JP2004092957A - Evaporator and refrigerator using it - Google Patents

Evaporator and refrigerator using it Download PDF

Info

Publication number
JP2004092957A
JP2004092957A JP2002252324A JP2002252324A JP2004092957A JP 2004092957 A JP2004092957 A JP 2004092957A JP 2002252324 A JP2002252324 A JP 2002252324A JP 2002252324 A JP2002252324 A JP 2002252324A JP 2004092957 A JP2004092957 A JP 2004092957A
Authority
JP
Japan
Prior art keywords
heat transfer
evaporator
transfer tube
refrigerant
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002252324A
Other languages
Japanese (ja)
Inventor
Masao Imanari
今成 正雄
Hiroshi Kusumoto
楠本 寛
Akira Nishiguchi
西口 章
Yuichi Kemi
計見 裕一
Shinpei Furusawa
古澤 新平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2002252324A priority Critical patent/JP2004092957A/en
Publication of JP2004092957A publication Critical patent/JP2004092957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Abstract

<P>PROBLEM TO BE SOLVED: To maintain predetermined heat transmission performance by changing a group of pipes of an evaporator of a refrigerator and to realize the evaporator having high heat exchange efficiency. <P>SOLUTION: A diameter is made smaller than a diameter of pipe at a periphery without changing a pipe pitch to make a gap of the pipe large in a single or a plurality of pipes in an upper stage than the lowermost stage in the group of pipes. One or more of area comprising a plurality of pipes in a staggered pipe group layout is made to a lattice layout to avoid meandering of the gap of the pipe in a height direction. One or more of heat transmission pipe in a series of pipe groups is deleted or the pipe pitch is enlarged to promote flowing out of bubbles from the inside of the pipe group or a series of the pipe groups are constituted by a combination of these. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
蒸発器内に低温低圧の冷媒と伝熱管群を配し、その伝熱管群内に2次媒体を流して管群周りの冷媒と熱交換させて冷熱を取り出す蒸発器及びそれを用いた冷凍機に関する。
【0002】
【従来の技術】
従来の冷凍機に用いられている蒸発器として、特開2001−215070号公報に記載のものがある。この蒸発器では冷媒が導入される容器内に、被冷却物を流通する多数の伝熱管が束になって配管されている伝熱管を複数の伝熱管群に分けて、伝熱管群同士が離間して配置した構成としている。このように、伝熱管群を離間して配置することで、容器の下部に位置する伝熱管の周りで沸騰した冷媒が気泡となり、伝熱管にまとわり付きながら浮かび上がるために、上部の伝熱管まわりに液状の冷媒が充分に共供されず、中央部付近に配設された伝熱管の熱伝達率が周囲に比べて低くなってしまうという問題を解決している。
【0003】
【発明が解決しようとする課題】
ところで、上記従来の蒸発器の構成では、伝熱管群を複数の管群に分けて離間させて配置させるため、下方から上昇してくる気泡の抜けは良くなるが、伝熱管の本数が明らかに減少するため、蒸発器全体の伝熱性能は低下してしまうという問題が発生する。
【0004】
そこで本発明は、一連の伝熱管群において、極端に管本数を減少させること無く、管群の配列状態を変化させることによって、本数減少による伝熱性能低下がなく、且つ気泡流通と液の供給を良好にしたことによる伝熱性能向上を両立させた熱交換効率の高い蒸発器及びその蒸発器を用いたエネルギー効率の高い冷凍機を提供するものである。
【0005】
【課題を解決するための手段】
管群内の最下段よりも上の段内の単数もしくは複数の管において、管ピッチは変えずに周囲の管径よりも小径化して管隙間を大きくする。または千鳥管群配列中の複数の管から成る一箇所以上の領域を格子配列として、高さ方向の管隙間の蛇行を避ける。または、一連の管群内の1本以上の伝熱管を削除するかあるいは管ピッチを広げて管群内からの気泡の流出を促進する。もしくはこれらの組み合わせから一連の管群を構成させる。前述の構成とすることにより、一連の管群の伝熱面積を減らさずに、個々の伝熱管の伝熱性能を確保することができるため、蒸発器全体としての伝熱性能を大幅に向上させることができる。
【0006】
【発明の実施の形態】
図7に満液式の本発明を適用した蒸発器を用いた冷凍機の基本構成を示す。
【0007】
冷凍機9は主に遠心式に代表される圧縮機2、凝縮器3、膨脹弁4、蒸発器1から構成されている。空調や食品の冷凍などに利用される冷熱は、蒸発器1内の伝熱管群5内を流れる2次媒体6を冷媒7の蒸発熱で冷やすことによって取り出される。すなわち、冷凍機9ではまず、圧縮機2によって冷媒7を高温高圧の過熱蒸気とし、その冷媒7を凝縮器3内において冷水10を流す配管と熱交換して冷やしたのち、膨脹弁4を介して低圧とする。低温低圧となった冷媒7は蒸発器1内に導かれ、蒸発器1内に設けられた伝熱管群5内を流れる2次媒体6と熱交換させて蒸発させ、気体となった冷媒7を圧縮機2で再び圧縮させるサイクルとなる。大きな冷凍能力を有する冷凍機9においては、蒸発器1は高い伝熱性能の確保と冷凍負荷の変動による余剰冷媒量の保持を兼ね備えた満液式の蒸発器1が使用される。この蒸発器1は、蒸発器1容器内に、冷熱を空調用ファンコイル等に運び出すための2次媒体6が内部を流れる伝熱管群5を配置し、その伝熱管群5周囲を低温低圧の冷媒7が満たした構成となっている。
【0008】
ところで、従来の略1つの束に形成された伝熱管群5からなる蒸発器1では、伝熱管群5内の2次媒体6から熱を与えられた冷媒7は沸騰するため、冷凍サイクル運転中は、蒸発器1内の伝熱管群5の周囲は激しく気泡が発生する。さらに、その下の伝熱管群から発生した気泡や、凝縮器2からある乾き度をもって入ってくる冷媒7の気体も上昇してくる。このため、上部にいくほど気泡の占有率が大きくなり、蒸発する液冷媒の供給が不足気味となり、伝熱性能が低下して蒸発温度が下がり、冷凍機としてのエネルギー効率が下がる問題があった。そこで、本発明ではこの気泡発生の問題を解決すると共に、伝熱性能の低下を防止する構成としたものである。
