JP3852897B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP3852897B2
JP3852897B2 JP19549099A JP19549099A JP3852897B2 JP 3852897 B2 JP3852897 B2 JP 3852897B2 JP 19549099 A JP19549099 A JP 19549099A JP 19549099 A JP19549099 A JP 19549099A JP 3852897 B2 JP3852897 B2 JP 3852897B2
Authority
JP
Japan
Prior art keywords
plate
absorber
evaporator
heat exchanger
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19549099A
Other languages
Japanese (ja)
Other versions
JP2001021237A (en
Inventor
知行 内村
利男 松原
晃好 鈴木
智芳 入江
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP19549099A priority Critical patent/JP3852897B2/en
Publication of JP2001021237A publication Critical patent/JP2001021237A/en
Application granted granted Critical
Publication of JP3852897B2 publication Critical patent/JP3852897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機に係り、特に、少なくとも吸収器に液膜式プレート熱交換器を用いた吸収式冷凍機に関する。
【0002】
【従来の技術】
吸収式冷凍機の容積、設置面積を縮小しようとすれば、シェルアンドチューブ型の熱交換器は伝熱面積に比して容積がまだまだ大きく、たとえばプレート式熱交換器などの採用が検討される。
特に、プレート式吸収器とプレート式蒸発器の伝熱面を向かい合わせる形状のプレート式熱交換器は、本出願人が先に提案しており、例えば、図9にその構成図を示す。このようなプレート式熱交換器は、冷媒蒸気の移動距離を最短とし、蒸気流速を格段に遅く出来るため、採用すれば吸収式冷凍機を大幅に小型化することが可能である(以下、この形状の熱交換器を新型熱交換器と称する)。
これらのプレート式熱交換器の技術的課題の一つとしては、不凝縮性ガスの抽出の問題がある。
【0003】
一般に、吸収式冷凍機は冷媒蒸気以外の気体(外部より漏入する空気、内部の鉄の腐食により発生する水素など)が、微量でも存在すると能力が大きく低下する。このため、通常、吸収式冷凍機は抽気装置(パージユニット)を備えており、運転中不凝縮性ガスを回収(抽気)している。
従来の吸収式冷凍機は、蒸発器と吸収器が別であり、蒸発器で発生した冷媒蒸気は吸収器と蒸発器を結ぶ蒸気通路を通り、吸収器に入って吸収される。この蒸気量の発生量は、冷凍能力1kWあたり毎秒0.06m3程度になり、従来の吸収式冷凍機の場合、蒸気通路での蒸気の流速は毎秒20m〜50m程度に達する。
【0004】
なお、この流速が速いと、圧損が増えるため冷媒の吸収圧力が低下したり、液冷媒が冷媒蒸気中に混入したりして冷凍機の効率を悪化させる。逆に言えば、この流速を遅くすることが出来れば、それだけ冷凍機の性能を向上することが出来る。吸収面と蒸発面が向かい合う形式の吸収式冷凍機では、蒸発した冷媒がすぐ吸収されるので、蒸気流速は毎秒1m以下(0.8m〜0.9m程度)に抑えることが可能であり、吸収器圧力を高くし、冷却水温度を高くしたり、効率を向上させることが可能となる。
さて、従来の吸収式冷凍機では、先に述べたように毎秒20m〜50mの蒸気流があるため、また、蒸発器から吸収器へという決まった方向の流れであるため、不凝縮性ガスはこの冷媒蒸気の流れによって下流へと運ばれる。特に、従来の吸収式冷凍機では蒸気流と吸収溶液の流れる方向を同一とし、不凝縮性ガスが少しでも蒸気流の下流へと流れるような配慮がされている。
【0005】
また、さらに蒸気流の下流側から上流側に向かって冷却水を流し、少しでも蒸気流の下流側で不凝縮性ガスの濃度が高くなるようにするのが通例である。
従って、不凝縮性ガスは吸収器の蒸気流下流側に集まりやすく、ここから抽気することで比較的効果的に不凝縮性ガスを機外へ排出できる。
しかしながら、新型熱交換器では蒸気流速が遅いため、また、移動距離が短いため、不凝縮性ガスは特定の所には集まりにくく、器内に広く分散してしまい、抽気が困難になる。このようなプレート式の吸収器を採用した場合、不凝縮性ガスを有効に抽気する手法については、いまだ公開された手法としては見受けられない。
【0006】
器内に広く分散した不凝縮性ガスを、「力任せ」に集めようとすれば、吸収・蒸発器の隅々にまで細管を伸ばし、大容量のパージユニットを設けて抽気することになる。これは吸収式冷凍機の価格を押し上げるばかりでなく、パージユニットの駆動には一般に吸収溶液ポンプの吐出圧を利用しているが、これは間接的に電力で駆動していることに他ならず、大電力を必要とするから、現実的な手法ではない。
考えられる現実的な手段としては、吸収器内(吸収・蒸発器内)に、特に冷媒蒸気分圧を低く保つことの出来る低圧室を設け、ここに不凝縮性ガスを集め、そこから抽気するという手法がある。
この低圧室の作り方としては、本来冷却水で冷却する吸収溶液を冷水を以って冷却し、冷媒蒸気分圧を低く保ち、それによって不凝縮性ガス分圧を高くして、抽気しやすくするなどの手法が考えられる。しかしながら、これは吸収器内に別途熱交換器を設けることとなるので、好ましい手法ではない。
【0007】
【発明が解決しようとする課題】
