JPS6280459A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPS6280459A
JPS6280459A JP22065485A JP22065485A JPS6280459A JP S6280459 A JPS6280459 A JP S6280459A JP 22065485 A JP22065485 A JP 22065485A JP 22065485 A JP22065485 A JP 22065485A JP S6280459 A JPS6280459 A JP S6280459A
Authority
JP
Japan
Prior art keywords
absorber
evaporator
refrigerant
pipe
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22065485A
Other languages
Japanese (ja)
Inventor
正毅 池内
弓倉 恒雄
永一 尾崎
一成 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22065485A priority Critical patent/JPS6280459A/en
Publication of JPS6280459A publication Critical patent/JPS6280459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、産業プロセス用のスチームなどを製造する
2段の吸収式ヒートポンプに関するものである。
The present invention relates to a two-stage absorption heat pump for producing steam and the like for industrial processes.

【従来の技術】[Conventional technology]

第5図は、従来の吸収式ヒートポンプ装置のシステムで
あり、この第5図において、1〜4はそれぞれシェルA
〜シェルDである。 シェルA1は、発生器5と凝縮器6から構成されており
、発生器5には加熱用熱交換器7が、凝縮器6には冷却
用熱交換器8が設置されている。 シェルB2は第1蒸発器9の役割をしており、この中に
は冷媒の加熱用熱交換器10がある。 また、シェルC3は、第2蒸発器11と第1吸収器12
から構成されている。このシェルC3内には、伝熱管1
3が多数配設されて、この伝熱管13の外部を吸収液が
、内部を冷媒がそれぞれ流れる構造となっており、内部
が第2蒸発盟11、外部が第1吸収器12の役割をする
。 シェルD4は第2吸収器14であり、その構造は、シェ
ルC3と同じく伝熱管15が多数配設され、この伝熱管
15の内部をプロセスに供給される水・スチームが流れ
、伝熱管15の外部を吸収液が流れる。 シェルA1とシェルD4は溶液ポンプ16を備えた濃溶
液管17、シェルl) 4とシェルC3は中間濃溶液管
18、シェルC3とシェルA1は稀溶液管19で接続さ
れている。 濃溶液管17と稀溶液管19を流れる溶液は第1熱回収
熱交換器20で、また中間濃溶液管18と濃溶液管17
を流れる溶液は第2熱回収熱交換器21でそれぞれ熱交
換を行う。凝縮器6と第1蒸発器9およびシェルC3の
第2蒸発器11は冷媒液管22.23に接続され、途中
には冷媒ポンプ24が設置されている。 さらに、第1蒸発器9と第1吸収器12とは冷媒蒸気管
25で接続され、第2蒸発器11と第2吸収器14とは
冷媒蒸気管26で接続されている。 27は第2吸収器14に接続されでいるプロセス水管で
ある。 なお、流電制御用の弁、開閉弁などは省略している。 次に動作について説明する。この吸収式ヒートポンプは
、常に2段システムで運転され、駆動源となる排熱など
の熱源は発生器5と第1蒸発器9の加熱用熱交換器7,
10に入り、プロセスに供給される高温のスチームは第
2吸収器14から得られる。 また、冷却水は凝縮器6の冷却用熱交換器8を流れる。 2段システム運転のため、単段システムでは、熱出力用
となる第1吸収器J2は、第2蒸発器11の加熱源とな
る動作になっている。以下に溶液と冷媒の流れを示す。 シェルC3の第1吸収器12からの稀溶液管19を通り
、発生器5に戻った稀溶液は、加熱用熱交換器7によっ
て加熱され、冷媒を蒸気として放出する。 この放出された冷媒蒸気は凝縮器6に行き、冷却用熱交
換器8で冷却され、凝縮液化した後、冷媒ポンプ24に
よ^冷媒液管22,2gを通って第一1蒸発器9および
第2蒸発器11に行く。 第1蒸発器9内で冷媒液は加熱用熱交換器1゜により加
熱さね、蒸発しtコ後、この冷媒蒸気は冷媒蒸気管25
を通って第1吸収器12に行く。 一方、発生器5で冷媒を放出して濃度の濃(なった濃溶
液は、溶液ポンプ16により濃溶液管17を通り、第1
熱回収熱交換N20、第2熱回収熱交換器21でそれぞ
れ第1吸収器12および第2吸収器14からの高温の溶
液と熱交換し、温度上昇して第2吸収器14に行く。 第2吸収w14に入った濃溶液は、伝熱管15の外壁面
を流下する間に、冷媒蒸気管26を通って第2蒸発器1
1から第2吸収器14に流入する高圧冷媒蒸気を吸収し
、高温で発熱する。 この発熱作用により、伝熱管15内を流れるプロセス水
は加熱され、高温の熱水やスチームとなり、プロセス水
管27からプロセスに供給される。 冷媒蒸気を吸収し、濃度が薄くなった中間濃溶液は、中
間濃溶液管18を通り、第2吸収$14から第1吸収器
12に行くが、この途中熱回収熱交換器2Jにより濃溶
液と熱交換するため温度が下がる。 第1吸収器12では、中間濃溶液管は伝熱管13の外周
壁を流下するが、このとき、第1蒸発器9から冷媒蒸気
管25を通って流入する冷媒蒸気を吸収する。この吸収
に伴う発熱作用によって伝熱管13内を流れる凝縮器6
からの冷媒液は加熱され、蒸気となり、冷媒蒸気管26
を通り第2吸収器14に行く。 冷媒蒸気を吸収することにより稀溶液となった吸収液は
稀溶液管19を通り、発生器15に戻る。 なお、この途中、第J熱回収熱交換器20により濃溶液
と熱交換し、温度が下げられる。
Fig. 5 shows a conventional absorption heat pump system, and in Fig. 5, 1 to 4 are shell A, respectively.