【0009】
従来管群は千鳥配列にするのが良いとされている。これは、管群下部で発生した細かい気泡が、それよりも上部に位置する管の隙間を蛇行して上昇するときに液冷媒そのものを攪拌する効果が有るためです。しかしながら、最近の管の性能が向上するに従って、発生する気泡も増大し、この気泡の影響を無視することができなくなった。そのため、本発明では、気泡をスムーズに液面まで上昇させるための構成を提案するものである。以下、図面を用いてその詳細を説明する。
【0010】
図1は本発明の一実施形態である蒸発器の基本構成図である。本実施形態は蒸発器1内部に収めた一連の伝熱管群5のうち、蒸発器1底部(冷媒7の導入側)から4段目の管配列の中央付近の複数の伝熱管8と、それよりも上段の伝熱管8配列の一部を、周囲の伝熱管8b径よりも小径化した伝熱管8aを配置した構成となっている。特に4段目よりも上段での小径管8aは、高さ方向において標準の管径の伝熱管8bを挿まずに伝熱管群5の上端まで、いくつかの小径管8aの一続きとなる配列が形成されるように配置した構成としている。
【0011】
図1のように、蒸発器内壁面に沿って、下部から液面までの伝熱管を一連の千鳥配列構成としているのは、千鳥配列のほうが、蒸発器内壁と管群の隙間をより滑らかな形状とすることができ、他の伝熱管配列に比べて液冷媒の下降流を円滑にすることができるためである。
【0012】
すなわち、冷媒7の導入側から蒸発容1器の内壁面に沿って冷媒液面近傍までは所定の径(標準の管径)の伝熱管8bが連続配置(千鳥配列)され、その連続配置された伝熱管8bの内側の伝熱管の配置を、所定の径の伝熱管8b群と、その伝熱管群を複数に分割するように、小径の伝熱管8aを冷媒液面に向かって連続的に配置したものである。
【0013】
図8(a)に従来の伝熱管配置における液の流れと気泡の状態を(b)に図1の伝熱管配置の場合の液の流れと気泡の状態を示す。図に示すように、蒸発器内を上昇する気泡には、蒸発器下部から流入する冷媒の乾き度に応じて発生する気泡21と、各伝熱管から蒸発して生じる気泡22がある。これらは管群を上昇して行く間に、途中の伝熱管で発生した気泡や、滞留している気泡と衝突して大きくなっていく。伝熱管同士の隙間よりも気泡が大きくなると、例えば、(a)の千鳥状の伝熱管配列の場合、千鳥配列の隙間を蛇行しながら気泡が上昇しなければならず、途中で気泡が大きくなり気泡が上昇しにくくなる。また、大きな気泡となると、その気泡が上昇して通過した後の空間に液の流入(戻り)が交互に行われ、この作用で流体振動が発生する。
【0014】
これに対して、図8(b)の伝熱管配列とすると、気泡が合体して、ボイド率が上昇し始める伝熱管位置において、気泡を抜け易くなるように小径管を配置しているために、気泡を蛇行させずに管群上部まで放出することできる。これにより、管群内部で発生してる流体振動も抑制できる。また、気泡が抜け易くなったことから、蒸発器内壁を伝わって蒸発器下部に戻る液冷媒の流れ20も促進でき、液の循環も良好になる。
【0015】
前述のように、標準径の伝熱管8bと小径の伝熱管8aを組合わせて配置することで、小径管と標準径管との間に冷媒が入り込む隙間(気泡の通過隙間)が形成され、気泡がスムーズに上昇して伝熱管群5内部も冷媒との熱交換が促進される。
【0016】
すなわち、このような構成とすることにより、中央部側の伝熱管群では、蒸発器1に流入した冷媒7の乾き度に応じて発生する蒸気21、及び4段目以下の伝熱管で発生した蒸気21が、4段目の小径管8aの周囲の隙間に集められた後、流動抵抗の少ない一続きとなる配列を形成している小径管8aの周囲の隙間を上昇していく。このため4段目よりも上段の伝熱管8周りが下方から上昇してくる気泡で満たされて、伝熱性能が低下するのを抑えることができる。又伝熱管と伝熱管の間に隙間が確実に形成されることから、蒸発容器内の冷媒がこの隙間に確実に流れ込み、この冷媒と伝熱管内の冷媒との間の熱交換が確実に行われるため、伝熱効率が向上する。
【0017】
なお図1においては、蒸発器1の中心付近の小径管8aの一続きの配列が、上端までの途中のある段(略中間部の段)において隣り合う2本の伝熱管を小径管8aとして、そのうちの蒸発器1中心よりの小径管8aから、それよりも上部の小径管8aと一続きとなる配列を形成するような構成となっている。すなわち、隣り合う2本の管を小径管8aとした段において、蒸発器1中心側へ小径管8aの配列をシフトし直した構成としている。そのため、小径管8aの配列が見かけ上、蒸発器1内の伝熱管群5の外方向に広がっていくのを抑制した構成としている。これにより、蒸発器1下部中心付近に流入する冷媒の乾き度に応じた蒸気は、上記小径管8aの配列周囲の隙間を流通して蒸発器1上部へ抜けていく。このため、他の標準の管径からなる管8bの配列への拡散を極力防ぐことができる。
【0018】
また小径管8aの一続きとなる配列と配列の間においても、熱交換量が大きく気泡の発生が多い場合には、必要に応じて新たな一続きとなる小径管8aの配列を設けるとよい。また本実施形態では、一連の伝熱管群5の形状を堅持しているため、伝熱管群5中央上部の気泡の上昇流れと、蒸発器1内壁と一連の伝熱管群5との隙間における液冷媒の下降流れとが作り出す、蒸発器1内部全体での冷媒の循環が強化でき、伝熱管群5内部への液冷媒の供給を良好にできる。よって気泡発生量の多い高冷凍負荷時でも、安定した冷凍能力を確保できる。
【0019】
本実施形態の蒸発器1を冷凍機9に用いれば、従来に比べて蒸発器1としての伝熱性能が向上する。このため、同じ冷凍能力を得るのに、蒸発温度を高く設定できるため、圧縮機2の入力を少なくすることができる。また蒸発器1の伝熱性能が向上する分、同じ冷凍能力に対して、冷凍機設備容積を小さくすることができ、小型化が可能となる。また伝熱面積を確保しつつ、且つ蒸発器1内の伝熱管群5からの気泡の放出を良好としたため、安定した伝熱管8性能を確保できる。よって、幅広い冷凍能力の変化にも対応でき、冷凍機9としての使用範囲を拡大できる。
【0020】
なお、本実施形態の図1では、一連の伝熱管の配置を冷媒7の導入側(下側)から4段目まで同じとしたが、これを2段目としても同様の効果を得ることができる。
【0021】
図2は本発明の他の実施形態を示した蒸発器の断面図である。本実施形態では、図1の実施例において伝熱管8を小径化する替わりに、伝熱管の径はそのままに伝熱管のピッチを大きくした構成としたものである。すなわち、蒸発器内径に沿って配置された一連の伝熱管の内側に配置される伝熱管の配置を、外周側のピッチと同じピッチで配置した伝熱管群と、その伝熱管群を分割するように大きなピッチで伝熱管を配置したものである。言い換えると、伝熱管の配置が疎の部分と密の部分の組合せとすることで管群内部に冷媒7が入り込むようにしたものである。
【0022】
これにより、図1の実施形態と同様に気泡の抜きのための隙間を確保することができる。さらに伝熱管8の径がすべて同一のため、部品の種類が減り、製作工程の短縮化と簡素化が可能となる。
【0023】
図3は本発明の他の実施形態を示した蒸発器の断面図である。本実施形態では、気泡の抜けを良好とするための小径管化をせずに、一連の伝熱管群5形状と必要最小限の伝熱面積を確保しつつ、気泡の上昇を円滑にするために伝熱管8を抜いた構成となっている。すなわち、蒸発器内壁に沿って一連の伝熱管を配置すると共に、その内側の伝熱管は中心付近を幹として、左右に複数に枝分かれするように配置したものである。言い換えると、中央の幹に連続して左右に枝分かれした伝熱管群と伝熱管群との間の隙間が液面側に伸びるように形成されている。このような構成とすることにより、伝熱管群5からの気泡放出の強化とそれに伴う蒸発器1内部全体での冷媒循環を強化することができる。すなわち、本実施形態は、特に伝熱管群5内での気泡の発生量が多くなる高冷凍負荷への使用に適している。
【0024】
図4は図1に示した実施形態の変形例を示したものである。本実施形態は図1において、小径管化した一続きとなる複数の配列が伝熱管群5全体の千鳥配列に同調した配列であったのに対して、本実施形態では蒸発器1の底部(冷媒の導入側)から上部(冷媒に排出側)へほぼ垂直に気泡を伝熱管群5から放出できるように小径管8aを配列にした構成となっている。本実施形態は特に蒸発器1に流入する冷媒7の乾き度に応じた蒸気を蒸発器1の上部へ速やかに放出するのに適した構成となっており、蒸発器1流入前の冷媒7を液相と気相に分離するエコノマイザ(図示せず)を装備していない比較的小型の冷凍機9に適している。