本発明は、以上のような観点から、液膜式プレート熱交換器を用いながら、特殊な熱交換器や追加機器を必要としない、量産に適した不凝縮性ガスの抽気手段を有する小型で安価な吸収冷凍機を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明では、蒸発器として働く蒸発器プレートと、吸収器として働く吸収器プレートとが主として交互に配置され、その伝熱面が互いに向かい合う構造を有し、蒸発器及び吸収器の2組の熱交換を行う液膜式プレート熱交換器を用いた吸収式冷凍機において、前記液膜式プレート熱交換器の一方の端部を吸収器プレートとし、該端部の吸収器プレートの最端面に吸収溶液を供給すると共に不凝縮性ガスを抽気する抽気路を設け、吸収器プレートとしなかった端部の蒸発器プレートの最端面には冷媒を供給しないことを特徴とする吸収式冷凍機としたものである。
また、本発明では、蒸発器として働く蒸発器プレートと、吸収器として働く吸収器プレートとが主として交互に配置され、その伝熱面が互いに向かい合う構造を有し、蒸発器及び吸収器の2組の熱交換を行う液膜式プレート熱交換器を用いた吸収式冷凍機において、前記液膜式プレート熱交換器の交互に配置された蒸発器プレートと吸収器プレートの間に2つの連続した吸収器プレートを配し、該2つの連続した吸収器プレート間に不凝縮性ガスを抽気する抽気路を設けると共に、前記液膜式プレート熱交換器の両端面には吸収溶液及び冷媒を供給しないことを特徴とする吸収式冷凍機としたものである。
【0009】
前記吸収式冷凍機において、抽気路を設けた2つの連続した吸収器プレート間に、スぺ一サーを挿入することができる。
さらに、本発明では、蒸発器として働く蒸発器プレートと、吸収器として働く吸収器プレートとが主として交互に配置され、その伝熱面が互いに向かい合う構造を有し、蒸発器及び吸収器の2組の熱交換を行う液膜式プレート熱交換器を用いた吸収式冷凍機において、前記液膜式プレート熱交換器の交互に配置された蒸発器プレートと吸収器プレートの間に、内部に冷水が供給され、外部に吸収溶液が供給されるプレートを配し、該プレートに向かい合うプレートとの間に不凝縮性ガスを抽気する抽気路を設けたことを特徴とする吸収式冷凍機することができる。
前記吸収式冷凍機において、プレートに向かい合うプレートは、吸収器プレートとすることができる。
【0010】
【発明の実施の形態】
従来は、吸収器面と蒸発器面が1対1で対応していたものを、本発明は敢えて蒸発器面と向かい合わない吸収器面を設けることで、蒸発・吸収器内に冷媒蒸気の流れを作り、不凝縮性ガスを器内各所から集めるとともに不凝縮性ガス分圧を高くし、抽気しやすくしようとするものである。
本発明では、蒸発器と向かい合わない吸収面は、
1)冷媒蒸気分圧を下げて不凝縮性ガスの分圧を高くする
2)器内各所から冷媒蒸気とともに不凝縮性ガスを集める
という二つの作用を同時に行うところである。1)の作用については、従来のシェルアンドチューブ型の吸収式冷凍機についても、その効果については良く知られている。2)の作用は、蒸発器及び吸収器の伝熱面が互いに向かい合う構造の吸収式冷凍機に特徴的な問題であり、効果である。
本発明においては、これら二つの作用を同時に行う低圧面を、特に生産上の問題を伴わない簡便な手法で実現し得るものである。
【0011】
本発明においては、吸収器・蒸発器を構成するプレートの組み合わせと、吸収溶液、冷媒液の供給を変化させることで蒸気の流れと蒸気分圧を適度に調整し、低圧部を形成して不凝縮性ガスを集め、抽気しようとするものである。
低圧部の形成方法によって、次の手法に分けることができる。
有効活用しにくい端面や中間の面を活用したこと(第1の手法)
プレートの組み替えによって吸収能力の高い面を作ったこと(第2の手法)
冷水で冷却する吸収プレートを用いたこと(第3、第4の手法)
以下、図面を用いてその手法について説明する。なお、説明図は理解を簡単にするため、冷水及び冷却水の供給配管は省略し、冷却水を太線の実線、冷水を太線の点線、吸収溶液を細線の実線、冷媒を細線の点線で表している。
【0012】
図1〜7に、各手法を用いた液膜式プレート熱交換器の説明図を示し、図1及び2は第1の手法、図3及び4は第2の手法、図5、6、7は第3、第4の手法である。
図において、1は、内部を冷却水6が通り、外部を吸収溶液8が通る吸収器用プレートであり、2は、内部を冷水7が通り、外部を冷媒9が通る蒸発器用プレートであり、3は吸収溶液供給路、4は冷媒供給路であり、10は抽気配管(抽気路)、11は不凝縮性ガスの流れ、12は低圧面を示す。
図のような液膜式プレート熱交換器においては、吸収器用プレート1と蒸発器プレート2とは交互に配備され、その外面の伝熱面は互いに向かい合っており、蒸発器プレート2の外面で蒸発した冷媒9は、向かい側の吸収器用プレート1の外面で吸収溶液8によって吸収され、蒸発器プレート内部を通る冷水は冷却される。
【0013】
次に、それぞれの図面について説明する。
図1(a)は、第1の手法を用いて不凝縮性ガスを抽気する説明図である。
新型熱交換器では、蒸発器となるプレート、吸収器となるプレートが向い合って交互に並ぶため、端面(それぞれ吸収器の面と蒸発器の面となるが)は相手が無く、死んだ面となる。この面を積極的に活用しようとするのが図1(a)である。
前記図9の端部の面を死んだ面と考えると、容液・冷媒ともに供給しないのが自然であるが、このうち吸収器面となる面に溶液を供給すると、この面は冷媒蒸気の供給が不十分となり、他の部分に比べて溶液濃度が下がらず、冷媒蒸気分圧が低下し、前出の低圧室と同等の働きをもつ(この面を低圧面12と呼ぶ)。
【0014】
低圧面12では、不凝縮性ガス分圧が高くなるだけでなく、不足した冷媒蒸気は他の吸収面から供給されるため、この冷媒蒸気流と共に不凝縮性ガス11が集合する。なお、この蒸気の流れは、蒸発器面・吸収器面の冷媒、溶液の流れに沿ったようにすることが好ましく、図に示すような蒸気の流れとなることが好ましい。したがって、新型熱交換器とシェルとの間は、側面は出来るだけ隙間無く設計し、下部に適当な間隔を設けることが望ましい。
このようにして作られた低圧面に抽気配管10を設けることで、効果的な抽気が可能となる。なお、本抽気方式を採用することによる吸収式冷凍機の構造上の変更は、供給路が若干増えることと缶胴の寸法が若干変化するのみであって、生産上の負担、追加工は、ほとんど無いといってよい。
【0015】
