JP2002333236A - Evaporator and refrigerating machine having the evaporator - Google Patents

Evaporator and refrigerating machine having the evaporator

Info

Publication number
JP2002333236A
JP2002333236A JP2001135776A JP2001135776A JP2002333236A JP 2002333236 A JP2002333236 A JP 2002333236A JP 2001135776 A JP2001135776 A JP 2001135776A JP 2001135776 A JP2001135776 A JP 2001135776A JP 2002333236 A JP2002333236 A JP 2002333236A
Authority
JP
Japan
Prior art keywords
heat transfer
evaporator
refrigerant
tube
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001135776A
Other languages
Japanese (ja)
Other versions
JP4508466B2 (en
Inventor
Yoshinori Shirakata
芳典 白方
Kenji Ueda
憲治 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001135776A priority Critical patent/JP4508466B2/en
Publication of JP2002333236A publication Critical patent/JP2002333236A/en
Application granted granted Critical
Publication of JP4508466B2 publication Critical patent/JP4508466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator having an enhanced evaporation efficiency as a result of rational arrangement of heat transfer pipes and simultaneously having a long distance to a demister. SOLUTION: In an evaporator that a number of heat transfer pipes 15 through which cold water flows are situated in a bundle in a container 14 in which a refrigerant is introduced, by constituting the height of pipe groups A, B, and C being an assembly of a number of the heat transfer pipes 15 such that the height is reduced from the inflow port side of cold water toward the outflow port side in the direction of the width of the container 14, all of the pipe groups A, B, and C are immersed even when a liquid level 7 is changed into a waveform state as a result of a refrigerant being boiled.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は蒸発器及びこれを有
する冷凍機に関し、特に例えば冷水、ブライン等の被冷
却物との間で熱交換を行わせて被冷却物を冷却するため
の蒸発器及びこの蒸発器を具備する冷凍機に適用して有
用なものである。 【0002】 【従来の技術】例えばビルのような大規模構造物におい
ては、冷凍機で冷却した冷水を構造物内に布設した配管
を通じて循環させ、各スペースの空気と熱交換させて冷
房を行うようになっている。 【0003】冷凍機に具備される蒸発器の一例を図9に
示す。同図に示すように、蒸発器は、冷媒が導入される
円筒形の容器1の中に冷水を流通する多数の伝熱管2が
千鳥状に束になって配管された構造となっている。伝熱
管2は、冷水入口3に連通する往路側の管群と冷水出口
4に連通する復路側の管群とに分かれており、冷水入口
3から流入した冷水は容器1内を通り水室(図示略)に
至って折り返し、再び容器1内を通って冷水出口4から
流出する。この過程で、冷水は容器1に導入された冷媒
との間で熱交換を行って冷却され、一方の冷媒は冷水に
熱を奪われて沸騰し、気化する。ここで、図9は冷水の
流路が一往復(2パス)の場合の蒸発器であるが、この
流路数には特別な制限はなく、用途に応じて種々のパス
数のものが製作されている。 【0004】図9中、伝熱管2が存在する範囲を一点鎖
線で示している。同図からも明らかな通り、当該蒸発器
における最上段の伝熱管2の高さ位置は、容器1の幅方
向に関し面一になるように配設してある。 【0005】また、容器1の上部にはその中央部若しく
は中央部から若干オフセットした位置(図9では右側に
オフセットした位置)に吸込管(図示せず。)が配設さ
れており、蒸発器内で冷水との熱交換により蒸発した冷
媒は、吸込管を介して圧縮機(図示せず。)に供給され
る。また、容器1の内部空間の前記吸込管の開口部に至
る部分には、支持枠5に支持してデミスタ6が配設して
ある。このデミスタ6は蒸発器内で蒸発した冷媒に混入
するミスト状の冷媒を除去するもので、メッシュ状の部
材で構成してあり、ミスト状の冷媒をメッシュ部で捕捉
し、吸込管を介して圧縮機に混入するのを防止してい
る。 【0006】 【発明が解決しようとする課題】上述の如き従来技術に
係る蒸発器では、冷水入口3近傍の伝熱管2内の冷水
程、温度が高く、冷水出口4近傍の冷水程、温度が低い
ので、冷媒の沸騰の程度も異なってくる。すなわち、冷
水入口3近傍程、冷媒の沸騰が激しい。したがって、当
該蒸発器内の冷媒の液面7は、図中に太線の実線で示す
ように、冷水入口3近傍が盛り上がり、冷水出口4近傍
が下降する波状の液面7となる。このため、冷水出口4
近傍の伝熱管2の中には、冷媒液に浸漬されず、液面7
から上方に出てしまうものがでてくる。このように、冷
媒液に浸漬されない伝熱管2は、冷媒液の蒸発に寄与す
ることができず、蒸発器としての機能を低下させてしま
うという問題を生起する。 【0007】また、圧縮機に至る吸込管は、他の機器
(凝縮器等)との配置上の関係で、上述の如く、容器1
の中央部若しくは中央部から若干オフセットした位置に
配設してあり、このためデミスタ6も容器1の上部空間
に斜めに配設してある。この結果、デミスタ6の冷水出
口4側の端部で最上段の伝熱管2との距離L1 が最も小
さくなり、沸騰により吹き上げられた冷媒のミストがデ
ミスタ6及び吸込管を介して圧縮機に混入し易くなり、
混入した場合には圧縮機の羽根車の性能低下等の不具合
の原因となる。すなわち、デミスタ6との間の距離L1
はなるべく大きく確保するのが望ましい。 【0008】さらに、上述の如き従来技術に係る蒸発器
においては、多数の伝熱管2がひとつに束ねられた構造
となっているので、容器1の下部に位置する伝熱管2の
周囲で沸騰した冷媒が気泡となり、その上に位置する伝
熱管2にまとわり付くようにして液中を浮かび上がるの
で、上部の伝熱管2の周囲に液状の冷媒が十分に供給さ
れない傾向にある。そのため、特に束の中央(芯にあた
る部分)付近に配設された伝熱管2における熱伝達率が
周囲に比べて低くなってしまうという問題がある。 【0009】本発明は、上記従来技術の問題点に鑑み、
伝熱管の配置を合理的なものとして蒸発効率を向上させ
ると同時に、デミスタとの間の距離も大きく確保するこ
とができ、さらに容器中で沸騰した冷媒の気泡の抜けを
改善することで蒸発器の熱伝達率を向上させることがで
きる蒸発器及びこれを有する冷凍機を提供することを目
的とする。 【0010】 【課題を解決するための手段】上記目的を達成する本発
明の構成は次の点を特徴とする。 【0011】1) 冷媒が導入される容器の中に、被冷
却物を流通する多数の伝熱管を束にして配置した蒸発器
において、前記多数の伝熱管の集合体である管群の高さ
が、前記容器の幅方向に関して被冷却物の流入口側から
流出口側に向かって低くなるように構成したこと。 【0012】2) 冷媒が導入される容器の中に、被冷
却物を流通する多数の伝熱管を束にして配置した蒸発器
において、前記多数の伝熱管の集合体である管群の高さ
が、前記容器の幅方向に関して被冷却物の流入口側から
流出口側に向かって低くなるように構成する一方、前記
伝熱管を複数の管群に分けるとともに、該管群どうしを
離間して配置したこと。 【0013】3) 上記2)に記載する蒸発器におい
て、複数の管群が千鳥状に配列されていること。 【0014】4) 上記2)又は3)に記載する蒸発器
において、管群に、伝熱管を配設しない空隙を設けたこ
と。 【0015】5) 上記2)乃至4)の何れか一つに記
載する蒸発器において、伝熱管が、いずれの管群におい
ても千鳥状に配列されていること。 【0016】6) 上記2)乃至5)に記載する何れか
一つの蒸発器において、容器の上部に位置する管群に属
する伝熱管が、下部に位置する管群に属する伝熱管と比
べて疎に配列されていること。 【0017】7) 気体状の冷媒を凝縮して液化する凝
縮器と、液化された冷媒を減圧する膨張弁と、凝縮され
た冷媒と被冷却物との間で熱交換を行わせて該被冷却物
を冷却するとともに冷媒を蒸発させる蒸発器と、気化さ
れた冷媒を圧縮して前記凝縮器に供給する圧縮機とで冷
凍サイクルを構成している冷凍機において、上記1)乃
至6)の何れか一つに記載する蒸発器を有すること。 【0018】 【発明の実施の形態】<第1の実施の形態>本形態に係
る蒸発器及び冷凍機を図1及び図2に基づき説明する。
冷凍機の概略構成を図1に示す。同図に示す冷凍機は、
冷却水と気体状の冷媒との間で熱交換を行わせて冷媒を
凝縮、液化する凝縮器10と、凝縮された冷媒を減圧す
る膨張弁11と、凝縮された冷媒と冷水(被冷却物)と
の間で熱交換を行わせて冷水を冷却するとともに冷媒を
蒸発、気化する蒸発器12と、気化された冷媒を圧縮し
たうえで凝縮器に供給する圧縮機13とを備えている。
冷凍機は、蒸発器12で冷水を製造しビルの空調等に利
用するようになっている。 【0019】蒸発器12は、冷媒が導入される円筒形の
容器14の中に冷水を流通する多数の伝熱管15が束に
なって(図1では簡略して図示)容器14の長手方向に
配管された構造となっている。伝熱管15は、冷水入口
16に連通する往路側の管と冷水出口17に連通する復
路側の管とに別れており、冷水入口16に連通する管路
と冷水出口17に連通する管路とでは冷水の流れる方向
が異なっている。なお、本例は伝熱管15による冷水の
流路の数が2パスの場合であるが、これに限定するもの
ではない。パスの数は任意に選択し得る設計要素であ
る。 【0020】図2は図1をI−I線で切断した場合の蒸
発器12を概念的に示す説明図である。同図に示すよう
に、本実施例に係る蒸発器では、冷媒が導入される容器
14の内部に配設される伝熱管15の集合体である管群
A、B、Cの高さが、前記容器14の幅方向に関して冷
水入口側(図中の左側)から冷水出口側(図中の右側)
に向かって低くなるように構成してある。なお、図中、
5は支持枠、6はデミスタである。これら支持枠5及び
デミスタ6は、図9に示す従来技術のものと何ら変わる
ところはない。 【0021】かかる本実施例において、冷水温度が高い
冷水入口側(図の左側部分)では冷媒がより激しく沸騰
して液面7が盛り上がるが、この液面7の高さに対応さ
せて管群A、B、Cの高さが調整されているので、液面
7が低下する冷水出口側(図の右側部分)の管群Cであ
っても全ての伝熱管15を冷媒液中に浸漬することがで
きる。このため、当該蒸発器12の全ての伝熱管15に
所定の仕事(熱交換)を行わせることができる。かくし
て、蒸発器12の高効率の運転が可能になる。 【0022】また、蒸発器12内に傾斜して配設される
デミスタ6の高さ位置が最も低い部分と、最も高さが低
い管群Cとが上下方向に関して位置的に対応しているの
で、その分距離L2 が大きくなり、蒸発により冷媒ミス
トが跳ね上がり、デミスタ6を通過して圧縮機に至ると
いうような不都合を可及的に除去し得る。 【0023】<第2の実施の形態>図3は本形態に係る
蒸発器12を概念的に示す図で、図2に対応する説明図
である。そこで、図2と同一部分には同一番号を付し、
重複する説明は省略する。図3に示すように、本形態に
係る蒸発器12における伝熱管15は、容器14内の下
半分において9つの管群D〜Lに分けられ、該管群D〜
Lは隣り合うものどうし離間し、かつ千鳥状に配列され
ている。詳しくは、管群D〜Hが水平に配列され、その
下に管群I〜Lが水平に配列されるとともに管群D〜H
に対して横方向にオフセットされることにより千鳥状に
配列されている。 【0024】ここで、上半分の管群D〜Hでは、その最
上部を構成する伝熱管15の高さを、容器14の幅方向
に関して冷水入口側(図中の左側)から冷水出口側(図
中の右側)に向かって低くなるように変えてある。 【0025】また、管群D〜Lのいずれにおいても伝熱
管15は各管群で100本程度にまとめられており、さ
らにこれら管群D〜Lにおいて伝熱管15は千鳥状に配
列されている。この場合も、上下に多段に配列された伝
熱管15が各段ごとに左右にオフセットされることによ
り千鳥状の配列がなされている。千鳥状に配列された伝
熱管15は、図4に示すようにその直径をDとすると横
方向に隣り合う伝熱管15どうしの間隔が1.15Dと
なっている。 【0026】かかる本形態に係る蒸発器12において
は、上半分の管群D〜Hの高さを変えたことにより、図
2に示す蒸発器12と全く同様の作用・効果を得る。 【0027】さらに、本形態では、伝熱管15を管群D
〜Lに分け、管群D〜Lどうしを離間させて配置したこ
とにより、各管群D〜L内の比較的下方の伝熱管15の
まわりで発生した気泡が管群D〜Lと管群D〜Lとの間
を抜けて浮かび上がり、管群D〜Lの中に存在する気泡
が減少する。これにより、管群D〜Lの中央付近に配設
された伝熱管15に影響を与える気泡が少なくなるの
で、熱伝達率の低下が抑えられる。 【0028】また、容器14内には、液状の冷媒が下部
から導入され、気化して上部から容器14外に流出する
構造となっており、導入される冷媒は容器14内で上方
に向かって流れる傾向が強いが、管群どうしを離間させ
て配置したことにより冷媒が流れ易くなり、冷媒液と伝
熱管15とのコンタクトが促進されて熱伝達率の向上を
図ることができる。 【0029】さらに、管群D〜Lを千鳥状に配列すると
ともに、各管群D〜Lにおいて伝熱管15も千鳥状に配
列することにより、上方に向かって流れる冷媒液と伝熱
管とのコンタクトが促進されて熱伝達率を向上させるこ
とができる。 【0030】なお、本実施の形態においては、伝熱管1
5を9つの管群D〜Lに分けたが、これらは蒸発器の大
きさや発揮すべき性能に応じてもっと少数の管群に分け
ても、逆に多数の管群に分けてもよい。また、横方向に
隣り合う伝熱管15どうしの間隔を1.15Dに設定し
たが、必ずしもこれに限定されるものではなく、この間
隔は各種の条件に応じて選択可能である。また、これら
を上下で千鳥状に配設するものに限定する必要もない。 【0031】<第3の実施の形態>図5は本形態に係る
蒸発器12を概念的に示す図で、図2に対応する説明図
である。そこで、図2と同一部分には同一番号を付し、
重複する説明は省略する。図5に示すように、本形態に
係る蒸発器12では、伝熱管15が、横方向に並ぶ4つ
の管群M〜Pに分けられており、各管群M〜Pの間には
上下に貫通する空隙が設けられている。この空隙は、従
来のように伝熱管15を千鳥状配列でひとつの束ねた場
合から所定の伝熱管15を2本または3本と交互に除い
たようにして設けられている。これを抜き列20と称
す。また、管群M,Pには、伝熱管15を配設されない
空隙が、抜き列20と平行に設けられている。この空隙
も、抜き列20と同様にして所定の伝熱管15を1本ま
たは2本と交互に除いたようにして設けられる。これを
補助抜き列21と称する。 【0032】本形態の管群M〜Pにおいても、その最上
部を構成する伝熱管15の高さを、容器14の幅方向に
関して冷水入口側(図中の左側)から冷水出口側(図中
の右側)に向かって低くなるように変えてある。 【0033】かかる本形態に係る蒸発器12において
は、管群M〜Pの高さを変えたことにより、図2に示す
蒸発器12と全く同様の作用・効果を得る。 【0034】さらに、本形態では、抜き列20及び補助
抜き列21を設けたことにより、管群M〜P内の比較的
下方に伝熱管15のまわりで発生した気泡が抜き列20
を抜けて浮かび上がる。これにより、管群M〜Pの中央
および上部付近に配設された伝熱管15に影響を与える
気泡が少なくなる。したがって、熱伝達率の低下が抑え
られる。 【0035】<第4の実施の形態>図6は本形態に係る
蒸発器12を概念的に示す図で、図2に対応する説明図
である。また、本形態は図5に示す第3の実施の形態の
変形例でもある。そこで、図2及び図5と同一部分には
同一番号を付し、重複する説明は省略する。図6に示す
ように、本形態に係る蒸発器12では、管群M、Pに、
補助抜き列21とは異なり上下に抜けていない半補助抜
き列22を補助抜き列21と同様にして設けている。 【0036】本形態の管群M〜Pにおいても、その最上
部を構成する伝熱管15の高さを、容器14の幅方向に
関して冷水入口側(図中の左側)から冷水出口側(図中
の右側)に向かって低くなるように変えてある。 【0037】かかる本形態に係る蒸発器12において