【0025】
図5は本発明の他の実施形態を示した蒸発器の断面図である。上記の実施形態は小径管や管ピッチを変化させることで中央側の複数の管群間の隙間を大きくしたものであるが、本実施形態は感の配列を千鳥配列にせずに格子配列にすることで気泡の上昇をし易くしたものである。すなわち、一連の伝熱管群5において、蒸発器1の下部(冷媒7の導入側)に位置する部分は千鳥配列とし、それよりも上部は格子配列とした構成とした。言い換えると、蒸発器1下部からの流入蒸気もしくは下段で発生した気泡が伝熱性能に影響を及ぼさない段範囲においては千鳥配列として、千鳥配列による管群効果を利用して伝熱性能を確保し、下段からの気泡が伝熱性能に影響を及ぼす範囲においては、伝熱管同士の間を気泡が上昇しやすい格子配列とした構成としている。千鳥配列の場合、管隙間を上昇した気泡は、その上の段の伝熱管下部に衝突して、どちらかに迂回する形で順次上昇する。これに対して、格子配列では、気泡の上昇方向の管の隙間は一致するため、発生した気泡が管と衝突することなく上昇する。このため、本構成とすることにより、伝熱面積を確保しつつ、伝熱管群5からの気泡を特定の箇所に絞り込まずに放出することができる。よって、より均一に気泡を伝熱管群5から放出できるため、蒸発器1内上部空間への液冷媒7の跳ね上げを抑えることができる。また規則的な管群配列のため、製作も容易にとなる。また本実施形態において、伝熱管群5からの気泡の放出をさらに促進するために、格子配列の伝熱管を細径管8aとしてもなんら差し支えない。
【0026】
図6は図5に示した実施形態の変形例を示したものである。本実施形態は伝熱管8の一連の伝熱管群5において、下段からの気泡の上昇が多くなる箇所を格子配列とし、同じ配列段内でも、それよりも下方に位置する伝熱管8の本数の少ない管群断面に対する左右両端部では、千鳥配列のままとすることによる複合的な配列とした構成となっている。特に、伝熱管群5うちの中央部付近の伝熱管群を格子配列としている。このような構成とすることにより、基本的には千鳥配列による管群効果を得つつ、下方からの気泡の上昇による伝熱性能への影響のある領域のみ格子配列による気泡の流出を促進させることができるため、千鳥配列による管群効果を極力損なわずに、さらに気泡流出による伝熱性能向上が得られる。
【0027】
通常、満液式の蒸発器では、伝熱管内を流れる2次媒体の流れは複数回のパスにより蒸発器内を通過させる構成となっているが、そのうちの後流側のパスに用いる伝熱管を、通常用いられる伝熱促進管ではなく、管内外壁に何の加工も施さないベア管を用いてもよい。このような構成にすると、蒸発器全体の伝熱性能への効果の小さい2パス目の伝熱性能を落とす代わりに、伝熱管群からの気泡の放出を良好とするため、これよりも浅いパスの伝熱管周りのボイド率(気泡の占有率)が下がって伝熱性能を大幅に向上させることができる。これは、既往の伝熱管群に利用するのみでなく、本発明の伝熱管群に利用することもでき、より大きな伝熱性能向上が可能である。
【0028】
【発明の効果】
本発明によれば、伝熱管群内の最下段よりも上の段内の単数もしくは複数の伝熱管において、伝熱管ピッチは変えずに周囲の伝熱管径よりも小径化して伝熱管隙間を大きくする。または千鳥管群配列中の複数の管から成る一箇所以上の領域を格子配列として、高さ方向の伝熱管隙間の蛇行を避ける。または、一連の伝熱管群内の1本以上の伝熱管を削除するかあるいは管ピッチを広げて伝熱管群内からの気泡の流出を促進する。もしくはこれらの組み合わせから一連の伝熱管群を構成させる。このような構成とすることにより、一連の伝熱管群の伝熱面積を減らさずに、個々の伝熱管の伝熱性能を確保することができるため、蒸発器全体としての伝熱性能を大幅に向上させることができる。さらに本発明の蒸発器を冷凍機に用いることによって、エネルギー効率の高い冷凍機を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す蒸発器の断面図である。
【図2】本発明の他の実施形態を示す蒸発器の断面図である。
【図3】本発明の他の実施形態を示す蒸発器の断面図である。
【図4】図1に示す実施形態の変形例を示す蒸発器断面図である。
【図5】本発明の他の実施形態を示す蒸発器断面図である。
【図6】図5に示す実施形態の変形例を示す蒸発器断面図である。
【図7】満液式の蒸発器を用いた2次媒体方式の冷凍機の基本構成図である。
【図8】従来の伝熱管配列と図1の伝熱管配列時の液冷媒の流れと気泡の移動状況を示す図である。
【符号の説明】
1…蒸発器、2…圧縮機、3…凝縮器、4…膨脹弁、5…伝熱管群、6…2次媒体、7…冷媒、8…伝熱管、8a…小径管、8b…標準の管径の伝熱管、9…冷凍機、10…冷却水。
[0001]
TECHNICAL FIELD OF THE INVENTION
An evaporator in which a low-temperature and low-pressure refrigerant and a heat transfer tube group are arranged in an evaporator, and a secondary medium flows in the heat transfer tube group to exchange heat with the refrigerant around the tube group to extract cold heat, and a refrigerator using the same. About.
[0002]
[Prior art]
As an evaporator used in a conventional refrigerator, there is an evaporator described in JP-A-2001-215070. In this evaporator, a large number of heat transfer tubes that circulate the object to be cooled are bundled in a vessel into which the refrigerant is introduced, and the heat transfer tubes are divided into a plurality of heat transfer tube groups, and the heat transfer tube groups are separated from each other. It is configured to be arranged. By arranging the heat transfer tube groups apart in this way, the refrigerant boiling around the heat transfer tubes located at the lower part of the container becomes bubbles and floats while clinging to the heat transfer tubes. This solves the problem that the liquid refrigerant is not sufficiently provided around the heat pipe, and the heat transfer coefficient of the heat transfer pipe arranged near the center becomes lower than that of the surroundings.
[0003]
[Problems to be solved by the invention]