なお、従来の例で、上記の端部の面を死んだ面とは考えず、溶液・冷媒ともに供給する考え方もある。特に、図8に示すように、この端部の面では冷媒、溶液共に供給し、伝熱面と考えている。しかし、これは不凝縮性ガスの挙動を考えるとあまり良い手法とは考えられない。なぜならば、端部の蒸発器面で蒸発した冷媒は、他の吸収面に回り込み、この蒸気流で逆に不凝縮性ガスを閉じ込めてしまうからである。従って、低圧面に吸収溶液を供給するだけでなく、対応する蒸発器面を他に作らないことが重要である。
図1(b)は、図1(a)の変法であり、吸収器プレート1を蒸発器プレート2より多くすると、自然に両端が吸収器面となり、両端が吸収面と出来る。第一の手法よりもさらに簡単に低圧面12を作ることが出来る。また、死んだ面が無く効果的な方法である。
【0016】
図2に、第1の手法を応用した熱交換器の説明図を示す。
新型熱交換器は、真空ろう付けなどの手法で製造されるが、炉の大きさなどの制約により、一つ一つの要素の大きさには限界がある。したがって、実際には適当な大きさのユニットに分割して製造し、いくつか組み合わせて使用することとなる。この時、先に述べた吸収面1同士を向かい合わせるようにして配置すれば、抽気配管10が一つで済み、簡略化できる。
図3は、第2手法を用いて不凝縮性ガスを抽気する説明図である。
新型熱交換器では、吸収器プレート1と蒸発器プレート2が交互に並ぶ。ここで、順番を一部変えて吸収器プレート1を続けて2つ並べることができれば、二つの吸収器プレート1の間はやはり低圧室と同様の働きをする。したがってここに抽気配管10を設けることで、効果的に抽気を行うことが出来る。本方式によっても、第一の手法と同様の効果を得ることが出来る。
【0017】
なお、新型熱交換器では、同一の形状のプレートを向きを変えて並べることで、同一形状でありながら吸収器プレート1として用いたり、蒸発器プレート2として用いたりすることが出来る。この時、特に「連通管が各要素のプレートの一部分として構成されている」熱交換器では、必ずしも交互に蒸発器プレート2と吸収器プレート1を交互に並べなくても、熱交換器ユニットを構成できる。すなわち、左右交互に並べていたプレートを、一部分同じ向きに続けて並べるだけで、吸収器面を二つ並べることが出来るため、本手法によっても、生産上の負担、追加工は、ほとんど無いといってよい。
【0018】
図4(a)及び(b)に、図3の第2手法の変法を説明する。
プレート同士の間隔が狭い場合、プレート間に抽気配管を設けることは現実的でなくなってくる。従って、上記の低圧部12にスペーサー13を挿入して、抽気配管を挿入する間隔を設けることが必要な場合がある。また、このスペーサーと抽気配管を一体化して抽気路14とする(スペーサー内部の空間を抽気配管として用いるなどの手法)こともできる。
図5は、第3の手法の変法を用いて不凝縮性ガスを抽気する説明図である。
第1、第2の手法は、吸収溶液8を冷却水6で冷却しているが、吸収溶液8を冷水7で冷却することでさらに冷媒蒸気分圧を下げ、抽気しやすくすることが出来る。これは、プレートヘの冷媒と溶液の供給を変えてやることで実現出来る。
すなわち、各プレートの構成は変えず、すなわち、冷水及び冷却水の供給形態は変えないで、図のように冷水7の流れる面に溶液8を供給することで、低圧室と同等の働きをする部分を作ることが出来る。
本手法によっても、生産上の負担、追加工は、ほとんど無いといってよい。
【0019】
図6は、第4の手法を用いて不凝縮性ガスを抽気する説明図である。
吸収溶液と冷媒の供給は変えずに、プレートの冷水と冷却水の供給を変えてやることで、第3の手法と同じ効果を得ることが出来る。
すなわち、第2の手法と同様にプレートの組み合わせを変えることで冷水、冷却水の供給を変化させることが出来るので、これによっても同様の効果を得ることが出来る。
図7は、第3の手法と第4の手法の組み合わせで不凝縮性ガスを抽気する説明図である。
第3の手法と第4の手法では、低圧室が二つ出来るが、双方を組み合わせれば低圧室を一つに出来る。
前記図1〜7においては、溶液供給路3及び冷媒供給路4は、プレート1及び2とは別に設けているが、該供給路も各プレートに一体に構成してもよい。
【0020】
【発明の効果】
本発明によれば、特殊な熱交換器や追加機器を用いることなく、簡単な流路の変更のみで、量産に適した不凝縮性ガスの抽気手段を有する液膜式プレート熱交換器を用いた小型で安価な吸収冷凍機を得ることができた。
【図面の簡単な説明】
【図1】(a)第1の手法を用いて不凝縮性ガスを抽気する説明図、(b)は(a)の変法の説明図。
【図2】第1の手法を用いて不凝縮性ガスを抽気する別の説明図。
【図3】第2の手法を用いて不凝縮性ガスを抽気する説明図。
【図4】(a)、(b)ともに第2の手法を用いて不凝縮性ガスを抽気する別の説明図。
【図5】第3の手法を用いて不凝縮性ガスを抽気する説明図。
【図6】第4の手法を用いて不凝縮性ガスを抽気する説明図。
【図7】第3と第4の手法の組合せで不凝縮性ガスを抽気する説明図。
【図8】従来の液膜式プレート熱交換器の説明図。
【図9】従来の液膜式プレート熱交換器の説明図。
【符号の説明】
1:吸収器用プレート、2:蒸発器用プレート、3:吸収溶液供給路、4:冷媒供給路、5:液分布器、6:冷却水、7:冷水、8:吸収溶液、9:冷媒、10:抽気配管(抽気路)、11:不凝縮性ガスの流れ、12:低圧面、13:スペーサー、14:スペーサー兼用抽気路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator, and more particularly, to an absorption refrigerator using a liquid film plate heat exchanger as at least an absorber.
[0002]
[Prior art]
If the capacity and installation area of the absorption chiller are to be reduced, the shell-and-tube heat exchanger has a larger capacity than the heat transfer area. For example, adoption of a plate heat exchanger is considered. .