~Shell D. The shell A1 is composed of a generator 5 and a condenser 6. The generator 5 is provided with a heating heat exchanger 7, and the condenser 6 is provided with a cooling heat exchanger 8. The shell B2 serves as a first evaporator 9, in which there is a heat exchanger 10 for heating the refrigerant. Further, the shell C3 includes a second evaporator 11 and a first absorber 12.
It consists of Inside this shell C3, there is a heat exchanger tube 1
A large number of heat transfer tubes 3 are arranged, and the absorption liquid flows through the outside of the heat transfer tube 13, and the refrigerant flows through the inside, respectively, with the inside acting as the second evaporator 11 and the outside acting as the first absorber 12. . The shell D4 is the second absorber 14, and its structure is the same as that of the shell C3, in which a large number of heat transfer tubes 15 are arranged, water and steam supplied to the process flow inside the heat transfer tubes 15, and the heat transfer tubes 15 Absorption liquid flows outside. Shell A1 and shell D4 are connected by a concentrated solution tube 17 equipped with a solution pump 16, shell L) 4 and shell C3 are connected by an intermediate concentrated solution tube 18, and shell C3 and shell A1 are connected by a dilute solution tube 19. The solution flowing through the concentrated solution tube 17 and the dilute solution tube 19 is passed through the first heat recovery heat exchanger 20, and also through the intermediate concentrated solution tube 18 and the concentrated solution tube 17.
The solutions flowing through each undergo heat exchange in the second heat recovery heat exchanger 21. The condenser 6, the first evaporator 9, and the second evaporator 11 of the shell C3 are connected to refrigerant liquid pipes 22, 23, and a refrigerant pump 24 is installed in the middle. Further, the first evaporator 9 and the first absorber 12 are connected by a refrigerant vapor pipe 25, and the second evaporator 11 and the second absorber 14 are connected by a refrigerant vapor pipe 26. 27 is a process water pipe connected to the second absorber 14. Note that current control valves, on-off valves, etc. are omitted. Next, the operation will be explained. This absorption heat pump is always operated in a two-stage system, and the heat sources such as exhaust heat that serve as driving sources are the generator 5, the heat exchanger 7 for heating the first evaporator 9,
The hot steam that enters 10 and is supplied to the process is obtained from a second absorber 14. Further, the cooling water flows through the cooling heat exchanger 8 of the condenser 6. Due to the two-stage system operation, in the single-stage system, the first absorber J2 for heat output is operated as a heat source for the second evaporator 11. The flow of solution and refrigerant is shown below. The dilute solution returned to the generator 5 through the dilute solution tube 19 from the first absorber 