By the way, in the configuration of the above-mentioned conventional evaporator, since the heat transfer tube group is divided into a plurality of tube groups and arranged so as to be separated from each other, the escape of bubbles rising from the bottom is improved, but the number of heat transfer tubes is clearly increased. Due to the decrease, the problem that the heat transfer performance of the entire evaporator deteriorates occurs.
[0004]
Accordingly, the present invention provides a series of heat transfer tube groups, which does not significantly reduce the number of tubes and changes the arrangement state of the tube groups so that the heat transfer performance does not decrease due to the decrease in the number of tubes, and the flow of bubbles and the supply of liquid. The present invention provides an evaporator having a high heat exchange efficiency and a refrigerating machine having a high energy efficiency using the evaporator.
[0005]
[Means for Solving the Problems]
In one or a plurality of tubes in a stage above the lowest stage in the tube group, the diameter of the tube is made smaller than the diameter of the surrounding tube without changing the tube pitch to increase the tube gap. Alternatively, one or more regions composed of a plurality of tubes in the staggered tube array are arranged in a lattice to avoid meandering of the tube gap in the height direction. Alternatively, one or more heat transfer tubes in a series of tube groups are deleted or the tube pitch is widened to promote outflow of bubbles from inside the tube group. Alternatively, a series of tube groups is formed from these combinations. With the above-described configuration, the heat transfer performance of each heat transfer tube can be secured without reducing the heat transfer area of the series of tube groups, so that the heat transfer performance of the entire evaporator is greatly improved. be able to.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 7 shows a basic configuration of a refrigerator using a liquid-filled evaporator to which the present invention is applied.
[0007]
The refrigerator 9 mainly includes a compressor 2 represented by a centrifugal type, a condenser 3, an expansion valve 4, and an evaporator 1. Cold heat used for air conditioning and freezing of food is extracted by cooling the secondary medium 6 flowing in the heat transfer tube group 5 in the evaporator 1 with the evaporation heat of the refrigerant 7. That is, in the refrigerator 9, first, the refrigerant 7 is converted into high-temperature and high-pressure superheated steam by the compressor 2, and the refrigerant 7 is cooled by exchanging heat with the pipe through which the cold water 10 flows in the condenser 3, and then cooled through the expansion valve 4. To a low pressure. The low-temperature and low-pressure refrigerant 7 is guided into the evaporator 1 and heat-exchanges with the secondary medium 6 flowing in the heat transfer tube group 5 provided in the evaporator 1 to evaporate, thereby converting the gaseous refrigerant 7. This is a cycle in which the compressor 2 performs compression again. In the refrigerator 9 having a large refrigerating capacity, a liquid-filled evaporator 1 having both high heat transfer performance and retention of an excess amount of refrigerant due to fluctuation of the refrigerating load is used as the evaporator 1. In the evaporator 1, a heat transfer tube group 5 in which a secondary medium 6 for transferring cold heat to an air-conditioning fan coil or the like is arranged in a container of the evaporator 1, and a low-temperature and low-pressure surrounding the heat transfer tube group 5 is provided. It has a configuration filled with the refrigerant 7.