In particular, the present applicant has previously proposed a plate heat exchanger having a shape in which the heat transfer surfaces of the plate absorber and the plate evaporator face each other. For example, FIG. 9 shows a configuration diagram thereof. Such a plate heat exchanger can minimize the moving distance of the refrigerant vapor and can significantly reduce the vapor flow velocity. Therefore, if it is adopted, it is possible to greatly reduce the size of the absorption refrigeration machine (hereinafter referred to as “this”). The shape heat exchanger is called a new type heat exchanger).
One technical problem with these plate heat exchangers is the problem of extracting non-condensable gases.
[0003]
Generally, the capacity of an absorption refrigerator is greatly reduced when a gas other than refrigerant vapor (air leaking from the outside, hydrogen generated by corrosion of internal iron, etc.) exists even in a small amount. For this reason, the absorption refrigerator is usually provided with an extraction device (purge unit) and collects (extracts) non-condensable gas during operation.
In a conventional absorption refrigerator, an evaporator and an absorber are separate, and refrigerant vapor generated in the evaporator passes through a vapor passage connecting the absorber and the evaporator and is absorbed into the absorber. The amount of steam generated is about 0.06 m 3 per second per 1 kW of refrigerating capacity, and in the case of a conventional absorption refrigerator, the flow rate of steam in the steam passage reaches about 20 to 50 m per second.
[0004]
If this flow rate is high, the pressure loss increases, so that the absorption pressure of the refrigerant decreases, or liquid refrigerant is mixed into the refrigerant vapor, thereby deteriorating the efficiency of the refrigerator. Conversely, if the flow rate can be reduced, the performance of the refrigerator can be improved accordingly. In the absorption chiller of the type where the absorption surface and the evaporation surface face each other, the evaporated refrigerant is immediately absorbed, so the vapor flow rate can be suppressed to 1 m or less (about 0.8 m to 0.9 m) per second. The vessel pressure can be increased, the cooling water temperature can be increased, and the efficiency can be improved.
In the conventional absorption refrigerator, as described above, there is a vapor flow of 20 to 50 m per second, and since the flow is in a fixed direction from the evaporator to the absorber, the noncondensable gas is It is carried downstream by the flow of this refrigerant vapor. In particular, in the conventional absorption refrigerator, the vapor flow and the absorption solution flow direction are made the same, and consideration is given to the fact that even a little noncondensable gas flows downstream of the vapor flow.