12 of the shell C3 is heated by the heating heat exchanger 7 and releases the refrigerant as vapor. The released refrigerant vapor goes to the condenser 6, is cooled by the cooling heat exchanger 8, and after being condensed and liquefied, is passed through the refrigerant pump 24 through the refrigerant liquid pipes 22, 2g to the first evaporator 9 and Go to the second evaporator 11. In the first evaporator 9, the refrigerant liquid is heated by the heating heat exchanger 1°, and after evaporation, this refrigerant vapor is transferred to the refrigerant vapor pipe 25.
to the first absorber 12. On the other hand, the refrigerant is discharged from the generator 5, and the concentrated solution is passed through the concentrated solution pipe 17 by the solution pump 16 and
The heat recovery heat exchanger N20 and the second heat recovery heat exchanger 21 exchange heat with the high temperature solutions from the first absorber 12 and the second absorber 14, respectively, and the temperature increases and goes to the second absorber 14. The concentrated solution entering the second absorption w14 passes through the refrigerant vapor pipe 26 to the second evaporator 1 while flowing down the outer wall surface of the heat transfer tube 15.
The second absorber 14 absorbs high-pressure refrigerant vapor flowing from the second absorber 14 and generates heat at a high temperature. Due to this heat generation effect, the process water flowing through the heat transfer tube 15 is heated and becomes high-temperature hot water or steam, which is supplied to the process from the process water tube 27. The intermediate concentrated solution, whose concentration has become diluted by absorbing the refrigerant vapor, passes through the intermediate concentrated solution pipe 18 and goes from the second absorber 14 to the first absorber 12. On the way, the intermediate concentrated solution is converted into a concentrated solution by the heat recovery heat exchanger 2J. The temperature decreases due to heat exchange. In the first absorber 12, the intermediate concentrated solution tube flows down the outer peripheral wall of the heat transfer tube 13, and at this time absorbs the refrigerant vapor flowing from the first evaporator 9 through the refrigerant vapor tube 25. The condenser 6 flows through the heat transfer tube 13 due to the exothermic action accompanying this absorption.
The refrigerant liquid from the refrigerant vapor pipe 26 is heated and becomes vapor.
and goes to the second absorber 14. The absorption liquid, which has become a dilute solution by absorbing the refrigerant vapor, passes through the dilute solution pipe 19 and returns to the generator 15. During this process, heat is exchanged with the concentrated solution by the J-th heat recovery heat exchanger 20, and the temperature is lowered.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