[0008]
By the way, in the conventional evaporator 1 including the heat transfer tube group 5 formed in substantially one bundle, the refrigerant 7 to which heat is given from the secondary medium 6 in the heat transfer tube group 5 boils. In the case, air bubbles are generated violently around the heat transfer tube group 5 in the evaporator 1. Further, the bubbles generated from the heat transfer tube group below it and the gas of the refrigerant 7 entering from the condenser 2 with a certain degree of dryness also rise. Therefore, there is a problem that the occupancy rate of the bubbles becomes larger toward the upper part, the supply of the evaporating liquid refrigerant tends to be insufficient, the heat transfer performance decreases, the evaporation temperature decreases, and the energy efficiency of the refrigerator decreases. . Therefore, the present invention is designed to solve the problem of the generation of bubbles and to prevent a decrease in heat transfer performance.
[0009]
Conventionally, it is considered good to arrange the tube groups in a staggered arrangement. This is because fine bubbles generated in the lower part of the tube group have the effect of agitating the liquid refrigerant itself as it rises meandering through the gap between the tubes located above it. However, as the performance of recent tubes improves, the number of generated bubbles also increases, and the effects of the bubbles cannot be ignored. Therefore, the present invention proposes a configuration for smoothly raising bubbles to a liquid level. Hereinafter, the details will be described with reference to the drawings.
[0010]
FIG. 1 is a basic configuration diagram of an evaporator according to an embodiment of the present invention. In the present embodiment, among a series of heat transfer tube groups 5 housed inside the evaporator 1, a plurality of heat transfer tubes 8 in the vicinity of the center of the fourth-stage tube arrangement from the bottom of the evaporator 1 (the introduction side of the refrigerant 7), A heat transfer tube 8a having a diameter smaller than that of the surrounding heat transfer tube 8b is arranged in a part of the heat transfer tube 8 array in the upper stage. In particular, the small-diameter tubes 8a in the upper stage than the fourth stage are arranged in a series of several small-diameter tubes 8a up to the upper end of the heat transfer tube group 5 without inserting the heat transfer tubes 8b having a standard tube diameter in the height direction. Are formed so as to be formed.
[0011]
As shown in FIG. 1, the heat transfer tubes from the lower part to the liquid surface are arranged in a series in a staggered arrangement along the inner wall of the evaporator. The staggered arrangement makes the gap between the evaporator inner wall and the tube group smoother. This is because the shape of the liquid refrigerant can be reduced, and the downward flow of the liquid refrigerant can be made smoother than other heat transfer tube arrangements.
[0012]
That is, the heat transfer tubes 8b having a predetermined diameter (standard tube diameter) are continuously arranged (staggered arrangement) from the introduction side of the refrigerant 7 to the vicinity of the refrigerant liquid surface along the inner wall surface of the evaporator 1 and are arranged continuously. The heat transfer tubes inside the heat transfer tubes 8b are arranged such that the heat transfer tubes 8b having a predetermined diameter and the heat transfer tubes 8a having a small diameter are continuously arranged toward the coolant level so as to divide the heat transfer tube group into a plurality. It is arranged.
[0013]
FIG. 8A shows the state of liquid flow and bubbles in the conventional heat transfer tube arrangement, and FIG. 8B shows the state of liquid flow and bubbles in the case of the heat transfer tube arrangement of FIG. As shown in the figure, the bubbles rising in the evaporator include a bubble 21 generated according to the dryness of the refrigerant flowing from the lower part of the evaporator and a bubble 22 generated by evaporating from each heat transfer tube. As they rise up the tube group, they become larger by colliding with bubbles generated in the heat transfer tubes on the way or stagnating bubbles. If the air bubbles are larger than the gap between the heat transfer tubes, for example, in the case of the staggered heat transfer tube arrangement of (a), the air bubbles must rise while meandering through the gap of the staggered array, and the air bubbles increase in the middle. Bubbles are less likely to rise. In addition, when a large bubble is formed, the liquid flows in (returns) alternately into the space after the bubble rises and passes, and a fluid vibration is generated by this action.
[0014]
On the other hand, if the heat transfer tube arrangement shown in FIG. 8B is used, the small-diameter tubes are arranged so that the bubbles can easily escape at the position of the heat transfer tube where the bubbles are united and the void ratio starts to increase. In addition, the bubbles can be discharged to the upper part of the tube group without meandering. Thereby, the fluid vibration generated inside the tube bank can also be suppressed. In addition, since the bubbles are easily released, the flow 20 of the liquid refrigerant that travels along the inner wall of the evaporator and returns to the lower part of the evaporator can be promoted, and the circulation of the liquid is improved.
[0015]
As described above, by arranging the standard-diameter heat transfer tube 8b and the small-diameter heat transfer tube 8a in combination, a gap (a bubble passing gap) through which the refrigerant enters between the small-diameter tube and the standard-diameter tube is formed. Bubbles rise smoothly, and heat exchange with the refrigerant is also promoted inside the heat transfer tube group 5.
[0016]
That is, with such a configuration, in the heat transfer tube group on the central portion side, the steam 21 generated according to the dryness of the refrigerant 7 flowing into the evaporator 1 and the heat transfer tubes at the fourth and lower stages are generated. After the steam 21 is collected in the gap around the small-diameter pipe 8a at the fourth stage, the steam 21 rises in the gap around the small-diameter pipe 8a that forms a continuous array with low flow resistance. For this reason, it can suppress that the circumference | surroundings of the heat transfer tube 8 of an upper stage than a 4th stage are filled with the bubble which rises from below, and the heat transfer performance falls. In addition, since a gap is reliably formed between the heat transfer tubes, the refrigerant in the evaporating vessel surely flows into the gap, and the heat exchange between the refrigerant and the refrigerant in the heat transfer tubes is reliably performed. The heat transfer efficiency is improved.