[0005]
Further, it is usual that the cooling water is further flowed from the downstream side of the steam flow toward the upstream side so that the concentration of the noncondensable gas is increased on the downstream side of the steam flow as much as possible.
Accordingly, the noncondensable gas is likely to gather on the downstream side of the vapor flow of the absorber, and by extracting from here, the noncondensable gas can be discharged to the outside of the apparatus relatively effectively.
However, in the new heat exchanger, since the steam flow rate is slow and the moving distance is short, the non-condensable gas hardly collects in a specific place and is widely dispersed in the chamber, so that extraction is difficult. When such a plate-type absorber is employed, a technique for effectively extracting noncondensable gas has not yet been disclosed as a publicly available technique.
[0006]
If the non-condensable gas widely dispersed in the vessel is to be collected by “power”, the thin tube is extended to every corner of the absorber / evaporator, and a large-capacity purge unit is provided for extraction. This not only increases the price of the absorption chiller, but generally uses the discharge pressure of the absorption solution pump to drive the purge unit. Because it requires a large amount of power, it is not a realistic method.
As a practical means that can be considered, a low pressure chamber capable of keeping the refrigerant vapor partial pressure low is provided in the absorber (absorption / evaporator), and non-condensable gas is collected and extracted from there. There is a technique.
In order to make this low pressure chamber, the absorption solution that is originally cooled with cooling water is cooled with cold water, the refrigerant vapor partial pressure is kept low, thereby increasing the non-condensable gas partial pressure and facilitating extraction. Such a method can be considered. However, this is not a preferable method because a separate heat exchanger is provided in the absorber.
[0007]
[Problems to be solved by the invention]
In view of the above, the present invention is a small-sized non-condensable gas extraction means suitable for mass production that does not require a special heat exchanger or additional equipment while using a liquid film plate heat exchanger. It is an object to provide an inexpensive absorption refrigerator.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, an evaporator plate that functions as an evaporator and an absorber plate that functions as an absorber are mainly arranged alternately, and the heat transfer surfaces thereof face each other. and in absorption Osamushiki refrigerator with Ekimakushiki plate heat exchanger that performs two sets of heat exchange of the absorber, one end of the liquid film-type plate heat exchanger and the absorber plate, the end portion In addition, the absorption solution is supplied to the outermost surface of the absorber plate and the extraction passage for extracting the non-condensable gas is provided , and the refrigerant is not supplied to the outermost surface of the evaporator plate at the end portion which is not the absorber plate. it is obtained by the absorption chiller to be.
Further, in the present invention, an evaporator plate acting as steam Hatsuki, disposed absorber plate and alternating mainly acting as absorber has a structure facing the heat transfer surfaces from each other, the evaporator and absorber of 2 In an absorption chiller using a liquid film plate heat exchanger for performing heat exchange of a pair, two consecutive liquid crystal plate heat exchangers are arranged between alternately arranged evaporator plates and absorber plates. An absorber plate is arranged, an extraction passage for extracting non-condensable gas is provided between the two successive absorber plates, and an absorbing solution and a refrigerant are not supplied to both end faces of the liquid film plate heat exchanger. it is obtained by the absorption Osamushiki refrigerator you characterized.
[0009]
In the absorption refrigerator, between two successive absorber plate having a bleed path, Ru can insert scan Bae one server.
Furthermore, in the present invention, the evaporator plate that functions as an evaporator and the absorber plate that functions as an absorber are mainly arranged alternately, and the heat transfer surfaces thereof face each other. In an absorption chiller using a liquid film plate heat exchanger that performs heat exchange, cold water is internally contained between the evaporator plate and the absorber plate arranged alternately in the liquid film plate heat exchanger. is supplied, placed a plate absorption solution is supplied to the outside, the absorption Osamushiki refrigerator you characterized in that the incondensable gas is provided the bleed passage for bleeding between the plate facing the said plate be able to.
In the absorption refrigerator, the plate facing the plate may be an absorber plate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Conventionally, the absorber surface and the evaporator surface correspond one-to-one, but the present invention dares to provide an absorber surface that does not face the evaporator surface, so that the flow of refrigerant vapor in the evaporator / absorber In this way, non-condensable gas is collected from various places in the vessel and the partial pressure of non-condensable gas is increased to facilitate extraction.
In the present invention, the absorption surface that does not face the evaporator is
1) Lowering the refrigerant vapor partial pressure to increase the partial pressure of the non-condensable gas 2) Simultaneously performing two actions of collecting the non-condensable gas together with the refrigerant vapor from various locations in the vessel. Regarding the effect of 1), the effect is well known for conventional shell and tube type absorption refrigerators. The effect of 2) is a problem and an effect characteristic of the absorption refrigerator having a structure in which the heat transfer surfaces of the evaporator and the absorber face each other.
In the present invention, a low-pressure surface that performs these two actions simultaneously can be realized by a simple method that is not particularly accompanied by production problems.
[0011]
In the present invention, the flow of the steam and the partial pressure of the steam are appropriately adjusted by changing the combination of the plates constituting the absorber / evaporator and the supply of the absorption solution and the refrigerant liquid, thereby forming a low-pressure portion. It collects condensable gas and tries to extract it.
Depending on the formation method of the low-pressure part, it can be divided into the following methods.