従来の2段の吸収式と−トポンプ装置は以上のように構
成さねているので、常に2段システムの運転しかできな
く、プロセス用の熱水・スチーム湿度や、発生器・第1
蒸発器への加熱用熱媒体の温度条件により2段システム
と単段システムとを切9換えて運転するなどの操作がで
きない欠点があった。 この発明は、かかる問題点を解決するためになされたも
ので、単段システムと2段システムを切り換えて運転す
る乙とができる吸収式ヒートポンプを得ることを目的と
するものである。
Since the conventional two-stage absorption type and two-stage pump equipment is configured as described above, only the two-stage system can be operated at all times, and the hot water/steam humidity for the process, the generator/first stage system, etc.
There is a drawback that operations such as switching between a two-stage system and a single-stage system cannot be performed depending on the temperature conditions of the heating medium for heating the evaporator. The present invention has been made to solve these problems, and its purpose is to provide an absorption heat pump that can be operated by switching between a single-stage system and a two-stage system.

【問題点を解決するための手段】[Means to solve the problem]

この発明に係る吸収式ヒートポンプは、第1蒸発器と第
2蒸発器に接続するバイパス管と、第1蒸発器と第1吸
収器および第2吸収器に接続する冷媒蒸気管に挿入した
第1および第2の開閉弁と、第1蒸発器と第2吸収器間
で冷媒蒸気管に挿入17だ第3の開閉弁と、バイパス管
に挿入した第4の開閉弁とを設けたものである。
The absorption heat pump according to the present invention includes a bypass pipe connected to a first evaporator and a second evaporator, and a first refrigerant vapor pipe inserted into a refrigerant vapor pipe connected to the first evaporator, a first absorber, and a second absorber. and a second on-off valve, a third on-off valve inserted into the refrigerant vapor pipe between the first evaporator and the second absorber, and a fourth on-off valve inserted into the bypass pipe. .

【作 用】[For use]

この発明においては、単段システム運転時に、溶液は発
生器から第2吸収器、第4の開閉弁、バイパス管を通っ
て発生器に戻り、冷媒は凝縮器から第1蒸発器、第2の
開閉弁を通って第2吸収器に流れる。
In this invention, during single-stage system operation, the solution returns to the generator from the generator through the second absorber, the fourth on-off valve, and the bypass pipe, and the refrigerant returns from the condenser to the first evaporator and second evaporator. It flows through the on-off valve to the second absorber.

【実施例】【Example】

以下、この発明の吸収式ヒートポンプの実施例を図につ
いて説明する。第1図はその一実施例の構成を示す図で
ある。この第1図において、1〜27は」1記従来装置
と同じものである。 この第1図では第1蒸発器9からの冷媒蒸気管25は、
途中で第2吸収器14に行く冷媒蒸気管28と第1吸収
器]2に行く冷媒蒸気管29に分岐し、各管路には開閉
弁30,31が設けられている。 さらに、第2蒸発器11と第2吸収器14とを結ぶ冷媒
蒸気管26にも開閉弁32が取り付けられている。 第2吸収器14からの中間濃溶液管」8と稀溶液管19
との間には、開閉弁33を備えたバイパス管34で接続
され、第1吸収器12の稀溶液管19の出口側開閉弁3
5が設けられ、中間濃溶液管18の入口に開閉弁36が
設置されている。 また第2蒸発器11への冷媒液管23にも開閉弁37が
取り付けられている。 次に動作について説明する。2段システム運転のときは
、開閉弁30,3gは閉で、開閉弁31゜32.35,
36,37は開となっている。このときの溶液・冷媒の
流れは従来例と同じになる。 次に単段システム運転時には、開閉弁30.33が開で
、開閉弁31,21..35,36,37は閉となって
いる。このとき、駆動源となる排熱などの熱源は発生器
5と第1蒸発器9の加熱用熱交換器7.10に入り、プ
ロセスに供給される高温のスチームは第2吸収器14か
ら得られる。また冷却水は凝縮器6の冷却用熱交換器8
を流れろ。 第2蒸発器11および第1吸収器12を収納したシェル
C3には溶液、冷媒ともに流れない回路となっている。 シェルD4の第2吸収器14から、バイパス管34、開
閉弁33および稀溶液管19を通り、発生器5に戻った
稀溶液は、加熱用熱交換器7によって加熱され、冷媒を
蒸気と17で放出する。 放出された冷媒蒸気は凝縮器6に行き冷却用熱交換器8
で冷却され、凝縮液化した後、冷媒ポンプ24により冷
媒液管22を通って第1蒸発器9に行く。 第1蒸発器9内で冷媒液は加熱用熱交換器10により加
熱され蒸発した後、この冷媒蒸気は冷媒蒸気管25,2
8、開閉弁30を通って第2吸収器14に行く。 一方、発生@!!5で冷媒を放出して濃度の濃くなった
濃溶液は、溶液ポンプ16により濃溶液管17を通り、
第1熱回収熱交換器20で第2吸収器14からの高温の
溶液と熱交換し、温度上昇して第2吸収器14に行く。 第2吸収器14に入った濃溶液は、伝熱管15の外壁面
を流下する間に冷媒蒸気管25,28を通って第1蒸発
器9から第2吸収器14に流入する高圧冷媒蒸気を吸収
し、高温で発熱する。この発熱作用により伝熱管15内
を流れるプロセス水は加熱され、高温の熱水やスチーム
となり、プロセス水管27からプロセスに供給される。 冷媒蒸気を吸収し濃度が薄くなった稀溶液は、バイパス
管34、開閉弁33、稀溶液管19およ′  び第1熱
回収熱交換器20を通って発生器5に戻る。 なお、稀溶液は第1熱回収熱交換器20ie通るとき、
濃溶液と熱交換し温度が下げられる。 なお、上記実施例では、各容器と液の流れをポンプ、熱
回収熱交換器などを省略した11199図で示す第2図
の」:うな吸収液が第2吸収器−第1吸収W14、冷媒
が第1と第2の蒸発器に並列に入るシステムにつき、単
段システムと2段システムとの切り換えを述べたが、こ
のシステムに限定されることはなく、第3図に示すよう
に、吸収液は発生器から第J吸収濶と第2吸収器に並列
に入るシステム、また冷媒液は凝縮器→第4蒸発器→第
2蒸発器に行(システムでもよい。このときにt1第2
吸収器から発生器に戻る回路の開閉弁33は省略される
。 その他、吸収液が発生器→第1吸収器→第2吸収器、冷
媒液が凝縮器→第2蒸発器−第1蒸発器と流れる第4図
のシステムや、吸収液と冷媒の流れ方を第2図〜第4図
間で組合せたものでもよい。 なお、第4図のシステムでは、開閉弁38が追加される
。また、第2図〜第4図において、実線は吸収液の回路
、破線は冷媒蒸気の回路、一点鎖線は冷媒液の回路を示
す。
Embodiments of the absorption heat pump of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of one embodiment. In FIG. 1, numerals 1 to 27 are the same as those in the conventional apparatus described in 1. In this FIG. 1, the refrigerant vapor pipe 25 from the first evaporator 9 is
On the way, it branches into a refrigerant vapor pipe 28 going to the second absorber 14 and a refrigerant vapor pipe 29 going to the first absorber 2, and each pipe line is provided with on-off valves 30 and 31. Furthermore, an on-off valve 32 is also attached to the refrigerant vapor pipe 26 that connects the second evaporator 11 and the second absorber 14 . Intermediate concentrated solution pipe 8 and dilute solution pipe 19 from the second absorber 14
A bypass pipe 34 equipped with an on-off valve 33 is connected to the outlet side on-off valve 3 of the dilute solution pipe 19 of the first absorber 12.
5 is provided, and an on-off valve 36 is installed at the inlet of the intermediate concentrated solution pipe 18. Further, an on-off valve 37 is also attached to the refrigerant liquid pipe 23 to the second evaporator 11 . Next, the operation will be explained. When operating the two-stage system, on-off valves 30, 3g are closed, and on-off valves 31°, 32.35,
36 and 37 are open. The flow of solution and refrigerant at this time is the same as in the conventional example. Next, when the single-stage system is in operation, the on-off valves 30, 33 are open, and the on-off valves 31, 21. .. 35, 36, and 37 are closed. At this time, a heat source such as exhaust heat that serves as a driving source enters the generator 5 and the heating heat exchanger 7.10 of the first evaporator 9, and high-temperature steam supplied to the process is obtained from the second absorber 14. It will be done. In addition, the cooling water is supplied to the cooling heat exchanger 8 of the condenser 6.
Flow. The shell C3 housing the second evaporator 11 and the first absorber 12 has a circuit in which neither the solution nor the refrigerant flows. The dilute solution returned to the generator 5 from the second absorber 14 of the shell D4 through the bypass pipe 34, the on-off valve 33 and the dilute solution pipe 19 is heated by the heating heat exchanger 7, and the refrigerant is converted into steam and 17 Release with. The released refrigerant vapor goes to the condenser 6 and is transferred to the cooling heat exchanger 8.
After being cooled and condensed into liquid, the refrigerant passes through the refrigerant liquid pipe 22 by the refrigerant pump 24 to the first evaporator 9. After the refrigerant liquid is heated and evaporated by the heating heat exchanger 10 in the first evaporator 9, this refrigerant vapor is transferred to the refrigerant vapor pipes 25 and 2.
8. Passes through the on-off valve 30 to the second absorber 14. On the other hand, outbreak @! ! The concentrated solution, which has become more concentrated by discharging the refrigerant in step 5, passes through the concentrated solution pipe 17 by the solution pump 16.
The first heat recovery heat exchanger 20 exchanges heat with the high-temperature solution from the second absorber 14 , and the temperature rises and goes to the second absorber 14 . The concentrated solution that has entered the second absorber 14 passes through the refrigerant vapor pipes 25 and 28 and flows into the second absorber 14 from the first evaporator 9 while flowing down the outer wall surface of the heat transfer tube 15. absorbs and generates heat at high temperatures. Due to this heat generation effect, the process water flowing through the heat transfer tube 15 is heated and becomes high-temperature hot water or steam, which is supplied to the process from the process water tube 27. The dilute solution, which has absorbed refrigerant vapor and has become diluted in concentration, returns to the generator 5 through the bypass pipe 34, the on-off valve 33, the dilute solution pipe 19, and the first heat recovery heat exchanger 20. Note that when the dilute solution passes through the first heat recovery heat exchanger 20ie,
The temperature is lowered by heat exchange with the concentrated solution. In the above embodiment, the flow of each container and liquid is shown in Fig. 11199 with pumps, heat recovery heat exchangers, etc. omitted. Although we have described switching between a single-stage system and a two-stage system for a system in which the absorption gas enters the first and second evaporators in parallel, the system is not limited to this system, and as shown in Figure 3, absorption The liquid enters the J-th absorption tank and the second absorber in parallel from the generator, and the refrigerant liquid goes from the condenser to the fourth evaporator to the second evaporator.
The on-off valve 33 in the circuit returning from the absorber to the generator is omitted. In addition, there is a system in Figure 4 where the absorption liquid flows from the generator to the first absorber to the second absorber, and the refrigerant liquid flows from the condenser to the second evaporator to the first evaporator, and the flow of the absorption liquid and refrigerant. A combination between FIGS. 2 to 4 may be used. Note that in the system shown in FIG. 4, an on-off valve 38 is added. Further, in FIGS. 2 to 4, the solid line shows the absorption liquid circuit, the broken line shows the refrigerant vapor circuit, and the one-dot chain line shows the refrigerant liquid circuit.

【発明の効果】【Effect of the invention】

この発明は以上説明したとおり、第1吸収器への溶液の
出入口を開閉する開閉弁と、これをバイパスするバイパ
ス回路およびバイパス回路−Fの開閉弁、第2蒸発器へ
の冷媒液回路を開閉する開閉弁、第1蒸発器と第2吸収
器を接続する回路と開閉弁などを設けたことにより、単
段システム、2段システムの切り換え運転が可能となり
、熱を効率良く利用することができる効果がある。
As explained above, this invention includes an on-off valve that opens and closes the solution entrance and exit port to the first absorber, a bypass circuit that bypasses this, an on-off valve for bypass circuit-F, and an on-off valve that opens and closes the refrigerant liquid circuit to the second evaporator. By providing on-off valves, circuits that connect the first evaporator and second absorber, and on-off valves, it is possible to switch between a single-stage system and a two-stage system, making it possible to use heat efficiently. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の吸収式ヒートポンプの一実施例の構
成図、第2図は第1図は吸収式ヒートポンプのポンプお
よび熱回収熱交換器などを省略したブロック図、第3図
および第4図はそれぞれこの発明の吸収式ヒートポンプ
の他の実施例のブロック図、第5図は従来の吸収式ヒー
トポンプの構成を示す図である。 1〜4−・シェルA〜シェルD、5・・発生器、6凝縮
器、9 第1蒸発恭、11 第2蒸発器、12 第1吸
収器、14 第2吸収器、17 濃溶液管、18・・中
間濃溶液管、19 稀溶液管、22.23 −冷媒液管
、25,26,28,29冷媒蒸気管、30〜33.3
5〜38・開閉弁、34 ・バイパス管。 なお、図中同一符号は同−又は相当部分を示す。 代理人  大 岩  増 雄(ほか2名)第2図   
  ド3x ′♀ 5 図
FIG. 1 is a block diagram of an embodiment of an absorption heat pump of the present invention, FIG. 2 is a block diagram of the absorption heat pump with the pump and heat recovery heat exchanger omitted, and FIGS. The figures are block diagrams of other embodiments of the absorption heat pump of the present invention, and FIG. 5 is a diagram showing the configuration of a conventional absorption heat pump. 1 to 4- Shell A to Shell D, 5 Generator, 6 Condenser, 9 First evaporator, 11 Second evaporator, 12 First absorber, 14 Second absorber, 17 Concentrated solution tube, 18... Intermediate concentrated solution pipe, 19 Dilute solution pipe, 22.23 - Refrigerant liquid pipe, 25, 26, 28, 29 Refrigerant vapor pipe, 30-33.3
5-38・On-off valve, 34・Bypass pipe. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa (and 2 others) Figure 2
Do3x ′♀ 5 Figure

Claims (3)

【特許請求の範囲】[Claims] (1)発生器と凝縮器を有する第1のシェル、第1蒸発
器を有する第2のシェル、第2蒸発器と第1吸収器を有
する第3のシェル、第2吸収器を有する第4のシェルを
有し、上記発生器と第1吸収器及び第2吸収器とを溶液
の往復管で、発生器から第1吸収器及び第2吸収器に並
列もしくは発生器から第2吸収器及び第1吸収器と直列
、もしくは発生器から第1吸収器及び第2吸収器と直列
に接続するとともに、凝縮器と第1および第2蒸発器も
しくは凝縮器と第1蒸発器を介して第2蒸発器とを冷媒
液管で接続し、かつ第1蒸発器と第1吸収器および第2
蒸発器と第2吸収器とを冷媒蒸気管で接続して構成され
る吸収式ヒートポンプにおいて、第1吸収器の溶液管路
出口および入口に、それぞれこれを開閉する開閉弁35
、37と、第2蒸発器への冷媒液管路に冷媒液供給をオ
ン・オフする開閉弁37と、上記第1蒸発器と第1吸収
器および第2蒸発器と第2吸収器とを接続する冷媒蒸気
管路にそれぞれ開閉弁31、32とを設けると共に、第
1吸収器をバイパスする開閉弁30を備えたバイパス管
を設けたことを特徴とする吸収式ヒートポンプ。
(1) A first shell with a generator and a condenser, a second shell with a first evaporator, a third shell with a second evaporator and a first absorber, a fourth shell with a second absorber The generator is connected to the first absorber and the second absorber by a reciprocating tube for solution, and the generator is connected to the first absorber and the second absorber in parallel or from the generator to the second absorber and the second absorber. The second absorber is connected in series with the first absorber, or the generator is connected in series with the first absorber and the second absorber, and the condenser and the first and second evaporators, or the second The first evaporator, the first absorber, and the second absorber are connected to the evaporator by a refrigerant liquid pipe.
In an absorption heat pump configured by connecting an evaporator and a second absorber with a refrigerant vapor pipe, on-off valves 35 are provided at the solution pipe outlet and inlet of the first absorber to open and close the valves, respectively.
, 37, an on-off valve 37 for turning on and off the refrigerant liquid supply to the refrigerant liquid pipe line to the second evaporator, the first evaporator and the first absorber, and the second evaporator and the second absorber. An absorption heat pump characterized in that the connected refrigerant vapor pipes are provided with on-off valves 31 and 32, respectively, and a bypass pipe is provided with an on-off valve 30 that bypasses the first absorber.
(2)溶液回路が、発生器から第2吸収器、第1吸収器
、もしくは第1吸収器、第2吸収器と直列に接続される
構成においては、第1吸収器をバイパスする溶液回路と
、この回路に開閉弁33とを備えたことを特徴とする特
許請求の範囲第1項記載の吸収式ヒートポンプ。
(2) In a configuration in which the solution circuit is connected in series from the generator to the second absorber and the first absorber, or the first absorber and the second absorber, the solution circuit bypasses the first absorber. 2. The absorption heat pump according to claim 1, further comprising an on-off valve 33 in this circuit.
(3)冷媒液が凝縮器から第2蒸発器、第1蒸発器と流
れる回路を構成したヒートポンプにおいては、第2蒸発
器をバイパスし第1蒸発器に行く回路と、この回路に開
閉弁38を設けたことを特徴とする特許請求の範囲第1
項記載の吸収式ヒートポンプ。
(3) In a heat pump configured with a circuit in which the refrigerant liquid flows from the condenser to the second evaporator and then to the first evaporator, there is a circuit that bypasses the second evaporator and goes to the first evaporator, and an on-off valve 38 in this circuit. Claim 1 characterized in that
Absorption heat pump as described in section.
JP22065485A 1985-10-03 1985-10-03 Absorption type heat pump Pending JPS6280459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22065485A JPS6280459A (en) 1985-10-03 1985-10-03 Absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22065485A JPS6280459A (en) 1985-10-03 1985-10-03 Absorption type heat pump

Publications (1)

Publication Number Publication Date
JPS6280459A true JPS6280459A (en) 1987-04-13

Family

ID=16754354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22065485A Pending JPS6280459A (en) 1985-10-03 1985-10-03 Absorption type heat pump

Country Status (1)

Country Link
JP (1) JPS6280459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127341A (en) * 2005-11-04 2007-05-24 Ebara Corp Absorption heat pump and steam supply system
JP2014153026A (en) * 2013-02-13 2014-08-25 Morimatsu Research Institution Co Ltd Absorption type heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127341A (en) * 2005-11-04 2007-05-24 Ebara Corp Absorption heat pump and steam supply system
JP2014153026A (en) * 2013-02-13 2014-08-25 Morimatsu Research Institution Co Ltd Absorption type heat pump device

Similar Documents

Publication Publication Date Title
WO2004102085A1 (en) Absorption chiller
JPS5886357A (en) Air-conditioning method utilizing solar heat and its device
JPS6280459A (en) Absorption type heat pump
US4662191A (en) Absorption - type refrigeration system
JP3481530B2 (en) Absorption chiller / heater
JP2837058B2 (en) Absorption type heat pump device
JP3469144B2 (en) Absorption refrigerator
JPS5849872A (en) Heat pump device
JP3331363B2 (en) Absorption refrigerator
JP3285306B2 (en) Waste heat input absorption refrigerator
JP3479269B2 (en) Absorption refrigerator
JPS6280458A (en) Absorption type heat pump
JP3283178B2 (en) Absorption refrigerator
JP3742916B2 (en) Air-cooled absorption refrigeration system
JP2003121021A (en) Double effect absorption refrigerating machine
JPS6135897Y2 (en)
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPH06108804A (en) Power generating system
JP4322997B2 (en) Absorption refrigerator
JPS6166060A (en) Engine-heat pump device
JPS5849871A (en) Hybrid type absorption system heat pump
JPH01244257A (en) Double-effect absorption water cooler/heater
JPS62225869A (en) Multiple effect absorption refrigerator
JPS62242776A (en) Multiple effect absorption refrigerator
JPS61268964A (en) Exhaust-heat recovery type absorption water chiller and heater and operation method thereof