[0017]
In FIG. 1, a continuous arrangement of small-diameter tubes 8a near the center of the evaporator 1 is such that two heat transfer tubes adjacent to each other at a certain stage (substantially middle stage) up to the upper end are defined as small-diameter tubes 8a. The small-diameter tube 8a from the center of the evaporator 1 is formed so as to form a continuous array with the small-diameter tube 8a above the small-diameter tube 8a. In other words, the arrangement is such that the arrangement of the small-diameter tubes 8a is shifted to the center side of the evaporator 1 again at the stage where the two adjacent tubes are the small-diameter tubes 8a. Therefore, the arrangement of the small-diameter tubes 8a is apparently prevented from spreading outward in the heat transfer tube group 5 in the evaporator 1. Thereby, the vapor corresponding to the dryness of the refrigerant flowing into the vicinity of the lower center of the evaporator 1 flows through the gap around the arrangement of the small-diameter pipes 8a and escapes to the upper part of the evaporator 1. For this reason, diffusion to the arrangement of the tubes 8b having other standard tube diameters can be prevented as much as possible.
[0018]
Also, between the continuous arrangement of the small-diameter tubes 8a, if the heat exchange amount is large and the generation of air bubbles is large, a new arrangement of the continuous small-diameter tubes 8a may be provided as necessary. . Further, in this embodiment, since the shape of the series of heat transfer tube groups 5 is maintained, the upward flow of bubbles at the upper center of the heat transfer tube group 5 and the liquid in the gap between the inner wall of the evaporator 1 and the series of heat transfer tube groups 5 are maintained. The circulation of the refrigerant inside the evaporator 1 generated by the downward flow of the refrigerant can be strengthened, and the supply of the liquid refrigerant to the inside of the heat transfer tube group 5 can be improved. Therefore, a stable refrigerating capacity can be ensured even at a high refrigerating load where a large amount of bubbles are generated.
[0019]
When the evaporator 1 of the present embodiment is used for the refrigerator 9, the heat transfer performance of the evaporator 1 is improved as compared with the related art. Therefore, the evaporating temperature can be set high to obtain the same refrigeration capacity, so that the input of the compressor 2 can be reduced. Further, since the heat transfer performance of the evaporator 1 is improved, the capacity of the refrigerator can be reduced for the same refrigerating capacity, and the size can be reduced. In addition, since the heat transfer area is ensured and the release of bubbles from the heat transfer tube group 5 in the evaporator 1 is improved, stable heat transfer tube 8 performance can be ensured. Therefore, it is possible to cope with a wide range of changes in the refrigerating capacity, and the range of use as the refrigerator 9 can be expanded.
[0020]
In addition, in FIG. 1 of the present embodiment, the arrangement of the series of heat transfer tubes is the same from the introduction side (lower side) of the refrigerant 7 to the fourth stage, but the same effect can be obtained by setting this to the second stage. it can.
[0021]
FIG. 2 is a sectional view of an evaporator showing another embodiment of the present invention. In the present embodiment, instead of reducing the diameter of the heat transfer tube 8 in the example of FIG. 1, the pitch of the heat transfer tube is increased while the diameter of the heat transfer tube is kept unchanged. That is, the arrangement of the heat transfer tubes arranged inside the series of heat transfer tubes arranged along the inner diameter of the evaporator is divided into a heat transfer tube group arranged at the same pitch as the outer peripheral side pitch and the heat transfer tube group. Heat transfer tubes are arranged at a large pitch. In other words, the arrangement of the heat transfer tubes is a combination of a sparse portion and a dense portion, so that the refrigerant 7 enters the inside of the tube group.
[0022]
Thereby, a gap for removing air bubbles can be secured as in the embodiment of FIG. Further, since the diameters of the heat transfer tubes 8 are all the same, the types of parts are reduced, and the manufacturing process can be shortened and simplified.
[0023]
FIG. 3 is a sectional view of an evaporator according to another embodiment of the present invention. In the present embodiment, in order to ensure a smooth rise of bubbles while securing a series of heat transfer tube group 5 shapes and a necessary minimum heat transfer area without reducing the diameter of the tube to improve the escape of bubbles. The heat transfer tube 8 is removed. That is, a series of heat transfer tubes are arranged along the inner wall of the evaporator, and the heat transfer tubes inside the heat transfer tubes are arranged so as to be branched into a plurality of right and left parts around the center. In other words, the gap between the heat transfer tube group that branches off right and left continuously from the central trunk is formed so as to extend to the liquid surface side. With such a configuration, it is possible to enhance the release of bubbles from the heat transfer tube group 5 and the accompanying circulation of the refrigerant throughout the evaporator 1. That is, the present embodiment is particularly suitable for use in a high refrigeration load in which the amount of bubbles generated in the heat transfer tube group 5 increases.
[0024]
FIG. 4 shows a modification of the embodiment shown in FIG. In the present embodiment, in FIG. 1, a series of a plurality of small-diameter tubes, which are continuous, are arranged in synchronization with the staggered arrangement of the entire heat transfer tube group 5, whereas in the present embodiment, the bottom of the evaporator 1 ( Small-diameter tubes 8a are arranged so that air bubbles can be released from the heat transfer tube group 5 almost vertically from the refrigerant introduction side to the upper part (the refrigerant discharge side). This embodiment is particularly suitable for quickly discharging vapor corresponding to the dryness of the refrigerant 7 flowing into the evaporator 1 to the upper part of the evaporator 1. It is suitable for a relatively small refrigerator 9 not equipped with an economizer (not shown) for separating into a liquid phase and a gas phase.