Utilizing end faces and intermediate faces that are difficult to use effectively (first method)
Making a surface with high absorption capacity by reassembling the plate (second method)
Using absorption plates cooled with cold water (third and fourth methods)
The method will be described below with reference to the drawings. In order to simplify the illustration, the cooling water and cooling water supply pipes are omitted, the cooling water is represented by a thick solid line, the cold water is represented by a thick dotted line, the absorbing solution is represented by a thin solid line, and the refrigerant is represented by a thin dotted line. ing.
[0012]
FIGS. 1 to 7 are explanatory views of a liquid film plate heat exchanger using each method. FIGS. 1 and 2 are a first method, FIGS. 3 and 4 are a second method, and FIGS. Are the third and fourth methods.
In the figure, 1 is an absorber plate through which cooling water 6 passes and the absorption solution 8 passes through, and 2 is an evaporator plate through which cold water 7 passes and refrigerant 9 passes through the outside. Is an absorbent solution supply path, 4 is a refrigerant supply path, 10 is an extraction pipe (extraction path), 11 is a non-condensable gas flow, and 12 is a low-pressure surface.
In the liquid film type plate heat exchanger as shown in the figure, the absorber plates 1 and the evaporator plates 2 are alternately arranged, and the heat transfer surfaces of the outer surfaces face each other, and evaporate on the outer surface of the evaporator plate 2. The cooled refrigerant 9 is absorbed by the absorbing solution 8 on the outer surface of the absorber plate 1 on the opposite side, and the cold water passing through the evaporator plate is cooled.
[0013]
Next, each drawing will be described.
Fig.1 (a) is explanatory drawing which bleeds a noncondensable gas using the 1st method.
In the new heat exchanger, the plates that serve as the evaporator and the plates that serve as the absorber are alternately arranged facing each other, so that the end faces (although they are the faces of the absorber and the evaporator, respectively) have no counterpart and are dead. It becomes. FIG. 1A shows that this aspect is actively used.
Considering the surface of the end in FIG. 9 as a dead surface, it is natural that neither the liquid nor the refrigerant is supplied. However, when the solution is supplied to the surface that becomes the absorber surface, this surface is the refrigerant vapor. Supply becomes insufficient, the concentration of the solution does not decrease compared to other parts, the refrigerant vapor partial pressure decreases, and it has the same function as the above-described low pressure chamber (this surface is called the low pressure surface 12).
[0014]
On the low pressure surface 12, not only the non-condensable gas partial pressure is increased, but also the insufficient refrigerant vapor is supplied from the other absorption surface, so that the non-condensable gas 11 gathers together with this refrigerant vapor flow. The vapor flow preferably follows the flow of the refrigerant and solution on the evaporator surface / absorber surface, and preferably the vapor flow as shown in the figure. Therefore, it is desirable to design the side surface with as little gap as possible between the new heat exchanger and the shell, and to provide an appropriate space at the bottom.
By providing the extraction pipe 10 on the low pressure surface thus created, effective extraction can be performed. In addition, the structural change of the absorption chiller by adopting this extraction system is only a slight increase in the number of supply channels and the size of the can body. It can be said that there is almost no.
[0015]
In the conventional example, there is a concept of supplying both the solution and the refrigerant without considering the end face as a dead face. In particular, as shown in FIG. 8, both the refrigerant and the solution are supplied on the surface of this end, and the heat transfer surface is considered. However, this is not considered a very good method considering the behavior of non-condensable gases. This is because the refrigerant evaporated on the evaporator surface at the end portion goes around to the other absorption surface and confines the noncondensable gas by this vapor flow. It is therefore important not only to supply the absorbing solution to the low pressure surface but also to make no other corresponding evaporator surface.
FIG. 1 (b) is a modification of FIG. 1 (a). When the number of absorber plates 1 is larger than that of the evaporator plate 2, both ends naturally become the absorber surfaces and both ends can be the absorption surfaces. The low pressure surface 12 can be made even more easily than the first method. Moreover, it is an effective method with no dead surface.
[0016]
FIG. 2 is an explanatory diagram of a heat exchanger to which the first method is applied.
The new heat exchanger is manufactured by a technique such as vacuum brazing, but the size of each element is limited due to restrictions such as the size of the furnace. Therefore, it is actually divided into units of an appropriate size and manufactured in combination. At this time, if the absorption surfaces 1 described above are arranged so as to face each other, only one extraction pipe 10 is required, which can be simplified.
FIG. 3 is an explanatory diagram for extracting non-condensable gas using the second method.
In the new heat exchanger, the absorber plates 1 and the evaporator plates 2 are arranged alternately. Here, if two absorber plates 1 can be arranged in succession by changing a part of the order, the function between the two absorber plates 1 is the same as that of the low pressure chamber. Therefore, by providing the extraction pipe 10 here, extraction can be performed effectively. Also by this method, the same effect as the first method can be obtained.
[0017]
In the new type heat exchanger, by arranging the plates having the same shape in different directions, they can be used as the absorber plate 1 or the evaporator plate 2 while having the same shape. At this time, in particular, in the heat exchanger in which the “communication pipe is configured as a part of each element plate”, the heat exchanger unit is not necessarily arranged alternately by alternately arranging the evaporator plate 2 and the absorber plate 1. Can be configured. In other words, it is possible to arrange two absorber surfaces by simply arranging the left and right alternately arranged plates in the same direction. Therefore, even with this method, there is almost no production burden or additional work. It's okay.
