにしたも
のである。具体的には、各蒸発室を冷媒液用移送管と冷
媒ガス用移送管により接続し、各移送管の位置、そこで
の流量を調整することにより冷媒液,ガス分、各々の成
分比を段階的に変化させるようにしてある。
The conventionally known evaporator described in the above publication has both the tube type and the direct expansion type, and is a mixed refrigerant in the process of moving the refrigerant and passing through the evaporation chambers which are a plurality of cooling chambers. The composition ratio of the liquid is gradually changed from a state where the low boiling point refrigerant is large to a state where the high boiling point refrigerant is large. Specifically, each evaporation chamber is connected by a refrigerant liquid transfer pipe and a refrigerant gas transfer pipe, and by adjusting the position of each transfer pipe and the flow rate there, the refrigerant liquid, the gas component, and the respective component ratios are stepped. I changed it.

【0006】[0006]

【発明が解決しようとする課題】上記従来の装置の場
合、構造が余りにも複雑となる他、各蒸発室での液面レ
ベルの制御を必要とするという問題がある。また、被冷
却流体の流路が1パスの構造になっており、流体速度を
最適化、具体的には1.5〜2.5m/secにしよう
とすると、熱交換器である蒸発器の長さは非実用的な長
さになる。これに対して、蒸発器の長さを実用的なもの
にしようとすると、複数の円筒を並列配置するか、単一
円筒を複数分割した構造を採用する必要がある。複数円
筒を並列配置すれば装置がおおきくなるとともに複雑に
なり、複数分割した構造を採用すれば個々の液面制御が
できないという問題が生じる。本発明は、斯る従来の問
題点を課題としてなされたもので、実用的な長さとし、
冷媒の液面の制御が容易で、製造容易で冷媒の入口と出
口での冷媒の成分比に変化を生じない非共沸混合冷媒用
横形蒸発器を提供しようとするものである。
In the above-mentioned conventional apparatus, there is a problem that the structure is too complicated and liquid level control in each evaporation chamber is required. In addition, the flow path of the fluid to be cooled has a one-pass structure, and when the fluid velocity is optimized, specifically, 1.5 to 2.5 m / sec, when the fluid velocity of the evaporator, which is a heat exchanger, is reduced. The length becomes impractical. On the other hand, in order to make the length of the evaporator practical, it is necessary to arrange a plurality of cylinders in parallel or adopt a structure in which a single cylinder is divided into a plurality of parts. If a plurality of cylinders are arranged in parallel, the device becomes large and complicated, and if a structure in which a plurality of cylinders are divided is adopted, it is impossible to control individual liquid levels. The present invention has been made to solve the above-mentioned conventional problems, and has a practical length,
An object of the present invention is to provide a horizontal evaporator for a non-azeotropic mixed refrigerant in which the liquid level of the refrigerant is easy to control, is easy to manufacture, and does not change the composition ratio of the refrigerant at the refrigerant inlet and outlet.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、シェル側に冷媒を流し、チューブ側に被
冷却流体を流す満液式シェルアンドチューブ形の非共沸
混合冷媒用横形蒸発器において、シェル内の空間を、こ
の空間の両端面を端面とする複数の小空間に分割し、か
つ下方の小空間よりも上方の小空間の容積を大きくする
とともに、隣接する小空間同志を連通させる開口部を上
記両端面のいずれか一方の側に形成し、上記シェルの下
部の冷媒液入口から上部の冷媒ガス出口まで連続したジ
グザク状の冷媒流路を形成する斜行板と、上記シェルを
軸方向に貫通する複数のチューブ内での上記被冷却流体
の流動方向を上記冷媒流路における冷媒の流動方向とは
逆にする仕切り壁を有するヘッダーとを設けて形成し
た。
In order to solve the above-mentioned problems, the present invention is for a liquid-filled shell-and-tube type non-azeotropic mixed refrigerant in which a refrigerant flows on the shell side and a fluid to be cooled flows on the tube side. In a horizontal evaporator, the space inside the shell is divided into multiple small spaces whose end faces are the end faces of this space, and the volume of the small space above is smaller than that of the small space below, and the adjacent small space An oblique plate that forms an opening that communicates with each other on either side of the both end surfaces, and forms a zigzag-shaped refrigerant flow path that is continuous from the refrigerant liquid inlet at the bottom of the shell to the refrigerant gas outlet at the top. And a header having a partition wall for making the flow direction of the cooled fluid in the plurality of tubes axially penetrating the shell opposite to the flow direction of the coolant in the coolant flow path.

【0008】[0008]

【作用】上記発明のように構成することにより、冷媒液
に流動性が得られ、冷媒液は各小空間をほぼ水平方向に
抵抗なく移動して下部に溜まり、冷媒ガスは上方に向か
って移動し、冷媒液から蒸発したガスのガス抜きが容易
に行われるようになり、かつ最終の小空間のみの液面制
御で足りるようになる。
With the above configuration, the refrigerant liquid has fluidity, the refrigerant liquid moves in each of the small spaces in a substantially horizontal direction without resistance, and accumulates in the lower portion, and the refrigerant gas moves upward. However, the gas evaporated from the refrigerant liquid can be easily degassed, and liquid level control only in the final small space is sufficient.

【0009】[0009]

【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1,2は、本発明の第1実施例に係る非共
沸混合冷媒用横形蒸発器1を示し、円筒形状のシェル1
1の両側にヘッダー12を取り付け、シェル11内に多
数のチューブ13を貫通させて形成してある。なお、図
1では、実際には多数のチューブ13が横方向に表れる
が、図面を見易くするためにこのチューブ13について
は、1本のみ例示的に示してある。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show a horizontal evaporator 1 for a non-azeotropic mixed refrigerant according to a first embodiment of the present invention, which is a cylindrical shell 1
Headers 12 are attached to both sides of the shell 1 and a large number of tubes 13 are formed in the shell 11 so as to penetrate therethrough. In addition, in FIG. 1, a large number of tubes 13 actually appear in the lateral direction, but only one tube 13 is shown as an example for easy understanding of the drawing.

【0010】シェル11は、下部に冷媒液入口14を、
上部に冷媒ガス出口15を有している。また、シェル1
1内には、この内部の空間を、その両端面を端面とする
複数の小空間に分割する複数枚の斜行板16、本実施例
では3枚の斜行板16が配設してある。また、この斜行
板16により仕切られる小空間については、下方の小空
間よりも上方の小空間の容積が大きくなっている。さら
に、隣接する小空間同志を連通させる開口部17を上記
両端面のいずれか一方の側に形成してあり、上記シェル
11の下部の冷媒液入口14から上部の冷媒ガス出口1
5まで連続したジグザク状の冷媒流路が形成されてい
る。
The shell 11 has a refrigerant liquid inlet 14 at the bottom,
It has a refrigerant gas outlet 15 in the upper part. Also, shell 1
A plurality of slanting plates 16 for dividing the internal space into a plurality of small spaces having both end faces as end faces, in the present embodiment, three slanting plates 16 are arranged in the inside of 1. . Further, in the small space partitioned by the oblique plate 16, the volume of the upper small space is larger than that of the lower small space. Further, an opening 17 for communicating the adjacent small spaces is formed on either side of the both end faces, and the refrigerant liquid inlet 14 at the lower part of the shell 11 to the refrigerant gas outlet 1 at the upper part is formed.
A zigzag-shaped coolant passage that is continuous up to 5 is formed.

【0011】例えば、上記実施例の場合には、小空間は
4個形成され、図1において実線の矢印で示すように、
冷媒液入口14から第1の小空間に流入した冷媒は右方
に移動し、右端の開口部17から第2の小空間に流入し
て左方に移動し、左端の開口部17から第3の小空間に
流入して右方に移動し、右端の開口部17から第4の小
空間に流入して左方に移動し、冷媒ガス出口15から出
てゆくようになっている。なお、本実施例の場合は、4
パス構造になっている。ここで、斜行板16の傾斜角
は、限定するものではないが、水平方向に対して30°
〜45°の間にあるのが望ましい。
For example, in the case of the above embodiment, four small spaces are formed, and as shown by the solid arrow in FIG.
The refrigerant flowing from the refrigerant liquid inlet 14 into the first small space moves to the right, flows into the second small space from the right end opening 17 and moves to the left, and moves from the left end opening 17 to the third. In the small space, moves to the right, flows from the opening 17 at the right end into the fourth small space, moves to the left, and exits from the refrigerant gas outlet 15. In the case of this embodiment, 4
It has a path structure. Here, the inclination angle of the oblique plate 16 is not limited, but is 30 ° with respect to the horizontal direction.
It is desirable to be between 45 °.

【0012】本実施例の場合、シェル11の両側に取り
付けた二つのヘッダー12のうち、図1において左側の
ヘッダー12には、被冷却流体用の入口21および出口
22が設けてある。また、この左側のヘッダー12の内
部には、上記第1の小空間を貫通するチューブ13と第
2,第3の小空間を貫通するチューブ13、および第
2,第3の小空間を貫通するチューブ13と第4の小空
間を貫通するチューブ13とを隔離する2枚の仕切り壁
23が配設してある。さらに、右側のヘッダー12に
は、第1,第2の小空間を貫通するチューブ13と第
3,第4の小空間を貫通するチューブ13とを隔離する
仕切り壁24が配設してある。そして、シェル11内で
は、冷媒の流動方向とチューブ13内の被冷却流体の流
動方向が逆となり、対向流の状態になる。また、上記冷
媒が全体的には下方から上方に向けて移動するのに対し
て、この被冷却流体は、図1において一点鎖線の矢印で
示すように、全体的には上方から下方に向けて移動する
ようになっている。さらに、各チューブ13は、冷媒液
中に完全に浸るようになっており、満液式のものと同様
のものとなっている。
In the present embodiment, of the two headers 12 mounted on both sides of the shell 11, the header 12 on the left side in FIG. 1 is provided with an inlet 21 and an outlet 22 for the fluid to be cooled. Further, inside the left header 12, the tube 13 penetrating the first small space, the tube 13 penetrating the second and third small spaces, and the second and third small spaces are penetrated. Two partition walls 23 are provided to separate the tube 13 and the tube 13 penetrating the fourth small space. Further, the right header 12 is provided with a partition wall 24 that separates the tube 13 penetrating the first and second small spaces from the tube 13 penetrating the third and fourth small spaces. Then, in the shell 11, the flow direction of the refrigerant and the flow direction of the fluid to be cooled in the tube 13 are opposite to each other, and a counterflow state is established. Further, while the refrigerant moves from the lower side to the upper side as a whole, the fluid to be cooled generally moves from the upper side to the lower side as indicated by the dashed line arrow in FIG. It is designed to move. Further, each tube 13 is completely immersed in the refrigerant liquid, and is similar to a full liquid type.

【0013】なお、各チューブ13内での被冷却流体の
流速を同一にするために、上記各小空間を貫通するチュ
ーブ13の本数を同じにするのが望ましい。そして、上
述したように斜行板16の左右の端部に、交互に開口部
17を設けてジグザグ状の複数パスにすることにより、
流動抵抗が少なく、冷媒液に流動性が得られ、冷媒液が
各小空間をほぼ水平方向に抵抗なく移動して下部に溜ま
り、各小空間での液面レベルがほぼ均一化されるととも
に、冷媒ガスが上方に溜まり冷媒液から蒸発したガスの
ガス抜きが容易となっている。図2は冷媒液、冷媒ガス
の移動の様子を示したもので、同図中矢印Aで示すよう
に、第1の小空間から第4の小空間へと移動し、冷媒ガ
スは上方に向かって移動し易くなっており、同じく矢印
Bで示すように移動する。ちなみに、第1の小空間から
第4の小空間に向かって高沸点冷媒の比率は増大する。
In order to make the flow velocities of the fluid to be cooled in the tubes 13 the same, it is desirable that the number of the tubes 13 penetrating the small spaces be the same. Then, as described above, the openings 17 are alternately provided at the left and right ends of the skew plate 16 to form a plurality of zigzag paths,
Flow resistance is low, fluidity is obtained in the refrigerant liquid, the refrigerant liquid moves in each small space in a substantially horizontal direction without resistance and accumulates in the lower part, and the liquid level in each small space is almost uniform, Refrigerant gas accumulates in the upper part, and the gas evaporated from the refrigerant liquid can be easily degassed. FIG. 2 shows the movement of the refrigerant liquid and the refrigerant gas. As shown by the arrow A in the figure, the refrigerant liquid moves from the first small space to the fourth small space, and the refrigerant gas goes upward. It is easy to move, and also moves as shown by arrow B. By the way, the ratio of the high boiling point refrigerant increases from the first small space to the fourth small space.

【0014】また、このように満液式で、複数パス対向
流とすることにより、伝熱性能が良好で、被冷却流体の
流速を最適化し、蒸発器の長さを実用的なものとするこ
とができるようになっている。さらに、冷媒液の液面制
御は最終の小空間、上記実施例の場合では、第4の小空
間のみでよく、液面制御が簡単で、この最終空間は大き
な空間をとることができるようになっており、冷媒ガス
出口15から冷媒を液体状態で流出させる、いわゆる液
バックが生じないようになっている。
Further, by using the liquid-filled type and the multi-pass counterflow as described above, the heat transfer performance is good, the flow velocity of the fluid to be cooled is optimized, and the length of the evaporator is made practical. Is able to. Further, the liquid level control of the refrigerant liquid is performed only in the final small space, in the case of the above embodiment, only the fourth small space is required, and the liquid level control is simple, so that the final space can take a large space. Therefore, so-called liquid back, which causes the refrigerant to flow out from the refrigerant gas outlet 15 in a liquid state, does not occur.

【0015】図3は、上記第1実施例に係る蒸発器1を
適用したヒートポンプを示し、圧縮機31,凝縮器3
2,膨張弁33,蒸発器1を含む冷媒の閉じた循環流路
が形成されている。蒸発器1には、この内部の、例えば
第4の小空間における冷媒液の液面レベルを制御するレ
ベルコントローラ34を設け、この液面レベルの高低に
応じて膨張弁33の開度を調節するようになっている。
即ち、この液面レベルが高くなる程、膨張弁33の開度
は大きくなる。また、凝縮器32には高温側熱源となる
水を循環させる流路35、蒸発器1の入口21および出
口22には、低温側熱源となる被冷却流体である水、或
はブラインを循環させる流路36が接続してある。
FIG. 3 shows a heat pump to which the evaporator 1 according to the first embodiment is applied, which includes a compressor 31 and a condenser 3.
2, a closed circulation channel of the refrigerant including the expansion valve 33 and the evaporator 1 is formed. The evaporator 1 is provided with a level controller 34 for controlling the liquid level of the refrigerant liquid inside the evaporator 1, for example, in a fourth small space, and the opening degree of the expansion valve 33 is adjusted according to the level of the liquid level. It is like this.
That is, the higher the liquid surface level, the larger the opening degree of the expansion valve 33. Further, the condenser 32 circulates a flow path 35 for circulating water serving as a high-temperature side heat source, and the inlet 21 and the outlet 22 of the evaporator 1 circulate water to be cooled serving as a low-temperature side heat source or brine. The flow path 36 is connected.

【0016】そして、周知のように圧縮機31にて圧縮
された冷媒ガスは凝縮器32に送られ、ここで冷媒ガス
は流路35内を流れる水に熱を与えて温度降下して凝縮
して膨張弁33に至る。凝縮して液体状態になった冷媒
は、膨張弁33にて膨張することにより一部蒸発して蒸
発器1内に流れ、ここで上述したようにチューブ13を
介して熱交換して、被冷却流体から熱を奪って、完全に
蒸発し、冷媒ガスとなって圧縮機31に戻り、以後上記
同様の循環を繰り返す。一方、蒸発器1にて冷却された
被冷却流体は冷熱源として利用される。
As is well known, the refrigerant gas compressed by the compressor 31 is sent to the condenser 32, where the refrigerant gas gives heat to the water flowing in the flow path 35 to lower the temperature and condense. To the expansion valve 33. The refrigerant that has condensed to the liquid state partially expands by flowing through the expansion valve 33 and flows into the evaporator 1, where heat is exchanged via the tube 13 as described above, and is cooled. The heat is taken from the fluid, the heat is completely evaporated, and the refrigerant gas is returned to the compressor 31. Thereafter, the same circulation as above is repeated. On the other hand, the cooled fluid cooled in the evaporator 1 is used as a cold heat source.

【0017】図4は、本発明の第2実施例に係る非共沸
混合冷媒用横形蒸発器2を示し、図1,2に示す蒸発器
1とは、新たに高沸点冷媒液抽出口41を設けた点を除
き、他は実質的に同一であり、互いに共通する箇所につ
いては同一番号を付して説明を省略する。さらに、詳説
すれば、この高沸点冷媒液抽出口41は、本実施例にお
いて、最終の小空間である第4の小空間に開口させたも
のである。そして、この蒸発器2は、高沸点冷媒液が滞
留し易い最終の小空間から、この冷媒液を強制的に抽出
して、別途熱交換器を設け、ここで完全に蒸発させるこ
とを可能としものである。
FIG. 4 shows a horizontal evaporator 2 for a non-azeotropic mixed refrigerant according to a second embodiment of the present invention, which is different from the evaporator 1 shown in FIGS. Except for the point that is provided, the other parts are substantially the same, and the common parts are denoted by the same reference numerals and the description thereof is omitted. Further, in detail, the high boiling point refrigerant liquid extraction port 41 is opened in the fourth small space which is the final small space in this embodiment. The evaporator 2 forcibly extracts the refrigerant liquid from the final small space in which the high-boiling-point refrigerant liquid easily accumulates, and is provided with a separate heat exchanger to completely evaporate the refrigerant liquid. It is a thing.

【0018】図5は、蒸発器2を適用したヒートポンプ
を示し、図3に示すヒートポンプと互いに共通する箇所
については、同一番号を付して説明を省略する。このヒ
ートポンプでは、凝縮器32と膨張弁33との間に吸込
液ガス熱交換器51を設ける一方、蒸発器2の冷媒ガス
出口15を出た冷媒ガスを吸込液ガス熱交換器51に導
く流路52と、この流路に連通し、吸込液ガス熱交換器
51から圧縮機31の吸込口に至る流路53とを設けて
ある。また、流路52には高沸点冷媒液抽出口41に接
続した流路54を合流させてある。
FIG. 5 shows a heat pump to which the evaporator 2 is applied, and portions common to the heat pump shown in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. In this heat pump, a suction liquid gas heat exchanger 51 is provided between the condenser 32 and the expansion valve 33, while a refrigerant gas flowing out of the refrigerant gas outlet 15 of the evaporator 2 is guided to the suction liquid gas heat exchanger 51. A passage 52 and a passage 53 communicating with this passage and extending from the suction liquid gas heat exchanger 51 to the suction port of the compressor 31 are provided. Further, a flow path 54 connected to the high boiling point refrigerant liquid extraction port 41 is joined to the flow path 52.

【0019】そして、蒸発器2からの冷媒ガス,と高沸
点とを混合させて、吸込液ガス熱交換器51に導き、こ
こで凝縮器32からの高圧の冷媒液との間で熱交換さ
せ、冷媒液抽出口41からの高沸点の冷媒液を完全に蒸
発させて、圧縮機31に送り出すようになっている。な
お、吸込液ガス熱交換器51には、この内部の、高沸点
冷媒液抽出口41からの冷媒液の液面レベルを制御する
レベルコントローラ55を設け、この液面レベルの高低
に応じて膨張弁33の開度を調節するようになってい
る。即ち、この液面レベルが高くなる程、膨張弁33の
開度は大きくなる。このように、高沸点冷媒液を吸込液
ガス熱交換器51に導くことにより、冷媒液を流動さ
せ、伝熱性能をより一層向上させ、高沸点冷媒液を完全
にガス化させるようしてある。そして、斯る構成によ
り、冷媒の成分比を蒸発器2の入口と同一に保ち、かつ
蒸発器2の冷媒液入口14での温度を低下させ、蒸発器
2で熱交換する熱量を増大させることにより、成績係数
を向上させるようになっている。
Then, the refrigerant gas from the evaporator 2 and the high boiling point are mixed and led to the suction liquid gas heat exchanger 51, where heat is exchanged with the high pressure refrigerant liquid from the condenser 32. The high boiling point refrigerant liquid from the refrigerant liquid extraction port 41 is completely evaporated and sent to the compressor 31. The suction liquid gas heat exchanger 51 is provided with a level controller 55 inside which controls the liquid level of the refrigerant liquid from the high boiling point refrigerant liquid extraction port 41, and expands according to the level of the liquid level. The opening degree of the valve 33 is adjusted. That is, the higher the liquid surface level, the larger the opening degree of the expansion valve 33. In this way, by introducing the high boiling point refrigerant liquid to the suction liquid gas heat exchanger 51, the refrigerant liquid is made to flow, the heat transfer performance is further improved, and the high boiling point refrigerant liquid is completely gasified. . With such a configuration, the component ratio of the refrigerant is kept the same as the inlet of the evaporator 2, the temperature at the refrigerant liquid inlet 14 of the evaporator 2 is lowered, and the amount of heat exchanged in the evaporator 2 is increased. This will improve the coefficient of performance.

【0020】[0020]

【発明の効果】以上の説明より明らかなように、本発明
によれば、シェル側に冷媒を流し、チューブ側に被冷却
流体を流す満液式シェルアンドチューブ形の非共沸混合
冷媒用横形蒸発器において、シェル内の空間を、この空
間の両端面を端面とする複数の小空間に分割し、かつ下
方の小空間よりも上方の小空間の容積を大きくするとと
もに、隣接する小空間同志を連通させる開口部を上記両
端面のいずれか一方の側に形成し、上記シェルの下部の
冷媒液入口から上部の冷媒ガス出口まで連続したジグザ
ク状の冷媒流路を形成する斜行板と、上記シェルを軸方
向に貫通する複数のチューブ内での上記被冷却流体の流
動方向を上記冷媒流路における冷媒の流動方向とは逆に
する仕切り壁を有するヘッダーとを設けて形成してあ
る。
As is apparent from the above description, according to the present invention, a liquid-filled shell-and-tube type horizontal type for non-azeotropic mixed refrigerant in which a refrigerant flows on the shell side and a fluid to be cooled flows on the tube side. In the evaporator, the space inside the shell is divided into a plurality of small spaces whose end faces are the end faces of this space, and the volume of the small space above is smaller than that of the lower space. An opening that communicates with each other is formed on either side of the both end surfaces, and a skewed plate that forms a zigzag-shaped refrigerant flow path that is continuous from the refrigerant liquid inlet at the lower portion of the shell to the refrigerant gas outlet at the upper portion, A header having a partition wall is provided to make the flow direction of the fluid to be cooled in a plurality of tubes axially penetrating the shell opposite to the flow direction of the coolant in the coolant flow passage.

【0021】このように、斜行板のいずれかの一方の側
に、交互に開口部を設けてジグザグ状の複数パスにする
ことにより、流動抵抗が少なく、冷媒液に流動性が得ら
れ、冷媒液が各小空間をほぼ水平方向に抵抗なく移動し
て下部に溜まり、各小空間での液面レベルがほぼ均一化
されるとともに、冷媒ガスが上方に溜まり冷媒液から蒸
発したガスのガス抜きが容易となる。また、このように
満液式で、複数パス対向流とすることにより、伝熱性能
が良好で、被冷却流体の流速を最適化し、蒸発器の長さ
を実用的なものとすることができるよう他、冷媒液の液
面制御は最終の小空間のみでよく、液面制御が簡単で、
この最終空間は大きな空間をとることができるようにな
っており、冷媒ガス出口から冷媒を液体状態で流出させ
る、いわゆる液バックを奉仕することができる等の効果
を奏する。
As described above, by alternately providing the openings on one side of the skew plate to form a plurality of zigzag paths, the flow resistance is small, and the refrigerant liquid has fluidity. The refrigerant liquid moves almost horizontally in each small space without resistance and accumulates in the lower part, and the liquid level in each small space is almost uniformized, and the refrigerant gas accumulates upward and gas of the gas evaporated from the refrigerant liquid. Easy to remove. Further, by using the liquid-filled type and the multi-pass counterflow as described above, the heat transfer performance is good, the flow velocity of the fluid to be cooled is optimized, and the length of the evaporator can be made practical. In addition, the liquid level of the refrigerant liquid can be controlled only in the final small space, and the liquid level control is easy.
This final space can take a large space, and has the effect of allowing the refrigerant to flow out from the refrigerant gas outlet in a liquid state, serving as a so-called liquid bag, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係る非共沸混合冷媒用
横形蒸発器の断面図である。
FIG. 1 is a cross-sectional view of a horizontal evaporator for a non-azeotropic mixed refrigerant according to a first embodiment of the present invention.

【図2】 図1に示す蒸発器のII−II線断面図である。FIG. 2 is a cross-sectional view of the evaporator shown in FIG. 1 taken along the line II-II.

【図3】 図1,2に示す蒸発器を適用したヒートポン
プの機器構成を示す図である。
FIG. 3 is a diagram showing a device configuration of a heat pump to which the evaporator shown in FIGS. 1 and 2 is applied.

【図4】 本発明の第2実施例に係る非共沸混合冷媒用
横形蒸発器の断面図である。
FIG. 4 is a sectional view of a horizontal evaporator for a non-azeotropic mixed refrigerant according to a second embodiment of the present invention.

【図5】 図4に示す蒸発器を適用したヒートポンプの
機器構成を示す図である。
5 is a diagram showing a device configuration of a heat pump to which the evaporator shown in FIG. 4 is applied.

【図6】 非共沸混合冷媒を用いた場合における対向流
の蒸発器における望ましい温度変化の様子を示す図であ
る。
FIG. 6 is a diagram showing a desirable temperature change in a counterflow evaporator when a non-azeotropic mixed refrigerant is used.

【符号の説明】[Explanation of symbols]

1,2 蒸発器 11 シェル 12 ヘッダー 13 チューブ 14 冷媒液入口 15 冷媒ガス出
口 16 斜行板 17 開口部
1, 2 Evaporator 11 Shell 12 Header 13 Tube 14 Refrigerant liquid inlet 15 Refrigerant gas outlet 16 Oblique plate 17 Opening

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シェル側に冷媒を流し、チューブ側に被
冷却流体を流す満液式シェルアンドチューブ形の非共沸
混合冷媒用横形蒸発器において、シェル内の空間を、こ
の空間の両端面を端面とする複数の小空間に分割し、か
つ下方の小空間よりも上方の小空間の容積を大きくする
とともに、隣接する小空間同志を連通させる開口部を上
記両端面のいずれか一方の側に形成し、上記シェルの下
部の冷媒液入口から上部の冷媒ガス出口まで連続したジ
グザク状の冷媒流路を形成する斜行板と、上記シェルを
軸方向に貫通する複数のチューブ内での上記被冷却流体
の流動方向を上記冷媒流路における冷媒の流動方向とは
逆にする仕切り壁を有するヘッダーとを設けて形成した
ことを特徴とする非共沸混合冷媒用横形蒸発器。
1. A horizontal evaporator for a non-azeotropic mixed refrigerant of a liquid-filled shell-and-tube type, in which a coolant is flown to the shell side and a fluid to be cooled is flown to the tube side, the space inside the shell is defined by Is divided into a plurality of small spaces each having an end surface, and the volume of the small space above is made larger than that of the lower small space, and an opening for communicating adjacent small spaces with each other is provided on either side of the both end faces. A slanting plate that forms a continuous zigzag-shaped refrigerant flow path from the refrigerant liquid inlet at the lower part of the shell to the refrigerant gas outlet at the upper part, and the above in a plurality of tubes that axially penetrate the shell. A horizontal evaporator for non-azeotropic mixed refrigerant, comprising: a header having a partition wall which makes a flow direction of a cooled fluid to be opposite to a flow direction of a refrigerant in the refrigerant flow path.
JP5886795A 1995-03-17 1995-03-17 Horizontal type evaporator for nonazeotropic mixture refrigerant Pending JPH08254373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5886795A JPH08254373A (en) 1995-03-17 1995-03-17 Horizontal type evaporator for nonazeotropic mixture refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5886795A JPH08254373A (en) 1995-03-17 1995-03-17 Horizontal type evaporator for nonazeotropic mixture refrigerant

Publications (1)

Publication Number Publication Date
JPH08254373A true JPH08254373A (en) 1996-10-01

Family

ID=13096691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5886795A Pending JPH08254373A (en) 1995-03-17 1995-03-17 Horizontal type evaporator for nonazeotropic mixture refrigerant

Country Status (1)

Country Link
JP (1) JPH08254373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333236A (en) * 2001-05-07 2002-11-22 Mitsubishi Heavy Ind Ltd Evaporator and refrigerating machine having the evaporator
US6966200B2 (en) 2000-04-26 2005-11-22 Mitsubishi Heavy Industries, Ltd. Evaporator and refrigerator
CN103954153A (en) * 2014-05-14 2014-07-30 山东北辰机电设备股份有限公司 Multipath pure countercurrent shell-and-tube type heat exchanger
CN105890408A (en) * 2016-05-27 2016-08-24 合肥海川石化设备有限公司 Multichannel and multipass pipe shell type gas-liquid heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6966200B2 (en) 2000-04-26 2005-11-22 Mitsubishi Heavy Industries, Ltd. Evaporator and refrigerator
JP2002333236A (en) * 2001-05-07 2002-11-22 Mitsubishi Heavy Ind Ltd Evaporator and refrigerating machine having the evaporator
JP4508466B2 (en) * 2001-05-07 2010-07-21 三菱重工業株式会社 Evaporator and refrigerator having the same
CN103954153A (en) * 2014-05-14 2014-07-30 山东北辰机电设备股份有限公司 Multipath pure countercurrent shell-and-tube type heat exchanger
CN103954153B (en) * 2014-05-14 2015-10-28 山东北辰机电设备股份有限公司 The pure reverse stream pipe shell heat exchanger of multipaths
CN105890408A (en) * 2016-05-27 2016-08-24 合肥海川石化设备有限公司 Multichannel and multipass pipe shell type gas-liquid heat exchanger

Similar Documents

Publication Publication Date Title
US5875838A (en) Plate heat exchanger
US4201263A (en) Refrigerant evaporator
US6883347B2 (en) End bonnets for shell and tube DX evaporator
US20100065262A1 (en) Double inlet heat exchanger
JP2007212091A (en) Shell-and-tube type condenser
JP3866905B2 (en) Heat exchanger and refrigeration cycle equipment
JP2003161547A (en) Plate type heat exchanger for evaporator
JPH0886591A (en) Heat exchanger and refrigerant evaporator
KR100479781B1 (en) Evaporator and refrigerator
CN111829385B (en) Distributor, heat exchanger, indoor unit, outdoor unit, and air conditioning apparatus
JPH08254373A (en) Horizontal type evaporator for nonazeotropic mixture refrigerant
JP2003028539A (en) Heat exchanger and refrigerating cycle system
JP2005214525A (en) Showcase with built-in freezer
JP2012167861A (en) Plate type heat exchanger
JPH08338671A (en) Horizontal type condenser for non-azeotrope refrigerant
JP2001050611A (en) Plate-type heat exchanger
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JPH0480575A (en) Refrigerant distributor
JP2002022309A (en) Absorption type refrigerating machine
JP3871324B2 (en) Plate heat exchanger and refrigeration system using the same
JP2001165590A (en) Plate type heat exchanger
JP2813732B2 (en) Stacked heat exchanger
JP3852891B2 (en) Solution heat exchanger for absorption refrigerator
JP3852897B2 (en) Absorption refrigerator
JP4004019B2 (en) Absorption refrigerator