[0025]
FIG. 5 is a sectional view of an evaporator showing another embodiment of the present invention. In the above-described embodiment, the gap between the plurality of tube groups on the center side is increased by changing the small-diameter tube or the tube pitch, but in the present embodiment, the sense arrangement is not a staggered arrangement but a lattice arrangement. This makes it easier for bubbles to rise. That is, in the series of heat transfer tube groups 5, the portion located below the evaporator 1 (on the side where the refrigerant 7 is introduced) is arranged in a staggered arrangement, and the upper part is arranged in a lattice arrangement. In other words, in the stage range in which the steam flowing in from the lower part of the evaporator 1 or the bubbles generated in the lower stage do not affect the heat transfer performance, the heat transfer performance is ensured by using the staggered arrangement of the tube group effect. In a range in which bubbles from the lower stage affect the heat transfer performance, the space between the heat transfer tubes has a lattice arrangement in which the bubbles easily rise. In the case of the staggered arrangement, the bubbles that have risen in the gap between the tubes collide with the lower part of the heat transfer tube in the upper stage and rise sequentially in such a way as to bypass one of them. On the other hand, in the lattice arrangement, the gap between the tubes in the bubble rising direction coincides, so that the generated bubbles rise without colliding with the tubes. For this reason, with this configuration, it is possible to discharge the bubbles from the heat transfer tube group 5 without narrowing them to a specific location while securing a heat transfer area. Therefore, since the bubbles can be more uniformly discharged from the heat transfer tube group 5, it is possible to suppress the liquid refrigerant 7 from jumping into the upper space in the evaporator 1. In addition, the regular tube bank arrangement facilitates the production. Further, in the present embodiment, in order to further promote the release of bubbles from the heat transfer tube group 5, the heat transfer tubes arranged in a lattice may be replaced with the small-diameter tubes 8a.
[0026]
FIG. 6 shows a modification of the embodiment shown in FIG. In the present embodiment, in a series of heat transfer tube groups 5 of the heat transfer tubes 8, a portion where the amount of bubbles rising from the lower stage is increased is arranged in a lattice arrangement, and even in the same arrangement stage, the number of the heat transfer tubes 8 located below the same is smaller. At both right and left ends with respect to a small tube group cross-section, a staggered arrangement is used to form a complex arrangement. In particular, the heat transfer tube group near the center of the heat transfer tube group 5 is arranged in a lattice. By adopting such a configuration, basically, the staggered tube bundle effect is obtained, and the outflow of bubbles by the lattice arrangement is promoted only in the area where the heat transfer performance is affected by rising bubbles from below. Therefore, the heat transfer performance can be further improved by outflow of bubbles without impairing the tube bank effect by the staggered arrangement as much as possible.
[0027]
Normally, in a liquid-filled evaporator, the flow of the secondary medium flowing in the heat transfer tube is configured to pass through the evaporator in a plurality of passes. May be used instead of a commonly used heat transfer promoting tube, but may be a bare tube having no process applied to the inner and outer walls of the tube. With this configuration, instead of lowering the heat transfer performance in the second pass, which has a small effect on the heat transfer performance of the entire evaporator, the discharge of bubbles from the heat transfer tube group is improved. The void ratio (the occupancy of bubbles) around the heat transfer tube is reduced, and the heat transfer performance can be greatly improved. This can be used not only for the existing heat transfer tube group, but also for the heat transfer tube group of the present invention, and it is possible to further improve the heat transfer performance.
[0028]
【The invention's effect】
According to the present invention, in one or more heat transfer tubes in a stage higher than the lowest stage in the heat transfer tube group, the heat transfer tube pitch is not changed, and the diameter is smaller than the diameter of the surrounding heat transfer tubes to reduce the heat transfer tube gap. Enlarge. Alternatively, one or more regions composed of a plurality of tubes in the staggered tube array are arranged in a lattice to avoid meandering of the heat transfer tube gap in the height direction. Alternatively, one or more heat transfer tubes in a series of heat transfer tube groups are deleted, or the tube pitch is widened to promote outflow of bubbles from the heat transfer tube group. Alternatively, a series of heat transfer tube groups is configured from these combinations. By adopting such a configuration, the heat transfer performance of each heat transfer tube can be secured without reducing the heat transfer area of the series of heat transfer tube groups. Can be improved. Further, by using the evaporator of the present invention for a refrigerator, a refrigerator with high energy efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view of an evaporator showing one embodiment of the present invention.
FIG. 2 is a cross-sectional view of an evaporator showing another embodiment of the present invention.
FIG. 3 is a cross-sectional view of an evaporator showing another embodiment of the present invention.
FIG. 4 is a sectional view of an evaporator showing a modification of the embodiment shown in FIG. 1;
FIG. 5 is a sectional view of an evaporator showing another embodiment of the present invention.
FIG. 6 is a sectional view of an evaporator showing a modification of the embodiment shown in FIG.
FIG. 7 is a basic configuration diagram of a secondary medium type refrigerator using a liquid-filled evaporator.
FIG. 8 is a diagram showing a flow of liquid refrigerant and a moving state of bubbles when the conventional heat transfer tube arrangement and the heat transfer tube arrangement of FIG. 1 are used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Evaporator, 2 ... Compressor, 3 ... Condenser, 4 ... Expansion valve, 5 ... Heat transfer tube group, 6 ... Secondary medium, 7 ... Refrigerant, 8 ... Heat transfer tube, 8a ... Small diameter tube, 8b ... Standard Heat transfer tube of pipe diameter, 9 ... refrigerator, 10 ... cooling water.

Claims (6)

蒸発器内に冷媒と複数の伝熱管からなる伝熱管群を配し、前記伝熱管内に2次媒体を流して前記伝熱管群周りの冷媒と熱交換させて冷熱を取り出す蒸発器において、
前記伝熱管群は一連の管群から構成され、前記一連の伝熱管群内に密と疎の部分を設けた構成とすることを特徴とする蒸発器。
A heat transfer tube group including a refrigerant and a plurality of heat transfer tubes is arranged in the evaporator, and a secondary medium is caused to flow in the heat transfer tubes to exchange heat with the refrigerant around the heat transfer tube group to extract cold heat.
The evaporator is characterized in that the heat transfer tube group is constituted by a series of tube groups, and a dense and sparse portion is provided in the series of heat transfer tube groups.
請求項1に記載の蒸発器において、前記伝熱管群は、複数の略同一径の一連の伝熱管群から構成され、前記伝熱管群内部に前記の伝熱管群径より小さく管ピッチが略同じ配置の小径管を一連の伝熱管群間に配置したことを特徴とする蒸発器。2. The evaporator according to claim 1, wherein the heat transfer tube group includes a plurality of heat transfer tube groups having substantially the same diameter, and the inside of the heat transfer tube group is smaller than the heat transfer tube group diameter and has substantially the same tube pitch. 3. An evaporator characterized in that small-diameter tubes arranged are arranged between a series of heat transfer tube groups. 請求項1に記載の蒸発器において、一連の伝熱管群から構成され、そのうちの複数本を千鳥管配列、残りの複数本を格子配列として配置させたことを特徴とする蒸発器。2. The evaporator according to claim 1, comprising a series of heat transfer tube groups, a plurality of which are arranged in a staggered tube arrangement, and the remaining plurality of arrangements are arranged in a lattice arrangement. 請求項1記載の蒸発器において、一連の伝熱管群から構成され、そのうちの複数本は管ピッチを広げて配置させて、一連の伝熱管群内に密と疎の部分を設けた構成とすることを特徴とする蒸発器。2. The evaporator according to claim 1, comprising a series of heat transfer tube groups, of which a plurality of tubes are arranged with the tube pitch widened to provide a dense and sparse portion in the series of heat transfer tube groups. An evaporator characterized in that: 請求項1乃至4のいづれか1項に記載の蒸発器と、高温高圧の冷媒を液化させるための凝縮器、凝縮器からの高圧冷媒を減圧させるための膨脹具及び前記蒸発器からの低圧気相冷媒を圧縮させるための圧縮機とを組み合わせて冷凍サイクルを構成させたことを特徴とする冷凍機。An evaporator according to any one of claims 1 to 4, a condenser for liquefying a high-temperature and high-pressure refrigerant, an expansion device for decompressing the high-pressure refrigerant from the condenser, and a low-pressure gas phase from the evaporator. A refrigerating machine characterized by comprising a refrigerating cycle in combination with a compressor for compressing a refrigerant. 冷媒を高温高圧の加熱蒸気を生成する圧縮機と、前記圧縮機で生成した冷媒蒸気を液化する凝縮器と、凝縮器で液化された冷媒を低圧にするための膨張弁と、低圧になった冷媒を複数の伝熱管からなる伝熱管群を収納した蒸発器内に導入して、前記伝熱管を流れる2次媒体と熱交換して、前記冷媒を再び前記圧縮機に還流させる構成の冷凍機において、
前記蒸発器に設けた伝熱管群が、前記冷媒の導入側の内壁に沿って冷媒液面近傍まで伝熱管を密に構成した管群と、前記密に構成した管群の内側に冷媒導入側から排出側に向う粗の伝熱管群部分と密の伝熱管群部分を交互に配置したことを特徴とする冷凍機。
A compressor that generates a high-temperature and high-pressure heating vapor of the refrigerant, a condenser that liquefies the refrigerant vapor generated by the compressor, an expansion valve that lowers the refrigerant liquefied by the condenser, and a low pressure A refrigerator having a configuration in which a refrigerant is introduced into an evaporator accommodating a heat transfer tube group including a plurality of heat transfer tubes, exchanges heat with a secondary medium flowing through the heat transfer tubes, and returns the refrigerant to the compressor again. At
A heat transfer tube group provided in the evaporator is a tube group in which heat transfer tubes are densely arranged along the inner wall on the refrigerant introduction side to near the refrigerant liquid level, and a refrigerant introduction side inside the densely formed tube group. A refrigerator characterized in that coarse heat transfer tube groups and dense heat transfer tube groups are arranged alternately toward the discharge side.
JP2002252324A 2002-08-30 2002-08-30 Evaporator and refrigerator using it Pending JP2004092957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252324A JP2004092957A (en) 2002-08-30 2002-08-30 Evaporator and refrigerator using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252324A JP2004092957A (en) 2002-08-30 2002-08-30 Evaporator and refrigerator using it

Publications (1)

Publication Number Publication Date
JP2004092957A true JP2004092957A (en) 2004-03-25

Family

ID=32058624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252324A Pending JP2004092957A (en) 2002-08-30 2002-08-30 Evaporator and refrigerator using it

Country Status (1)

Country Link
JP (1) JP2004092957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198701A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Evaporator for multiple effect type fresh water generator
JP2012163243A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Refrigerator
CN105546882A (en) * 2015-12-07 2016-05-04 上海交通大学 Full-liquid type shell tube evaporator with air flues
CN108278801A (en) * 2018-01-25 2018-07-13 海信(山东)空调有限公司 A kind of condenser and air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198701A (en) * 2006-01-30 2007-08-09 Hitachi Zosen Corp Evaporator for multiple effect type fresh water generator
JP2012163243A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Refrigerator
CN105546882A (en) * 2015-12-07 2016-05-04 上海交通大学 Full-liquid type shell tube evaporator with air flues
CN108278801A (en) * 2018-01-25 2018-07-13 海信(山东)空调有限公司 A kind of condenser and air conditioner

Similar Documents

Publication Publication Date Title
JP6002316B2 (en) Heat exchanger
TW541411B (en) Condenser of sub-cool type
US20110138849A1 (en) Cooling Device
KR20030090941A (en) Multistage gas and liquid phase separation type condenser
WO2017179630A1 (en) Evaporator, and turbo-refrigerating apparatus equipped with same
CN106196755B (en) Shell and tube condenser and air-conditioning system
JP2015518132A (en) Heat exchanger
JP2017072343A (en) Evaporator and turbo refrigerator having evaporator
JPH08233408A (en) Shell and tube type condenser
JP6704361B2 (en) Air conditioner
WO2017179631A1 (en) Condenser, and turbo-refrigerating apparatus equipped with same
JP3576486B2 (en) Evaporators and refrigerators
JP2000179975A (en) Multistage evaporating and absorption type absorption cold and hot water machine and large temperature difference air conditioning system provided with same
JP2004092957A (en) Evaporator and refrigerator using it
JP2004092928A (en) Condenser and refrigerating machine
US20110024083A1 (en) Heat exchanger
JP2017036900A (en) Radiator and super-critical pressure refrigerating-cycle using the radiator
KR20160129259A (en) Air conditioner having refrigerant booster
JP6656950B2 (en) Heat exchangers and air conditioners
JP2007278541A (en) Cooling system
JP3572234B2 (en) Evaporators and refrigerators
KR102328537B1 (en) Condenser of refrigerator
KR101336493B1 (en) Condenser having integrated receiver drier
KR102342956B1 (en) High efficiency evaporative condenser
Nwasuka et al. Design And Performance Evaluation Of A Dual-Operation Condenser Using R-134a