[0018]
4A and 4B, a modification of the second method shown in FIG. 3 will be described.
When the distance between the plates is narrow, it is not practical to provide a bleed pipe between the plates. Therefore, it may be necessary to provide a space for inserting the extraction pipe by inserting the spacer 13 into the low pressure portion 12. Further, the spacer and the bleed pipe can be integrated to form the bleed passage 14 (a method such as using a space inside the spacer as the bleed pipe).
FIG. 5 is an explanatory diagram for extracting non-condensable gas by using a modification of the third method.
In the first and second methods, the absorbing solution 8 is cooled by the cooling water 6, but by cooling the absorbing solution 8 with the cooling water 7, the refrigerant vapor partial pressure can be further lowered to facilitate extraction. This can be realized by changing the supply of refrigerant and solution to the plate.
That is, the structure of each plate is not changed, that is, the supply form of the cold water and the cooling water is not changed, and the solution 8 is supplied to the surface through which the cold water 7 flows as shown in the figure, and thus the same function as the low pressure chamber is achieved. You can make a part.
Even with this method, it can be said that there is almost no burden on production and no additional work.
[0019]
FIG. 6 is an explanatory diagram for extracting non-condensable gas using the fourth method.
The same effect as the third method can be obtained by changing the supply of the cold water and the cooling water of the plate without changing the supply of the absorbing solution and the refrigerant.
That is, since the supply of cold water and cooling water can be changed by changing the combination of the plates as in the second method, the same effect can be obtained.
FIG. 7 is an explanatory diagram for extracting noncondensable gas by a combination of the third method and the fourth method.
In the third method and the fourth method, two low pressure chambers can be formed, but if both are combined, one low pressure chamber can be formed.
1 to 7, the solution supply path 3 and the refrigerant supply path 4 are provided separately from the plates 1 and 2, but the supply paths may be integrated with each plate.
[0020]
【The invention's effect】
According to the present invention, a liquid film plate heat exchanger having a non-condensable gas extraction means suitable for mass production can be used by simply changing the flow path without using a special heat exchanger or additional equipment. A small and inexpensive absorption refrigerator was obtained.
[Brief description of the drawings]
FIG. 1A is an explanatory diagram for extracting a non-condensable gas using the first method, and FIG. 1B is an explanatory diagram of a modified method of FIG.
FIG. 2 is another explanatory diagram for extracting noncondensable gas using the first technique.
FIG. 3 is an explanatory diagram for extracting noncondensable gas using the second method.
FIGS. 4A and 4B are other explanatory views for extracting a noncondensable gas by using the second method. FIG.
FIG. 5 is an explanatory diagram for extracting non-condensable gas using a third method.
FIG. 6 is an explanatory diagram for extracting non-condensable gas using the fourth method.
FIG. 7 is an explanatory diagram for extracting noncondensable gas by a combination of the third and fourth methods.
FIG. 8 is an explanatory diagram of a conventional liquid film plate heat exchanger.
FIG. 9 is an explanatory diagram of a conventional liquid film plate heat exchanger.
[Explanation of symbols]
1: Absorber plate, 2: Evaporator plate, 3: Absorbing solution supply path, 4: Refrigerant supply path, 5: Liquid distributor, 6: Cooling water, 7: Cold water, 8: Absorbing solution, 9: Refrigerant, 10 : Extraction piping (extraction passage), 11: Flow of non-condensable gas, 12: Low pressure surface, 13: Spacer, 14: Extraction passage for spacer

Claims (5)

蒸発器として働く蒸発器プレートと、吸収器として働く吸収器プレートとが主として交互に配置され、その伝熱面が互いに向かい合う構造を有し、蒸発器及び吸収器の2組の熱交換を行う液膜式プレート熱交換器を用いた吸収式冷凍機において、前記液膜式プレート熱交換器の一方の端部を吸収器プレートとし、該端部の吸収器プレートの最端面に吸収溶液を供給すると共に不凝縮性ガスを抽気する抽気路を設け、吸収器プレートとしなかった端部の蒸発器プレートの最端面には冷媒を供給しないことを特徴とする吸収式冷凍機。 An evaporator plate that functions as an evaporator and an absorber plate that functions as an absorber are alternately arranged, and the heat transfer surfaces of the evaporator plate and the absorber are two sets of heat exchangers that face each other. in absorption Osamushiki refrigerator using a membrane-type plate heat exchanger, the liquid film type one end of the plate heat exchanger and the absorber plate, supplying the absorption solution in the uppermost end surface of the absorber plate of the end portion In addition, there is provided an extraction passage for extracting non-condensable gas, and the refrigerant is not supplied to the outermost end surface of the evaporator plate at the end which is not used as the absorber plate . 