は、管群M〜Pの高さを変えたことにより、図2に示す
蒸発器12と全く同様の作用・効果を得る。 【0038】さらに、本形態では、半補助抜き列22を
設けたことにより、管群M、Pの中央付近からの気泡が
抜け易くなり、管群M、Pの中央付近に配設された伝熱
管15に影響を与える気泡が少なくなるので、熱伝達率
の低下が抑えられる。なお、この半補助抜き列22は、
管群M〜Pのいずれに配しても差し支えない。 【0039】<第5の実施の形態>図7は本形態に係る
蒸発器12を概念的に示す図で、図2に対応する説明図
である。また、本形態は図5に示す第3の実施の形態の
変形例でもある。そこで、図2及び図5と同一部分には
同一番号を付し、重複する説明は省略する。図7に示す
ように、本形態に係る蒸発器12では、半補助抜き列2
2を管群M、Pの下部に設けている。 【0040】本形態の管群M〜Pにおいても、その最上
部を構成する伝熱管15の高さを、容器14の幅方向に
関して冷水入口側(図中の左側)から冷水出口側(図中
の右側)に向かって低くなるように変えてある。 【0041】かかる本形態に係る蒸発器12において
は、管群M〜Pの高さを変えたことにより、図2に示す
蒸発器12と全く同様の作用・効果を得る。また、半補
助抜き列22を設けたことにより、管群M、Pの中央付
近からの気泡が抜け易くなり、管群M、Pの中央付近に
配設された伝熱管15に影響を与える気泡が少なくなる
ので、熱伝達率の低下が抑えられる。 【0042】<第6の実施の形態>図8は本形態に係る
蒸発器12を概念的に示す図で、図2に対応する説明図
である。また、本形態は図5に示す第3の実施の形態の
変形例でもある。そこで、図2及び図5と同一部分には
同一番号を付し、重複する説明は省略する。図8に示す
ように、本形態では、補助抜き列21から枝を伸ばすよ
うに斜め上方に向けてさらに小さな補助抜き列23を設
けている。 【0043】本形態の管群M〜Pにおいても、その最上
部を構成する伝熱管15の高さを、容器14の幅方向に
関して冷水入口側(図中の左側)から冷水出口側(図中
の右側)に向かって低くなるように変えてある。 【0044】かかる本形態に係る蒸発器12において
は、管群M〜Pの高さを変えたことにより、図2に示す
蒸発器12と全く同様の作用・効果を得る。また、補助
抜き列23を設けたことにより、管群M、Pの中央付近
からの気泡が抜け易くなり、管群M、Pの中央付近に配
設された伝熱管15に影響を与える気泡が少なくなるの
で、熱伝達率の低下が抑えられる。 【0045】なお、上記各実施の形態において、伝熱管
15にはディンブルチューブやフィンチューブ、その他
あらゆる形態の管材が使用可能であることはいうまでも
ない。また、上記各実施の形態においては、冷水が蒸発
器中を一往復する構造のものを例に説明を進めたが、本
発明に係る蒸発器は、冷水が一方向に流通してしまうも
の、複数回往復するもの、一方から流入して往復し他方
から流出するもの等、あらゆる構造の蒸発器に適用可能
である。 【0046】さらに、上述の如き、抜き列20、21、
22、23の配列パターンは、蒸発器の大きさや発揮す
べき性能に応じて適宜選択すれば良い。 【0047】 【発明の効果】以上説明したように、〔請求項1〕に記
載する発明は、冷媒が導入される容器の中に、被冷却物
を流通する多数の伝熱管を束にして配置した蒸発器にお
いて、前記多数の伝熱管の集合体である管群の高さが、
前記容器の幅方向に関して被冷却物の流入口側から流出
口側に向かって低くなるように構成したので、冷水温度
が高い冷水入口側では冷媒がより激しく沸騰して液面が
盛り上がるが、この液面の高さに対応させて管群の高さ
が調整されているので、液面が低下する冷水出口側の管
群であっても全ての伝熱管を冷媒液中に浸漬することが
できる。この結果、当該蒸発器の全ての伝熱管に所定の
仕事(熱交換)を行わせることができ、蒸発器12の高
効率の運転が可能になる。また、蒸発器内に傾斜して配
設されるデミスタの高さ位置が最も低い部分と、最も高
さが低い管群とが上下方向に関して位置的に対応してい
るので、その分距離が大きくなり、蒸発により冷媒ミス
トが跳ね上がり、デミスタを通過して圧縮機に至るとい
うような不都合を可及的に除去し得る。 【0048】〔請求項2〕に記載する発明は、冷媒が導
入される容器の中に、被冷却物を流通する多数の伝熱管
を束にして配置した蒸発器において、前記多数の伝熱管
の集合体である管群の高さが、前記容器の幅方向に関し
て被冷却物の流入口側から流出口側に向かって低くなる
ように構成する一方、前記伝熱管を複数の管群に分ける
とともに、該管群どうしを離間して配置したので、〔請
求項1〕に記載する発明の作用・効果に加え、比較的下
方に位置する伝熱管のまわりで発生した気泡が管群と管
群との間を抜けて浮かび上がって管群の中に存在する気
泡が減少し、管群の中央付近に配設された伝熱管に影響
を与える気泡が少なくなるので、熱伝達率の低下を抑止
することができるという作用・効果も奏する。また、容
器内に導入される液状の冷媒は流れを生じるが、管群ど
うしを離間させて配置することにより冷媒が流れ易くな
り、冷媒液と伝熱管とのコンタクトが促進されるので、
熱伝達率を向上させることもできる。 【0049】〔請求項3〕に記載する発明は、〔請求項
2〕に記載する蒸発器において、複数の管群が千鳥状に
配列されているので、〔請求項1〕に記載する発明の作
用・効果に加え、管群を千鳥状に配列することにより、
上方に向かって流れる冷媒液と伝熱管とのコンタクトが
促進されるので、熱伝達率をさらに向上させることがで
きるという作用・効果を得る。 【0050】〔請求項4〕に記載する発明は、〔請求項
2〕又は〔請求項3〕に記載する蒸発器において、管群
に、伝熱管を配設しない空隙を設けたので、〔請求項
1〕に記載する発明の作用・効果に加え、管群に空隙を
設けることにより、管群の中央付近からの気泡が抜け易
くなり、管群の中央付近に配設された伝熱管に熱伝達率
低下等の影響を与える気泡が少なくなるので、熱伝達率
の低下を抑止することができるという作用・効果も奏す
る。 【0051】〔請求項5〕に記載する発明は、〔請求項
2〕乃至〔請求項4〕の何れか一つに記載する蒸発器に
おいて、伝熱管が、いずれの管群においても千鳥状に配
列されているので、〔請求項1〕に記載する発明の作用
・効果に加え、伝熱管も千鳥状に配列することにより、
管群の中でも冷媒が流れ易くなり、冷媒液と伝熱管との
コンタクトが促進されるので、熱伝達率をさらに向上さ
せることができるという作用・効果も奏する。 【0052】〔請求項6〕に記載する発明は、〔請求項
2〕乃至〔請求項5〕に記載する何れか一つの蒸発器に
おいて、容器の上部に位置する管群に属する伝熱管が、
下部に位置する管群に属する伝熱管と比べて疎に配列さ
れているので、〔請求項1〕に記載する発明の作用・効
果に加え、容器の下部に位置する管群の伝熱管のまわり
で発生した気泡が上部に位置する管群を通過するとき、
該管群に属する伝熱管が下部の管群に比べて疎に配列さ
れており、上部に位置する管群に属する伝熱管の間を気
泡が抜け易くなるので、熱伝達率の低下を抑止すること
ができるという作用・効果も奏する。 【0053】〔請求項7〕に記載する発明は、気体状の
冷媒を凝縮して液化する凝縮器と、液化された冷媒を減
圧する膨張弁と、凝縮された冷媒と被冷却物との間で熱
交換を行わせて該被冷却物を冷却するとともに冷媒を蒸
発させる蒸発器と、気化された冷媒を圧縮して前記凝縮
器に供給する圧縮機とで冷凍サイクルを構成している冷
凍機において、〔請求項1〕乃至〔請求項6〕の何れか
一つに記載する蒸発器を有するので、その蒸発器におい
て、〔請求項1〕乃至〔請求項6〕に記載する発明と同
様の作用・効果を得ることができ、このことにより高効
率で安定した冷凍機の運転を実現し得る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporator and a refrigerator having the same, and more particularly, to a method of exchanging heat with an object to be cooled such as cold water or brine. The present invention is useful when applied to an evaporator for cooling an object to be cooled and a refrigerator equipped with the evaporator. 2. Description of the Related Art In a large-scale structure such as a building, for example, cooling water cooled by a refrigerator is circulated through piping laid in the structure, and heat is exchanged with air in each space to perform cooling. It has become. FIG. 9 shows an example of an evaporator provided in a refrigerator. As shown in the figure, the evaporator has a structure in which a number of heat transfer tubes 2 for circulating cold water are bundled in a staggered shape and piped in a cylindrical container 1 into which a refrigerant is introduced. The heat transfer tube 2 is divided into a forward-side tube group that communicates with the chilled water inlet 3 and a return-side tube group that communicates with the chilled water outlet 4. (Not shown), and then returns to the inside of the container 1 and flows out of the cold water outlet 4 again. In this process, the chilled water exchanges heat with the refrigerant introduced into the container 1 to be cooled, and one of the refrigerants is deprived of heat by the chilled water to boil and vaporize. Here, FIG. 9 shows an evaporator in a case where the flow path of the cold water is one reciprocation (two passes). The number of the flow paths is not particularly limited, and the number of the flow paths is varied depending on the application. Have been. [0006] In FIG. 9, a range where the heat transfer tube 2 exists is indicated by a dashed line. As is clear from the figure, the height position of the uppermost heat transfer tube 2 in the evaporator is arranged so as to be flush with the width direction of the container 1. In addition, a suction pipe (not shown) is disposed at the center of the container 1 or at a position slightly offset from the center (a position offset to the right in FIG. 9). The refrigerant evaporated by heat exchange with cold water in the inside is supplied to a compressor (not shown) via a suction pipe. A demister 6 is provided at a portion of the internal space of the container 1 that reaches the opening of the suction pipe, supported by a support frame 5. The demister 6 removes mist-like refrigerant mixed with the refrigerant evaporated in the evaporator, and is constituted by a mesh-like member. The mist-like refrigerant is captured by the mesh portion, and is passed through the suction pipe. It prevents mixing into the compressor. [0006] In the evaporator according to the prior art as described above, the temperature of the cold water in the heat transfer tube 2 near the cold water inlet 3 is higher and the temperature of the cold water near the cold water outlet 4 is higher. Since it is low, the degree of boiling of the refrigerant also differs. That is, the boiling point of the refrigerant is higher near the cold water inlet 3. Therefore, the liquid level 7 of the refrigerant in the evaporator becomes a wavy liquid level 7 near the cold water inlet 3 and rising near the cold water outlet 4 as shown by a thick solid line in the figure. Therefore, the cold water outlet 4
In the nearby heat transfer tube 2, the liquid surface 7
Some things come out from the top. As described above, the heat transfer tube 2 that is not immersed in the refrigerant liquid cannot contribute to the evaporation of the refrigerant liquid, and causes a problem that the function as an evaporator is reduced. [0007] Further, as described above, the suction pipe leading to the compressor is placed in the container 1 due to the arrangement of the suction pipe to other equipment (such as a condenser).
The demister 6 is also disposed obliquely in the upper space of the container 1. As a result, the distance L 1 between the end of the demister 6 on the side of the cold water outlet 4 and the uppermost heat transfer tube 2 is minimized, and the mist of the refrigerant blown up by the boiling passes through the demister 6 and the suction tube to the compressor. Easier to mix,
If mixed, it may cause problems such as a decrease in the performance of the impeller of the compressor. That is, the distance L 1 from the demister 6
It is desirable to secure as large as possible. Further, in the evaporator according to the prior art as described above, since a large number of heat transfer tubes 2 are bundled into one, boiling around the heat transfer tubes 2 located at the lower part of the vessel 1 is caused. Since the refrigerant becomes bubbles and floats in the liquid so as to cling to the heat transfer tubes 2 located thereon, the liquid refrigerant tends not to be sufficiently supplied around the upper heat transfer tubes 2. Therefore, there is a problem that the heat transfer coefficient of the heat transfer tube 2 arranged particularly near the center (portion corresponding to the core) of the bundle is lower than that of the surroundings. The present invention has been made in view of the above-mentioned problems of the prior art,
The ratio of the heat transfer tubes is rational and the evaporation efficiency is improved.At the same time, the distance between the heat transfer tubes and the demister can be kept large. It is an object of the present invention to provide an evaporator capable of improving a heat transfer coefficient of the evaporator and a refrigerator having the same. [0010] The structure of the present invention that achieves the above object has the following features. 1) In an evaporator in which a large number of heat transfer tubes that circulate an object to be cooled are arranged in a bundle in a vessel into which a refrigerant is introduced, the height of a tube group, which is an aggregate of the large number of heat transfer tubes, is set. Is configured to decrease from the inlet side to the outlet side of the object to be cooled in the width direction of the container. 2) In an evaporator in which a number of heat transfer tubes that circulate an object to be cooled are bundled and arranged in a container into which a refrigerant is introduced, the height of a tube group, which is an aggregate of the plurality of heat transfer tubes, is set. However, while the heat transfer tube is configured to be lowered from the inlet side to the outlet side with respect to the width direction of the container with respect to the width direction of the container, the heat transfer tubes are divided into a plurality of tube groups, and the tube groups are separated from each other. That it was placed. 3) In the evaporator described in 2) above, a plurality of tube groups are arranged in a staggered manner. 4) In the evaporator according to the above 2) or 3), an air gap in which no heat transfer tube is provided is provided in the tube group. 5) In the evaporator according to any one of the above 2) to 4), the heat transfer tubes are arranged in a staggered manner in any of the tube groups. 6) In any one of the evaporators described in 2) to 5) above, the heat transfer tubes belonging to the tube group located at the upper part of the vessel are less dense than the heat transfer tubes belonging to the tube group located at the lower part. Be arranged in. 7) A condenser for condensing and liquefying the gaseous refrigerant, an expansion valve for reducing the pressure of the liquefied refrigerant, and a heat exchange between the condensed refrigerant and the object to be cooled. In the refrigerator including the evaporator that cools the coolant and evaporates the refrigerant, and the compressor that compresses the vaporized refrigerant and supplies the refrigerant to the condenser, the refrigerator described in 1) to 6) above. Having an evaporator according to any one of the above. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS <First Embodiment> An evaporator and a refrigerator according to this embodiment will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of the refrigerator. The refrigerator shown in FIG.
A condenser 10 that condenses and liquefies the refrigerant by causing heat exchange between the cooling water and the gaseous refrigerant, an expansion valve 11 that decompresses the condensed refrigerant, a refrigerant that is condensed with chilled water (the object to be cooled) ), An evaporator 12 that cools the cold water by evaporating the refrigerant and evaporates and vaporizes the refrigerant, and a compressor 13 that compresses the vaporized refrigerant and supplies the compressed refrigerant to the condenser.
The refrigerator produces cold water by the evaporator 12 and uses it for air conditioning of a building and the like. The evaporator 12 is formed by bundling a number of heat transfer tubes 15 through which cold water flows in a cylindrical container 14 into which a refrigerant is introduced (simplified in FIG. 1). It has a piped structure. The heat transfer pipe 15 is divided into a forward pipe communicating with the cold water inlet 16 and a return pipe communicating with the cold water outlet 17, and a pipe communicating with the cold water inlet 16 and a pipe communicating with the cold water outlet 17. The direction of cold water flow is different. In this example, the number of channels of the cold water by the heat transfer tube 15 is two, but the present invention is not limited to this. The number of passes is a design factor that can be arbitrarily selected. FIG. 2 is an explanatory view conceptually showing the evaporator 12 when FIG. 1 is cut along the line II. As shown in the figure, in the evaporator according to the present embodiment, the heights of the tube groups A, B, and C, which are an aggregate of the heat transfer tubes 15 disposed inside the container 14 into which the refrigerant is introduced, are: With respect to the width direction of the container 14, from the cold water inlet side (left side in the figure) to the cold water outlet side (right side in the figure)
It is configured to become lower toward. In the figure,
5 is a support frame, 6 is a demister. The support frame 5 and the demister 6 are not different from those of the prior art shown in FIG. In this embodiment, on the cold water inlet side (left side in the figure) where the cold water temperature is high, the refrigerant boiled more violently and the liquid surface 7 rises. Since the heights of A, B, and C are adjusted, all the heat transfer tubes 15 are immersed in the refrigerant liquid even in the tube group C on the cold water outlet side (the right part in the drawing) where the liquid level 7 decreases. be able to. Therefore, it is possible to cause all the heat transfer tubes 15 of the evaporator 12 to perform a predetermined work (heat exchange). Thus, highly efficient operation of the evaporator 12 is enabled. Further, since the lowest position of the demister 6 which is disposed obliquely in the evaporator 12 and the tube group C having the lowest height correspond to each other in the vertical direction. , correspondingly the distance L 2 is increased, jumping refrigerant mist by evaporation, may as much as possible remove inconveniences that lead to compressor through the demister 6. <Second Embodiment> FIG. 3 is a diagram conceptually showing an evaporator 12 according to the present embodiment, and is an explanatory diagram corresponding to FIG. Therefore, the same parts as those in FIG.
Duplicate description will be omitted. As shown in FIG. 3, the heat transfer tubes 15 in the evaporator 12 according to the present embodiment are divided into nine tube groups D to L in the lower half in the container 14, and the tube groups D to L
L is spaced apart from each other and arranged in a staggered manner. Specifically, tube groups D to H are arranged horizontally, tube groups I to L are arranged horizontally thereunder, and tube groups D to H are arranged.
Are arranged in a zigzag pattern by being offset in the horizontal direction with respect to. Here, in the upper half of the tube groups D to H, the height of the heat transfer tubes 15 constituting the uppermost portion thereof is changed from the cold water inlet side (left side in the figure) to the cold water outlet side (left side in the drawing) with respect to the width direction of the container 14. (Right side in the figure). In each of the tube groups D to L, the heat transfer tubes 15 are grouped into about 100 tubes in each tube group, and the heat transfer tubes 15 in these tube groups D to L are arranged in a staggered manner. . Also in this case, the heat transfer tubes 15 arranged in multiple stages vertically are offset left and right in each stage, thereby forming a staggered arrangement. As shown in FIG. 4, the heat transfer tubes 15 arranged in a staggered manner have a diameter D, and the interval between the heat transfer tubes 15 adjacent in the horizontal direction is 1.15D. In the evaporator 12 according to this embodiment, the same operation and effect as the evaporator 12 shown in FIG. 2 can be obtained by changing the height of the upper half tube groups D to H. Further, in this embodiment, the heat transfer tubes 15 are
To L, and the tube groups D to L are arranged apart from each other, so that the bubbles generated around the heat transfer tube 15 relatively lower in each of the tube groups D to L are separated from the tube groups D to L and the tube group. The air bubbles emerge between the tube groups D to L and the bubbles existing in the tube groups D to L decrease. Thereby, the number of air bubbles affecting the heat transfer tubes 15 arranged near the center of the tube groups D to L is reduced, so that a decrease in the heat transfer coefficient is suppressed. Further, the liquid refrigerant is introduced into the container 14 from below, vaporizes and flows out of the container 14 from above, and the introduced refrigerant flows upward in the container 14. Although it has a strong tendency to flow, the arrangement of the tube groups separated from each other makes it easier for the refrigerant to flow, and promotes the contact between the refrigerant liquid and the heat transfer tubes 15 to improve the heat transfer coefficient. Further, the tube groups D to L are arranged in a staggered manner, and the heat transfer tubes 15 in each of the tube groups D to L are also arranged in a staggered manner, so that the contact between the refrigerant liquid flowing upward and the heat transfer tubes is made. Is promoted, and the heat transfer coefficient can be improved. In this embodiment, the heat transfer tube 1
Although 5 was divided into nine tube groups D to L, these may be divided into a smaller number of tube groups or, conversely, a larger number of tube groups depending on the size of the evaporator and the performance to be exhibited. Further, the interval between the heat transfer tubes 15 adjacent to each other in the horizontal direction is set to 1.15D, but is not necessarily limited to this, and the interval can be selected according to various conditions. Also, it is not necessary to limit them to those arranged vertically in a staggered manner. <Third Embodiment> FIG. 5 is a diagram conceptually showing an evaporator 12 according to the present embodiment, and is an explanatory diagram corresponding to FIG. Therefore, the same parts as those in FIG.
Duplicate description will be omitted. As shown in FIG. 5, in the evaporator 12 according to the present embodiment, the heat transfer tubes 15 are divided into four tube groups M to P arranged in a horizontal direction, and a vertical line is provided between the tube groups M to P. A through space is provided. The gap is provided such that two or three predetermined heat transfer tubes 15 are alternately removed from the case where the heat transfer tubes 15 are bundled in a staggered arrangement as in the related art. This is referred to as a row 20. Further, in the tube groups M and P, a gap in which the heat transfer tube 15 is not provided is provided in parallel with the drawing row 20. This gap is also provided in the same manner as in the case of the drawing row 20, except that one or two predetermined heat transfer tubes 15 are alternately removed. This is referred to as an auxiliary blanking row 21. Also in the tube groups M to P of the present embodiment, the height of the heat transfer tube 15 constituting the uppermost part is changed from the cold water inlet side (left side in the figure) to the cold water outlet side (left side in the figure) with respect to the width direction of the container 14. To the right). In the evaporator 12 according to this embodiment, the same operation and effect as those of the evaporator 12 shown in FIG. 2 are obtained by changing the height of the tube groups M to P. Further, in the present embodiment, by providing the draft row 20 and the auxiliary draft row 21, bubbles generated around the heat transfer tube 15 relatively below the pipe groups M to P are removed.
Emerge through the. Thereby, the number of bubbles affecting the heat transfer tubes 15 arranged near the center and the upper portion of the tube groups M to P is reduced. Therefore, a decrease in the heat transfer coefficient is suppressed. <Fourth Embodiment> FIG. 6 is a diagram conceptually showing an evaporator 12 according to this embodiment, and is an explanatory diagram corresponding to FIG. This embodiment is also a modification of the third embodiment shown in FIG. Therefore, the same portions as those in FIGS. 2 and 5 are denoted by the same reference numerals, and duplicate description will be omitted. As shown in FIG. 6, in the evaporator 12 according to the present embodiment, the tube groups M and P include:
Unlike the auxiliary blanking row 21, a semi-auxiliary blanking row 22 that does not fall out vertically is provided in the same manner as the auxiliary blanking row 21. Also in the tube groups M to P of the present embodiment, the height of the heat transfer tube 15 constituting the uppermost part is changed from the cold water inlet side (left side in the figure) to the cold water outlet side (left side in the figure) with respect to the width direction of the container 14. To the right). In the evaporator 12 according to this embodiment, by changing the height of the tube groups M to P, the same operation and effect as those of the evaporator 12 shown in FIG. 2 are obtained. Further, in this embodiment, the provision of the semi-auxiliary blanking line 22 makes it easy for bubbles to escape from the vicinity of the center of the tube groups M and P, and the transmission arranged near the center of the tube groups M and P. Since the number of bubbles affecting the heat tube 15 is reduced, a decrease in the heat transfer coefficient is suppressed. In addition, this half auxiliary | assistant removal row | line 22
It may be arranged in any of the tube groups M to P. <Fifth Embodiment> FIG. 7 is a diagram conceptually showing an evaporator 12 according to this embodiment, and is an explanatory diagram corresponding to FIG. This embodiment is also a modification of the third embodiment shown in FIG. Therefore, the same portions as those in FIGS. 2 and 5 are denoted by the same reference numerals, and duplicate description will be omitted. As shown in FIG. 7, in the evaporator 12 according to the present embodiment, the
2 is provided below the tube groups M and P. Also in the tube groups M to P of this embodiment, the height of the heat transfer tubes 15 constituting the uppermost portion is changed from the cold water inlet side (left side in the figure) to the cold water outlet side (left side in the figure) with respect to the width direction of the container 14. To the right). In the evaporator 12 according to this embodiment, by changing the height of the tube groups M to P, the same operation and effect as those of the evaporator 12 shown in FIG. 2 are obtained. Further, the provision of the semi-auxiliary blanking line 22 facilitates the escape of air bubbles from near the center of the tube groups M and P, and the air bubbles affecting the heat transfer tubes 15 arranged near the center of the tube groups M and P. , The decrease in heat transfer coefficient is suppressed. <Sixth Embodiment> FIG. 8 is a diagram conceptually showing an evaporator 12 according to this embodiment, and is an explanatory diagram corresponding to FIG. This embodiment is also a modification of the third embodiment shown in FIG. Therefore, the same portions as those in FIGS. 2 and 5 are denoted by the same reference numerals, and duplicate description will be omitted. As shown in FIG. 8, in the present embodiment, a smaller auxiliary blanking row 23 is provided obliquely upward so as to extend a branch from the auxiliary blanking row 21. Also in the tube groups M to P of the present embodiment, the height of the heat transfer tubes 15 constituting the uppermost part is changed from the cold water inlet side (left side in the figure) to the cold water outlet side (left side in the figure) with respect to the width direction of the container 14. To the right). In the evaporator 12 according to this embodiment, the same operation and effect as those of the evaporator 12 shown in FIG. 2 are obtained by changing the height of the tube groups M to P. Further, the provision of the auxiliary blanking row 23 makes it easier for air bubbles to escape from the vicinity of the center of the tube groups M and P, and the air bubbles affecting the heat transfer tubes 15 arranged near the center of the tube groups M and P are reduced. Since the heat transfer rate is reduced, a decrease in the heat transfer coefficient is suppressed. In each of the above embodiments, it is needless to say that a dimple tube, a fin tube, or any other form of tube material can be used for the heat transfer tube 15. Further, in each of the above embodiments, the description has been given of an example of a structure in which cold water makes a round trip in the evaporator, but the evaporator according to the present invention has a structure in which the cold water flows in one direction, The present invention can be applied to evaporators having various structures, such as one that reciprocates a plurality of times, one that flows in and out of one side, and flows out of the other. Further, as described above, the blanking rows 20, 21,
The arrangement pattern of 22 and 23 may be appropriately selected according to the size of the evaporator and the performance to be exhibited. As described above, according to the first aspect of the present invention, a large number of heat transfer tubes that circulate the object to be cooled are arranged in a bundle in a container into which a refrigerant is introduced. In the evaporator, the height of the tube group, which is an aggregate of the plurality of heat transfer tubes,
Since it is configured to decrease from the inflow side to the outflow side of the object to be cooled with respect to the width direction of the container, the refrigerant is more vigorously boiled and rises on the chilled water inlet side where the chilled water temperature is high. Since the height of the tube group is adjusted according to the height of the liquid level, all the heat transfer tubes can be immersed in the refrigerant liquid even in the cold water outlet side tube group where the liquid level decreases. . As a result, predetermined work (heat exchange) can be performed on all the heat transfer tubes of the evaporator, and the evaporator 12 can be operated with high efficiency. Also, since the lowest position of the demister, which is disposed obliquely in the evaporator, corresponds to the position of the lowest tube group in the vertical direction, the distance is increased by that amount. That is, the refrigerant mist jumps up due to the evaporation and passes through the demister to reach the compressor. According to a second aspect of the present invention, there is provided an evaporator in which a plurality of heat transfer tubes for circulating an object to be cooled are bundled and arranged in a container into which a refrigerant is introduced. While the height of the tube group as an aggregate is configured to decrease from the inlet side to the outlet side of the object to be cooled with respect to the width direction of the container, while dividing the heat transfer tube into a plurality of tube groups. Since the tube groups are spaced apart from each other, in addition to the function and effect of the invention described in [Claim 1], air bubbles generated around the heat transfer tube located relatively below are generated by the tube group and the tube group. The bubbles existing in the tube group are reduced by floating through the gap, and the number of bubbles affecting the heat transfer tubes arranged near the center of the tube group is reduced, so that a decrease in the heat transfer coefficient is suppressed. It also has the function and effect of being able to do so. In addition, although the liquid refrigerant introduced into the container generates a flow, the refrigerant flows easily by arranging the tube groups apart, so that the contact between the refrigerant liquid and the heat transfer tubes is promoted.
The heat transfer coefficient can also be improved. According to the invention described in [Claim 3], in the evaporator described in [Claim 2], a plurality of tube groups are arranged in a staggered manner. In addition to the functions and effects, by arranging the tube groups in a zigzag
Since the contact between the refrigerant liquid flowing upward and the heat transfer tube is promoted, the operation and effect that the heat transfer coefficient can be further improved are obtained. According to the invention described in [Claim 4], in the evaporator described in [Claim 2] or [Claim 3], the tube group is provided with a gap in which no heat transfer tube is provided. In addition to the functions and effects of the invention described in [1], by providing a space in the tube group, air bubbles from the vicinity of the center of the tube group can easily escape, and heat is transferred to the heat transfer tubes arranged near the center of the tube group. Since the number of bubbles that affect the heat transfer rate and the like is reduced, an effect and an effect that the heat transfer rate can be prevented from lowering are also exerted. According to a fifth aspect of the present invention, in the evaporator according to any one of the second to fourth aspects, the heat transfer tubes are staggered in any of the tube groups. Since they are arranged, in addition to the functions and effects of the invention described in [Claim 1], by arranging the heat transfer tubes in a staggered manner,
In the tube group, the refrigerant easily flows, and the contact between the refrigerant liquid and the heat transfer tubes is promoted, so that the heat transfer coefficient can be further improved. The invention described in [Claim 6] is characterized in that, in any one of the evaporators described in [Claim 2] to [Claim 5], the heat transfer tube belonging to the tube group located at the upper part of the container is:
Since it is arranged sparsely as compared with the heat transfer tubes belonging to the tube group located at the lower part, in addition to the operation and effect of the invention described in [Claim 1], the heat transfer tubes around the tube group located at the lower part of the container When the air bubbles generated in pass through the tube group located at the top,
The heat transfer tubes belonging to the tube group are arranged more sparsely than the lower tube group, and the air bubbles easily pass between the heat transfer tubes belonging to the upper tube group, thereby suppressing a decrease in the heat transfer coefficient. It also has the function and effect of being able to do so. According to a seventh aspect of the present invention, there is provided a condenser for condensing and liquefying a gaseous refrigerant, an expansion valve for decompressing the liquefied refrigerant, and a method for connecting the condensed refrigerant and the object to be cooled. A refrigerator that forms a refrigeration cycle with an evaporator that performs heat exchange to cool the object to be cooled and evaporates the refrigerant, and a compressor that compresses the vaporized refrigerant and supplies the refrigerant to the condenser. In the above, since there is provided an evaporator according to any one of [Claim 1] to [Claim 6], the evaporator has the same structure as the invention described in [Claim 1] to [Claim 6]. The operation and effect can be obtained, and thereby, a highly efficient and stable operation of the refrigerator can be realized.

【図面の簡単な説明】 【図1】本発明の第1の実施の形態に係る冷凍機を概念
的に示す説明図である。 【図2】本発明の第1の実施の形態に係る蒸発器(図1
のI−I線矢視)を示す概念的に示す説明図である。 【図3】本発明の第1の実施の形態に係る蒸発器を示す
概念的に示す説明図である。 【図4】本発明の第1の実施の形態に係る蒸発器を示す
概念的に示す説明図である。 【図5】本発明の第1の実施の形態に係る蒸発器を示す
概念的に示す説明図である。 【図6】本発明の第1の実施の形態に係る蒸発器を示す
概念的に示す説明図である。 【図7】本発明の第1の実施の形態に係る蒸発器を示す
概念的に示す説明図である。 【図8】本発明の第1の実施の形態に係る蒸発器を示す
概念的に示す説明図である。 【図9】従来技術に係る蒸発器を概念的に示す説明図で
ある。 【符号の説明】 6 デミスタ 10 凝縮器 11 膨張弁 12 蒸発器 13 圧縮機 14 容器 15 伝熱管 16 冷水入口 17 冷水出口 20 抜き列 21 補助抜き列 22 半補助抜き列 23 補助抜き列 A〜P 管群 L2 距離
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view conceptually showing a refrigerator according to a first embodiment of the present invention. FIG. 2 shows an evaporator according to a first embodiment of the present invention (FIG. 1)
FIG. 3 is an explanatory diagram conceptually showing the line II of FIG. 1). FIG. 3 is an explanatory diagram conceptually showing an evaporator according to the first embodiment of the present invention. FIG. 4 is an explanatory diagram conceptually showing an evaporator according to the first embodiment of the present invention. FIG. 5 is an explanatory diagram conceptually showing an evaporator according to the first embodiment of the present invention. FIG. 6 is an explanatory diagram conceptually showing an evaporator according to the first embodiment of the present invention. FIG. 7 is an explanatory diagram conceptually showing an evaporator according to the first embodiment of the present invention. FIG. 8 is an explanatory diagram conceptually showing an evaporator according to the first embodiment of the present invention. FIG. 9 is an explanatory view conceptually showing an evaporator according to the related art. [Description of Signs] 6 demister 10 condenser 11 expansion valve 12 evaporator 13 compressor 14 container 15 heat transfer tube 16 chilled water inlet 17 chilled water outlet 20 withdrawal row 21 auxiliary withdrawal row 22 semi-auxiliary withdrawal row 23 auxiliary withdrawal row A to P pipes Group L 2 distance

Claims (1)

【特許請求の範囲】 【請求項1】 冷媒が導入される容器の中に、被冷却物
を流通する多数の伝熱管を束にして配置した蒸発器にお
いて、 前記多数の伝熱管の集合体である管群の高さが、前記容
器の幅方向に関して被冷却物の流入口側から流出口側に
向かって低くなるように構成したことを特徴とする蒸発
器。 【請求項2】 冷媒が導入される容器の中に、被冷却物
を流通する多数の伝熱管を束にして配置した蒸発器にお
いて、 前記多数の伝熱管の集合体である管群の高さが、前記容
器の幅方向に関して被冷却物の流入口側から流出口側に
向かって低くなるように構成する一方、 前記伝熱管を複数の管群に分けるとともに、該管群どう
しを離間して配置したことを特徴とする蒸発器。 【請求項3】 〔請求項2〕に記載する蒸発器におい
て、 複数の管群が千鳥状に配列されていることを特徴とする
蒸発器。 【請求項4】 〔請求項2〕又は〔請求項3〕に記載す
る蒸発器において、 管群に、伝熱管を配設しない空隙を設けたことを特徴と
する蒸発器。 【請求項5】 〔請求項2〕乃至〔請求項4〕の何れか
一つに記載する蒸発器において、 伝熱管が、いずれの管群においても千鳥状に配列されて
いることを特徴とする蒸発器。 【請求項6】 〔請求項2〕乃至〔請求項5〕に記載す
る何れか一つの蒸発器において、 容器の上部に位置する管群に属する伝熱管が、下部に位
置する管群に属する伝熱管と比べて疎に配列されている
ことを特徴とする蒸発器。 【請求項7】 気体状の冷媒を凝縮して液化する凝縮器
と、液化された冷媒を減圧する膨張弁と、凝縮された冷
媒と被冷却物との間で熱交換を行わせて該被冷却物を冷
却するとともに冷媒を蒸発させる蒸発器と、気化された
冷媒を圧縮して前記凝縮器に供給する圧縮機とで冷凍サ
イクルを構成している冷凍機において、 〔請求項1〕乃至〔請求項6〕の何れか一つに記載する
蒸発器を有することを特徴とする冷凍機。
Claims: 1. An evaporator in which a number of heat transfer tubes for flowing an object to be cooled are bundled and arranged in a container into which a refrigerant is introduced. An evaporator, wherein a height of a certain tube group is configured to decrease from an inlet side to an outlet side of an object to be cooled in a width direction of the container. 2. An evaporator in which a number of heat transfer tubes that circulate an object to be cooled are bundled and arranged in a container into which a refrigerant is introduced, the height of a tube group that is an aggregate of the plurality of heat transfer tubes. However, while the heat transfer tube is configured to be lowered from the inlet side to the outlet side with respect to the width direction of the container with respect to the width direction of the container, the heat transfer tubes are divided into a plurality of tube groups, and the tube groups are separated from each other. An evaporator characterized by being arranged. 3. The evaporator according to claim 2, wherein the plurality of tube groups are arranged in a staggered manner. 4. The evaporator according to claim 2 or 3, wherein an air gap in which the heat transfer tubes are not provided is provided in the tube group. 5. The evaporator according to any one of claims 2 to 4, wherein the heat transfer tubes are arranged in a staggered manner in any of the tube groups. Evaporator. 6. The evaporator according to any one of claims 2 to 5, wherein the heat transfer tubes belonging to the tube group located at the upper part of the vessel are the heat transfer tubes belonging to the tube group located at the lower part. An evaporator characterized by being sparsely arranged compared to a heat tube. 7. A condenser for condensing and liquefying a gaseous refrigerant, an expansion valve for decompressing the liquefied refrigerant, and performing heat exchange between the condensed refrigerant and the object to be cooled. An evaporator that cools a coolant and evaporates a refrigerant, and a compressor that constitutes a refrigeration cycle including a compressor that compresses a vaporized refrigerant and supplies the refrigerant to the condenser. A refrigerator comprising the evaporator according to claim 6.
JP2001135776A 2001-05-07 2001-05-07 Evaporator and refrigerator having the same Expired - Lifetime JP4508466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135776A JP4508466B2 (en) 2001-05-07 2001-05-07 Evaporator and refrigerator having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135776A JP4508466B2 (en) 2001-05-07 2001-05-07 Evaporator and refrigerator having the same

Publications (2)

Publication Number Publication Date
JP2002333236A true JP2002333236A (en) 2002-11-22
JP4508466B2 JP4508466B2 (en) 2010-07-21

Family

ID=18983178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135776A Expired - Lifetime JP4508466B2 (en) 2001-05-07 2001-05-07 Evaporator and refrigerator having the same

Country Status (1)

Country Link
JP (1) JP4508466B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084482A1 (en) * 2013-12-04 2015-06-11 Carrier Corporation Asymmetric evaporator
WO2019078084A1 (en) * 2017-10-17 2019-04-25 三菱重工サーマルシステムズ株式会社 Evaporator and refrigeration system
US11486615B2 (en) 2017-03-31 2022-11-01 Carrier Corporation Flow balancer and evaporator having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148150U (en) * 1974-05-24 1975-12-09
JPS5569286U (en) * 1978-10-30 1980-05-13
JPS62194189A (en) * 1986-02-19 1987-08-26 Hitachi Ltd Rankine medium evaporator
JPH08254373A (en) * 1995-03-17 1996-10-01 Kobe Steel Ltd Horizontal type evaporator for nonazeotropic mixture refrigerant
JP3576486B2 (en) * 2000-04-26 2004-10-13 三菱重工業株式会社 Evaporators and refrigerators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50148150U (en) * 1974-05-24 1975-12-09
JPS5569286U (en) * 1978-10-30 1980-05-13
JPS62194189A (en) * 1986-02-19 1987-08-26 Hitachi Ltd Rankine medium evaporator
JPH08254373A (en) * 1995-03-17 1996-10-01 Kobe Steel Ltd Horizontal type evaporator for nonazeotropic mixture refrigerant
JP3576486B2 (en) * 2000-04-26 2004-10-13 三菱重工業株式会社 Evaporators and refrigerators

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084482A1 (en) * 2013-12-04 2015-06-11 Carrier Corporation Asymmetric evaporator
US10429106B2 (en) 2013-12-04 2019-10-01 Carrier Corporation Asymmetric evaporator
US11486615B2 (en) 2017-03-31 2022-11-01 Carrier Corporation Flow balancer and evaporator having the same
WO2019078084A1 (en) * 2017-10-17 2019-04-25 三菱重工サーマルシステムズ株式会社 Evaporator and refrigeration system
JP2019074262A (en) * 2017-10-17 2019-05-16 三菱重工サーマルシステムズ株式会社 Evaporator and refrigeration system
CN111226081A (en) * 2017-10-17 2020-06-02 三菱重工制冷空调系统株式会社 Evaporator and refrigerating system
US11448435B2 (en) 2017-10-17 2022-09-20 Mitsubishi Heavy Industries Thermal Systems, Ltd. Evaporator and refrigeration system

Also Published As

Publication number Publication date
JP4508466B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7228711B2 (en) Tubes with elongated cross-section for flooded evaporators and condensers
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
WO2019077744A1 (en) Air conditioner
JP2008292106A (en) Cooling tower system
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
JP2002130867A (en) Condenser for refrigerating machine
JP3576486B2 (en) Evaporators and refrigerators
JP2008138891A (en) Evaporator for refrigerating machine
CN108351188A (en) Heat exchanger and air-conditioning
JP2004077039A (en) Evaporation type condenser
JP3785143B2 (en) Refrigerator evaporator and refrigeration equipment
JP4451998B2 (en) Evaporator and refrigerator having the same
JP2002333236A (en) Evaporator and refrigerating machine having the evaporator
JP2004092928A (en) Condenser and refrigerating machine
JP3572234B2 (en) Evaporators and refrigerators
KR20010110353A (en) Condenser and freezer
JP6656950B2 (en) Heat exchangers and air conditioners
JP4031684B2 (en) Evaporator and refrigerator
JP3917917B2 (en) Evaporator and refrigerator
JP3891907B2 (en) Evaporator and refrigerator
JP2002340444A (en) Evaporator and refrigerating machine having the same
KR100467248B1 (en) Evaporator and refrigerator
JP2008267731A (en) Air-conditioning device
JP2004340546A (en) Evaporator for refrigerating machine
JP2004092957A (en) Evaporator and refrigerator using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4508466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term