発器として働く蒸発器プレートと、吸収器として働く吸収器プレートとが主として交互に配置され、その伝熱面が互いに向かい合う構造を有し、蒸発器及び吸収器の2組の熱交換を行う液膜式プレート熱交換器を用いた吸収式冷凍機において、前記液膜式プレート熱交換器の交互に配置された蒸発器プレートと吸収器プレートの間に2つの連続した吸収器プレートを配し、該2つの連続した吸収器プレート間に不凝縮性ガスを抽気する抽気路を設けると共に、前記液膜式プレート熱交換器の両端面には吸収溶液及び冷媒を供給しないことを特徴とする吸収式冷凍機。An evaporator plate acting as steam Hatsuki, disposed absorber plate and alternating mainly acting as absorber has a structure facing the heat transfer surfaces from each other, perform two sets of heat exchange evaporator and absorber In an absorption refrigerator using a liquid membrane plate heat exchanger, two successive absorber plates are arranged between alternately arranged evaporator plates and absorber plates of the liquid membrane plate heat exchanger. , provided with a bleed passage for bleeding the incondensable gases between absorber plates the two successive, on both end faces of the liquid film type plate heat exchanger shall be the feature that it does not provide the absorbent solution and the refrigerant absorption Osamushiki refrigerator. 前記抽気路を設けた2つの連続した吸収器プレート間に、スぺーサーが挿入されていることを特徴とする請求項2に記載の吸収式冷凍機。The absorption refrigerator according to claim 2 , wherein a spacer is inserted between two continuous absorber plates provided with the extraction passage. 蒸発器として働く蒸発器プレートと、吸収器として働く吸収器プレートとが主として交互に配置され、その伝熱面が互いに向かい合う構造を有し、蒸発器及び吸収器の2組の熱交換を行う液膜式プレート熱交換器を用いた吸収式冷凍機において、前記液膜式プレート熱交換器の交互に配置された蒸発器プレートと吸収器プレートの間に、内部に冷水が供給され、外部に吸収溶液が供給されるプレートを配し、該プレートに向かい合うプレートとの間に不凝縮性ガスを抽気する抽気路を設けたことを特徴とする吸収式冷凍機。 An evaporator plate that functions as an evaporator and an absorber plate that functions as an absorber are alternately arranged, and the heat transfer surfaces of the evaporator plate and the absorber are two sets of heat exchangers that face each other. In an absorption refrigerator using a membrane plate heat exchanger, cold water is supplied between the evaporator plate and the absorber plate arranged alternately in the liquid membrane plate heat exchanger and absorbed outside. disposing a plate solution is supplied, suction Osamushiki refrigerator you characterized in that the incondensable gas is provided the bleed passage for bleeding between the plate facing the said plate. 前記プレートに向かい合うプレートが、吸収器プレートであることを特徴とする請求項4に記載の吸収式冷凍機。 The absorption refrigerator according to claim 4, wherein the plate facing the plate is an absorber plate .
JP19549099A 1999-07-09 1999-07-09 Absorption refrigerator Expired - Fee Related JP3852897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19549099A JP3852897B2 (en) 1999-07-09 1999-07-09 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19549099A JP3852897B2 (en) 1999-07-09 1999-07-09 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001021237A JP2001021237A (en) 2001-01-26
JP3852897B2 true JP3852897B2 (en) 2006-12-06

Family

ID=16341965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19549099A Expired - Fee Related JP3852897B2 (en) 1999-07-09 1999-07-09 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3852897B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003259015A1 (en) * 2002-08-21 2004-03-11 National University Of Singapore Falling film vapor absorber, cooling system, and method
CN110360768B (en) * 2019-06-25 2024-04-30 华电电力科学研究院有限公司 Waste heat refrigerating system of coal-fired power plant

Also Published As

Publication number Publication date
JP2001021237A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
EP1054225B1 (en) Plate type heat exchanger for three fluids and method of manufacturing the heat exchanger
US6883347B2 (en) End bonnets for shell and tube DX evaporator
JPH10176874A (en) Heat-exchanger
CN210107818U (en) Shell and tube condenser and refrigerating system thereof
JP3866905B2 (en) Heat exchanger and refrigeration cycle equipment
JP3852897B2 (en) Absorption refrigerator
CN2775567Y (en) Heat pipe isolated horizontal tray high efficiency evaporator
CN104896803B (en) A kind of multisystem flooded evaporator
JP3935610B2 (en) Heat exchanger and absorption refrigerator
CN113716011B (en) Auxiliary cooling system for pump for ship
CN210625015U (en) Improved plate heat exchanger
CN2901176Y (en) Hot water two-stage multisection type lithium bromide absorptive water cooling unit
JP2002022309A (en) Absorption type refrigerating machine
JP3717234B2 (en) Plate type low temperature regenerator for double effect absorption refrigerator.
JPH10205915A (en) Absorption refrigerating machine
CN215864154U (en) Refrigeration equipment with built-in heat regenerator and flooded shell and tube evaporator thereof
CN2901177Y (en) Novel hot water two-stage multisection type lithium bromide absoptive watercooling unit
JPS61140762A (en) Evaporator for non-eutectic mixed medium
JP2003254683A (en) Heat exchanger and absorption refrigerating machine using it
JP4004019B2 (en) Absorption refrigerator
CN1128327C (en) Plate shell type lithium bromide refrigerator
JP2002081783A (en) Absorption refrigerating machine and method for controlling the same
CN205119553U (en) Be applied to board -like high temperature regenerator of lithium bromide absorbed refrigeration machine
JPH08254373A (en) Horizontal type evaporator for nonazeotropic mixture refrigerant
JPH08159611A (en) Water-cooled condenser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees