JP3469144B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP3469144B2
JP3469144B2 JP31643099A JP31643099A JP3469144B2 JP 3469144 B2 JP3469144 B2 JP 3469144B2 JP 31643099 A JP31643099 A JP 31643099A JP 31643099 A JP31643099 A JP 31643099A JP 3469144 B2 JP3469144 B2 JP 3469144B2
Authority
JP
Japan
Prior art keywords
heat exchanger
solution
refrigerant
liquid
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31643099A
Other languages
Japanese (ja)
Other versions
JP2001133069A (en
Inventor
邦彦 中島
健一 斉藤
益臣 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP31643099A priority Critical patent/JP3469144B2/en
Publication of JP2001133069A publication Critical patent/JP2001133069A/en
Application granted granted Critical
Publication of JP3469144B2 publication Critical patent/JP3469144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収液が吸収器か
ら低温再生器へ汲み上げられ、さらに高温再生器へ汲み
上げられるように接続・配置された、いわゆるリバース
サイクル形の蒸気式吸収冷凍機、詳しくは、リバースフ
ローで循環する吸収液を濃縮器と濃縮ボイラで濃縮する
とともに熱回収することにより、装置のコンパクト化、
省エネルギー化を図るようにした吸収冷凍機に関するも
のである。ここに、吸収冷凍機には、吸収冷温水機をも
含むものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called reverse cycle type vapor absorption refrigerating machine, which is connected and arranged so that an absorbing liquid is pumped from an absorber to a low temperature regenerator and further pumped to a high temperature regenerator. Specifically, the absorption liquid circulating in the reverse flow is concentrated by a concentrator and a concentrating boiler, and heat is recovered, thereby making the device compact,
The present invention relates to an absorption refrigerator, which is designed to save energy. Here, the absorption refrigerator includes an absorption chiller / heater.

【0002】[0002]

【従来の技術】従来から、蒸気式二重効用吸収冷凍機と
して、図9に例示したようなものが知られている。この
吸収冷凍機は、吸収液(例えば、臭化リチウム水溶液)
が吸収器aから低温再生器cを経て高温再生器eに流さ
れるというリバースサイクルを構成している。この吸収
冷凍機における吸収サイクルを説明すると、まず、吸収
器aで多量の冷媒蒸気を吸収して濃度が薄められた吸収
液(稀吸収液)が吸収器aから低温熱交換器bに送給さ
れ、この低温熱交換器bにより加熱された後に低温再生
器cに送給される。前記稀吸収液は、この低温再生器c
において低温再生され、吸収している冷媒の一部を放出
し濃度がその分高くなって中間濃度の吸収液(中間吸収
液)となる。次に、この中間吸収液は、低温再生器cか
ら高温熱交換器dに送給され、この高温熱交換器dによ
り加熱された後に高温再生器eに送給される。
2. Description of the Related Art Conventionally, a steam-type double-effect absorption refrigerator shown in FIG. 9 has been known. This absorption refrigerator has an absorption liquid (for example, an aqueous lithium bromide solution).
Flows from the absorber a to the high temperature regenerator e via the low temperature regenerator c, thus forming a reverse cycle. Explaining the absorption cycle in this absorption refrigerator, first, the absorption liquid (rare absorption liquid) whose concentration is diluted by absorbing a large amount of refrigerant vapor in the absorption device a is fed from the absorption device a to the low temperature heat exchanger b. After being heated by the low temperature heat exchanger b, it is fed to the low temperature regenerator c. The rare absorbent is the low temperature regenerator c
At low temperature, the refrigerant is regenerated at a low temperature and a part of the absorbed refrigerant is released to increase the concentration by that amount to become an intermediate concentration absorbent (intermediate absorbent). Next, the intermediate absorbent is fed from the low temperature regenerator c to the high temperature heat exchanger d, heated by the high temperature heat exchanger d, and then fed to the high temperature regenerator e.

【0003】前記中間吸収液は、この高温再生器eにお
いて高温再生され、吸収している冷媒(例えば、水蒸
気)の一部を放出し濃度がさらに高くなって高濃度の吸
収液(濃吸収液)となる。そして、この濃吸収液が前記
高温熱交換器dの加熱側に対し前記中間吸収液を加熱す
る加熱源として戻され、さらに、低温熱交換器bの加熱
側に対し前記稀吸収液を加熱する加熱源として戻された
後、前記吸収器aに帰還される。この帰還された濃吸収
液は吸収器aにおいて散布され、冷却水により冷却され
ながら再び冷媒蒸気を吸収して前記稀吸収液となる。
The intermediate absorbing liquid is regenerated at high temperature in the high temperature regenerator e, releases a part of the refrigerant (for example, water vapor) which is being absorbed, and has a higher concentration, so that the absorbing liquid has a high concentration (concentrated absorbing liquid). ). Then, this concentrated absorbent is returned to the heating side of the high temperature heat exchanger d as a heating source for heating the intermediate absorbent, and further the rare absorbent is heated to the heating side of the low temperature heat exchanger b. After being returned as a heating source, it is returned to the absorber a. The returned concentrated absorbent is dispersed in the absorber a, and while being cooled by the cooling water, it absorbs the refrigerant vapor again to become the rare absorbent.

【0004】このような蒸気式二重効用吸収冷凍機にお
いては、前記高温再生器eには蒸気ボイラfから高温の
蒸気(スチーム)が加熱源として供給されるようになっ
ており、この蒸気により中間吸収液が加熱されて吸収し
ていた冷媒が放出され、この放出された冷媒蒸気は、低
温再生器cに対しこの低温再生器cでの加熱源として利
用された後、凝縮器gに戻されて凝縮される。凝縮器g
からの冷媒液(例えば、水)は蒸発器hに入り、この凝
縮した冷媒液が冷媒ポンプにより蒸発器hの伝熱管(水
が流通している)に散布されて冷水が得られる。また、
低温再生器cからの吸収液配管iと、高温熱交換器dと
低温熱交換器bとの間の加熱側の吸収液配管jとを接続
するバイパス管kが設けられ、低温再生器cを出て高温
再生器eへ供給される中間濃縮吸収液の一部を、吸収器
aへ戻る濃吸収液配管にバイパスさせるように構成され
ている。
In such a steam double-effect absorption refrigerator, high temperature steam (steam) is supplied from the steam boiler f to the high temperature regenerator e as a heating source. The intermediate absorption liquid is heated to release the absorbed refrigerant, and the released refrigerant vapor is used as a heat source in the low temperature regenerator c by the low temperature regenerator c and then returned to the condenser g. Is done and condensed. Condenser g
The refrigerant liquid (for example, water) from the above enters the evaporator h, and the condensed refrigerant liquid is sprayed by the refrigerant pump to the heat transfer tubes (where water is flowing) of the evaporator h to obtain cold water. Also,
And absorbing liquid pipe i from the low-temperature regenerator c, bypass pipe k is provided for connecting the absorption liquid pipe j heating side between the hot heat exchanger d and the low temperature heat exchanger b, and low-temperature regenerator c A part of the intermediate concentrated absorption liquid that comes out and is supplied to the high temperature regenerator e is configured to be bypassed to the concentrated absorption liquid pipe that returns to the absorber a.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
蒸気ボイラfを組み合わせた蒸気式吸収冷凍機において
は、以下のような不都合がある。蒸気ボイラfはそれ自
体が大型であり吸収冷凍機全体の大型化を招くことにな
る。しかも、その蒸気ボイラfを運転させるには吸収冷
凍機の系とは別の系の給水、加熱後の蒸気ドレンの回
収、および薬品の注入等が必要になるなど省エネルギー
の要請に反する上に、それらのための付随設備が必要に
なり装置の大型化を助長している。しかるに、前記蒸気
ボイラfが吸収冷凍機に対し貢献するのは単に加熱源を
供給するという役割をのみ果たすに止まっており、蒸気
ボイラfでの燃焼のための燃料消費に見合う効果を充分
に得ているとは言い難い。その上、法規制上も、取り扱
い者として所定の有資格者や検査等が必要になるという
煩わしさを伴うものとなる。
However, the steam-type absorption refrigerating machine in which such a steam boiler f is combined has the following inconveniences. The steam boiler f itself is large in size, which leads to an increase in size of the entire absorption refrigerator. Moreover, in order to operate the steam boiler f, it is contrary to the request for energy saving such that it is necessary to supply water to a system different from the system of the absorption refrigerator, recover the steam drain after heating, and inject chemicals. Ancillary equipment for them is required, which promotes upsizing of the device. However, the steam boiler f only contributes to the absorption refrigerator by merely supplying the heating source, and the effect commensurate with the fuel consumption for combustion in the steam boiler f is sufficiently obtained. It is hard to say that In addition, in terms of laws and regulations, it is troublesome that a predetermined qualified person as a handler and inspection are required.

【0006】本発明は上記の諸点に鑑みなされたもの
で、本発明の目的は、ボイラの機能を充分に活用して冷
房出力当たりの燃料消費量の低減及び省エネルギーを図
るとともに、吸収冷凍機全体のコンパクト化及び簡易な
取扱いを可能とし得る吸収冷凍機を提供することにあ
る。
The present invention has been made in view of the above points, and an object of the present invention is to make full use of the function of a boiler to reduce the fuel consumption per cooling output and to save energy, and at the same time, the entire absorption refrigerator. An object of the present invention is to provide an absorption refrigerator that can be made compact and can be easily handled.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の吸収冷凍機は、吸収液を吸収器から順に
低温熱交換器、低温再生器、高温熱交換器、高温再生
器、高温熱交換器及び低温熱交換器を経て吸収器に循環
させるように構成され、低温再生器を出て高温再生器へ
供給される中間濃縮吸収液の一部を、吸収器へ戻る濃吸
収液配管にバイパスさせるバイパス管を備えるリバース
サイクルの蒸気式吸収冷凍機において、高温再生器から
高温熱交換器へ戻る吸収液配管に、高温再生器からの吸
収液の少なくとも一部(一部又はすべて)を抽出して後
述の溶液濃縮器に供給する第1供給手段と、第1供給手
段からの吸収液を加熱濃縮する溶液濃縮器とを直列(シ
リーズ)に接続し、第1供給手段と溶液濃縮器との間
に、高温再生器からの濃吸収液と後述の溶液濃縮ボイラ
で加熱濃縮され後述の第2付加熱交換器で熱交換された
吸収液とを熱交換する第1付加熱交換器を設け、さら
に、溶液濃縮器から第1付加熱交換器へ戻る吸収液配管
に、溶液濃縮器から第1付加熱交換器へ戻る吸収液の少
なくとも一部を抽出して後述の溶液濃縮ボイラに供給す
る第2供給手段と、第2供給手段からの吸収液を加熱濃
縮する溶液濃縮ボイラとを直列(シリーズ)に接続し、
第2供給手段と溶液濃縮ボイラとの間に、溶液濃縮器か
らの濃縮液と溶液濃縮ボイラから出る加熱濃縮された吸
収液とを熱交換する第2付加熱交換器を設け、溶液濃縮
ボイラで加熱濃縮された吸収液を第2付加熱交換器の加
熱側に戻すように、溶液濃縮ボイラと第2付加熱交換器
とが吸収液配管で接続され、一方、溶液濃縮ボイラにお
いて加熱濃縮された吸収液から蒸発した冷媒蒸気を溶液
濃縮器に加熱源として供給するように、溶液濃縮ボイラ
と溶液濃縮器とが冷媒蒸気配管で接続され、溶液濃縮ボ
イラで加熱濃縮され第2付加熱交換器で熱交換された吸
収液を、第1付加熱交換器の加熱側に戻すように、第2
付加熱交換器と第1付加熱交換器とが吸収液配管で接続
され、一方、溶液濃縮器において吸収液から蒸発した冷
媒蒸気を高温再生器の加熱源として供給するように、溶
液濃縮器と高温再生器とが冷媒蒸気配管で接続されて構
成されている(図1参照)。
In order to achieve the above object, an absorption refrigerator according to the present invention has a low-temperature heat exchanger, a low-temperature regenerator, a high-temperature heat exchanger, and a high-temperature regenerator for absorbing liquid in order from the absorber. It is configured to circulate to the absorber through the high-temperature heat exchanger and the low-temperature heat exchanger, and part of the intermediate concentrated absorption liquid that exits the low-temperature regenerator and is supplied to the high-temperature regenerator is returned to the absorber. In a reverse cycle vapor absorption refrigerator equipped with a bypass pipe for bypassing the liquid pipe, at least a part (part or all) of the absorption liquid from the high temperature regenerator in the absorption liquid pipe returning from the high temperature regenerator to the high temperature heat exchanger. ) Is extracted and supplied to a solution concentrator described later, and a solution concentrator that heat-concentrates the absorption liquid from the first supply means are connected in series (series), and the first supply means and the solution are connected. Between the high temperature regenerator and the condenser A first additional heat exchanger for exchanging heat between the absorbing liquid and the absorbing liquid that has been heated and concentrated in the solution concentrating boiler described below and heat-exchanged in the second additional heat exchanger described later is further provided Second supply means and second supply means for extracting at least a part of the absorption liquid returning from the solution concentrator to the first additional heat exchanger into the absorption liquid pipe returning to the heating exchanger and supplying it to the solution concentration boiler described later. Connect the solution condensing boiler for heating and concentrating the absorption liquid from
A second additional heat exchanger for exchanging heat between the concentrated liquid from the solution concentrator and the heat-concentrated absorption liquid discharged from the solution condensing boiler is provided between the second supply means and the solution condensing boiler. The solution condensing boiler and the second additional heat exchanger were connected by an absorption liquid pipe so that the heat-concentrated absorption liquid was returned to the heating side of the second addition heat exchanger, while it was heated and concentrated in the solution concentration boiler. The solution condensing boiler and the solution concentrator are connected by a refrigerant vapor pipe so that the refrigerant vapor evaporated from the absorbing liquid is supplied to the solution concentrator as a heating source, and the solution condensing boiler is heated and condensed by the solution condensing boiler by the second additional heat exchanger. In order to return the absorbed heat-exchanged liquid to the heating side of the first additional heat exchanger,
The additional heat exchanger and the first additional heat exchanger are connected by an absorption liquid pipe, and on the other hand, the solution condensor is connected to the solution concentrator so that the refrigerant vapor evaporated from the absorption liquid in the solution concentrator is supplied as a heating source of the high temperature regenerator. The high temperature regenerator is connected to the high temperature regenerator by a refrigerant vapor pipe (see FIG. 1).

【0008】ここで、「溶液濃縮ボイラ」としては、燃
料の燃焼により濃吸収液を加熱させる機能、その加熱に
より吸収している冷媒を冷媒蒸気として放出させる機
能、および濃吸収液の加熱の際の内圧に耐えうる機能を
備えるものであればよい。
The term "solution concentrating boiler" as used herein means a function of heating a concentrated absorbent by burning fuel, a function of releasing a refrigerant absorbed by the heating as a refrigerant vapor, and a function of heating the concentrated absorbent. What has the function of withstanding the internal pressure of

【0009】上記の吸収冷凍機において、高温熱交換器
の被加熱側の吸収液配管、第1付加熱交換器の被加熱側
の吸収液配管、第2付加熱交換器の被加熱側の吸収液配
管、及び高温再生器の入口吸収液配管と出口吸収液配管
との間の少なくともいずれかにバイパス管を接続し、該
バイパス管に溶液濃縮ボイラから出る排ガスと熱交換さ
せて熱回収する排ガス熱交換器を設けた構成とすること
ができる(図2参照)。すなわち、排ガス熱交換器が単
独又は組み合わされて(同時に)設けられる。この場
合、熱交換器に並列(パラレル)に設けられた排ガス熱
交換器は熱回収器として作用し、高温再生器の入口吸収
液配管と出口吸収液配管との間に設けられた排ガス熱交
換器は補助再生器として作用する。この発明において
は、ボイラからの燃焼排ガスの顕熱を有効に回収するこ
とができ、エネルギーを削減することができる。
In the above-mentioned absorption refrigerator, the absorption liquid pipe on the heated side of the high temperature heat exchanger, the absorption liquid pipe on the heated side of the first additional heat exchanger, and the absorption liquid on the heated side of the second additional heat exchanger. Exhaust gas for liquid recovery and exhaust gas for heat recovery by connecting a bypass pipe to at least one of the inlet absorption liquid pipe and the outlet absorption liquid pipe of the high temperature regenerator, and exchanging heat with the exhaust gas emitted from the solution concentration boiler in the bypass pipe. A heat exchanger may be provided (see FIG. 2). That is, the exhaust gas heat exchangers are provided individually or in combination (simultaneously). In this case, the exhaust gas heat exchanger provided in parallel with the heat exchanger acts as a heat recovery device, and the exhaust gas heat exchange provided between the inlet absorbent liquid pipe and the outlet absorbent liquid pipe of the high temperature regenerator. The vessel acts as an auxiliary regenerator. In the present invention, the sensible heat of the combustion exhaust gas from the boiler can be effectively recovered, and the energy can be reduced.

【0010】また、これらの吸収冷凍機において、低温
熱交換器の被加熱側の吸収液配管、高温熱交換器の被加
熱側の吸収液配管及び第1付加熱交換器の被加熱側の吸
収液配管の少なくともいずれかにバイパス管を接続し、
該バイパス管に低温再生器、高温再生器又は溶液濃縮器
からの凝縮冷媒と熱交換させる冷媒熱回収器を設けた構
成とすることができる(図3参照)。すなわち、冷媒熱
回収器が単独又は組み合わされて(同時に)熱交換器に
並列(パラレル)に設けられる。この発明では、凝縮冷
媒(冷媒ドレン)の熱を有効に回収してエネルギーを削
減することができる。
In these absorption refrigerators, the absorption liquid piping on the heated side of the low temperature heat exchanger, the absorption liquid piping on the heated side of the high temperature heat exchanger, and the absorption side of the heated side of the first additional heat exchanger. Connect a bypass pipe to at least one of the liquid pipes,
The bypass pipe may be provided with a refrigerant heat recovery device for exchanging heat with the condensed refrigerant from the low temperature regenerator, the high temperature regenerator or the solution concentrator (see FIG. 3). That is, the refrigerant heat recovery devices are provided alone or in combination (simultaneously) in parallel with the heat exchanger. According to the present invention, the heat of the condensed refrigerant (refrigerant drain) can be effectively recovered to reduce energy.

【0011】上記の構成において、とくに、高温熱交換
器の被加熱側の吸収液配管にバイパス管を接続し、該バ
イパス管に溶液濃縮ボイラから出る排ガスと熱交換させ
て熱回収する排ガス熱交換器を設け、さらに、低温熱交
換器の被加熱側の吸収液配管にバイパス管を接続し、該
バイパス管に低温再生器からの凝縮冷媒と熱交換させる
冷媒熱回収器を設けた構成、すなわち、高温熱交換器に
並列(パラレル)に排ガス熱交換器を設け、かつ、低温
熱交換器に並列(パラレル)に冷媒熱回収器を設けた構
成とすることが好ましい(図4参照)。この発明では、
ボイラからの燃焼排ガス及び冷媒ドレンの保有熱を有効
に回収することができ、エネルギーを削減することがで
きる。
In the above structure, particularly, an exhaust gas heat exchange for recovering heat by connecting a bypass pipe to the absorption liquid pipe on the heated side of the high temperature heat exchanger and exchanging heat with the exhaust gas from the solution concentrating boiler to the bypass pipe. The cooling device is provided, and further, a bypass pipe is connected to the absorption liquid pipe on the heated side of the low temperature heat exchanger, and a refrigerant heat recovery device for exchanging heat with the condensed refrigerant from the low temperature regenerator is provided in the bypass pipe, that is, It is preferable that the exhaust gas heat exchanger is provided in parallel with the high temperature heat exchanger, and the refrigerant heat recovery device is provided in parallel with the low temperature heat exchanger (see FIG. 4). In this invention,
It is possible to effectively recover the combustion exhaust gas from the boiler and the retained heat of the refrigerant drain, and it is possible to reduce energy.

【0012】また、低温熱交換器の被加熱側の吸収液配
管、高温熱交換器の被加熱側の吸収液配管及び第1付加
熱交換器の被加熱側の吸収液配管の少なくともいずれか
にバイパス管を接続し、該バイパス管に低温再生器、高
温再生器又は溶液濃縮器からの凝縮冷媒と熱交換させる
冷媒熱回収器を設け、溶液濃縮器、高温再生器及び低温
再生器において吸収液と熱交換したそれぞれの凝縮冷媒
を、順に合流させて凝縮冷媒の流れ方向における下位の
冷媒熱回収器に導入するように凝縮冷媒配管で接続し、
最終的に熱交換して合流した凝縮冷媒が凝縮器に導入さ
れるように、最下位の冷媒熱回収器と凝縮器とが合流凝
縮冷媒配管で接続された構成として、凝縮冷媒(冷媒ド
レン)の熱を有効に熱交換し熱回収してエネルギーを削
減できるようにすることができる(図5参照)。
Further, at least one of the absorbent liquid pipe on the heated side of the low temperature heat exchanger, the absorbent liquid pipe on the heated side of the high temperature heat exchanger, and the absorbent liquid pipe on the heated side of the first additional heat exchanger. A bypass pipe is connected, and a refrigerant heat recovery device for exchanging heat with the condensed refrigerant from the low temperature regenerator, the high temperature regenerator or the solution concentrator is provided in the bypass pipe, and the absorption liquid is used in the solution concentrator, the high temperature regenerator and the low temperature regenerator. Each of the condensed refrigerant heat-exchanged with, is connected in a condensed refrigerant pipe so as to be merged in order and introduced into the lower refrigerant heat recovery device in the flow direction of the condensed refrigerant,
As a configuration in which the lowest refrigerant heat recovery unit and the condenser are connected by a confluent condensing refrigerant pipe, the condensing refrigerant (refrigerant drain) is finally introduced so that the condensing refrigerant that has undergone heat exchange and merges is introduced into the condenser. The heat of can be effectively exchanged and recovered to reduce energy (see FIG. 5).

【0013】これらの吸収冷凍機において、吸収器と蒸
発器とを組み合わせたブロックを複数個設け、冷水、冷
却水及び吸収液が複数個のブロックにシリーズ(直列)
に供給されるように、各ブロックが冷水配管、冷却水配
管及び吸収液配管で接続された構成とすることができる
(図6参照)。また、吸収器と蒸発器とを組み合わせた
ブロックを複数個設け、冷水及び吸収液が複数個のブロ
ックにシリーズ(直列)に供給され、冷却水が複数個の
ブロックにパラレル(並列)に供給されるように、各ブ
ロックが冷水配管、吸収液配管及び冷却水配管で接続さ
れた構成とすることができる(図7参照)。
In these absorption refrigerators, a plurality of blocks in which an absorber and an evaporator are combined are provided, and cold water, cooling water and absorbing liquid are provided in a plurality of blocks in series (series).
So that each block is connected to each other by a cold water pipe, a cooling water pipe, and an absorbing liquid pipe (see FIG. 6). Further, a plurality of blocks in which an absorber and an evaporator are combined are provided, and cold water and absorbing liquid are supplied in series to a plurality of blocks, and cooling water is supplied to a plurality of blocks in parallel. As described above, each block may be connected by a cold water pipe, an absorbing liquid pipe, and a cooling water pipe (see FIG. 7).

【0014】さらに、冷却水が凝縮器から吸収器へ供給
されるように、凝縮器と吸収器とが冷却水連絡配管で接
続された構成とすることができる(図8参照)。これら
の吸収冷凍機において、溶液濃縮ボイラとして、構造が
簡単で、かつ小型で、取扱いの容易な貫流ボイラを用い
ることが好ましい(図1〜図5、図8参照)。
Further, the condenser and the absorber may be connected by a cooling water connecting pipe so that the cooling water is supplied from the condenser to the absorber (see FIG. 8). In these absorption refrigerators, it is preferable to use a once-through boiler having a simple structure, a small size, and easy handling as the solution concentrating boiler (see FIGS. 1 to 5 and 8).

【0015】本発明の吸収冷凍機は、前記の如く構成さ
れているので、ボイラに特段の給水設備を設ける必要が
ないとともに、蒸気ドレンの回収も不要となる。また、
そのため薬注設備なども不要となるので、ボイラが小型
化される。その結果、吸収冷凍機にボイラを一体化でき
る。
Since the absorption refrigerating machine of the present invention is constructed as described above, it is not necessary to provide a special water supply facility in the boiler and recovery of steam drain is also unnecessary. Also,
As a result, no chemical injection equipment is required, and the boiler is downsized. As a result, the boiler can be integrated with the absorption refrigerator.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を吸収
冷凍機の場合について説明するが、本発明は吸収冷凍機
の場合に限定されるものではなく、吸収冷温水機の場合
にも適用できるものである。図1は本発明の実施の第1
形態による吸収冷凍機を示している。本実施形態は、吸
収器1、ポンプ(稀液ポンプ)2、低温熱交換器3、低
温再生器4、ポンプ(中間液ポンプ)5、高温熱交換器
6、高温再生器7、凝縮器8、蒸発器9、冷媒ポンプ1
0及びこれらの機器を接続する吸収液配管、冷媒配管等
を構成要素とするリバースサイクル式の二重効用吸収冷
凍機に対し、溶液濃縮器30、溶液濃縮ボイラとしての
貫流ボイラ40、第1供給手段としての第1吸収液(濃
液)ポンプ13、第1付加熱交換器21、第2供給手段
としての第2吸収液(濃縮液)ポンプ14及び第2付加
熱交換器22を組み合わせて一体化したものである。な
お、図1において、実線に付した矢印は吸収液又は冷媒
液の流れ方向を示し、破線に付した矢印は冷媒蒸気、又
は冷媒蒸気と凝縮冷媒(冷媒ドレン)との混合物の流れ
方向を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described in the case of an absorption refrigerator, but the present invention is not limited to the case of an absorption refrigerator, and may be applied to an absorption cold / hot water machine. It is applicable. FIG. 1 shows a first embodiment of the present invention.
1 shows an absorption refrigerator according to a form. In this embodiment, an absorber 1, a pump (dilute liquid pump) 2, a low temperature heat exchanger 3, a low temperature regenerator 4, a pump (intermediate liquid pump) 5, a high temperature heat exchanger 6, a high temperature regenerator 7, and a condenser 8 are provided. , Evaporator 9, refrigerant pump 1
0 and a reverse cycle double-effect absorption refrigerator having components such as an absorption liquid pipe connecting these devices, a refrigerant pipe, etc., to a solution concentrator 30, a once-through boiler 40 as a solution concentration boiler, and a first supply. A first absorption liquid (concentrated liquid) pump 13 as a means, a first additional heat exchanger 21, a second absorption liquid (concentrated liquid) pump 14 as a second supply means, and a second additional heat exchanger 22 are combined and integrated. It has been transformed. In addition, in FIG. 1, the arrow attached to the solid line indicates the flow direction of the absorption liquid or the refrigerant liquid, and the arrow attached to the broken line indicates the flow direction of the refrigerant vapor or the mixture of the refrigerant vapor and the condensed refrigerant (refrigerant drain). .

【0017】吸収液の循環サイクルについて順に説明す
る。まず、吸収器1で多量の冷媒蒸気を吸収して濃度が
薄められた稀吸収液が、稀液ポンプ2によって吸収器1
から低温熱交換器3に送給され、この低温熱交換器3に
より加熱された後に低温再生器4に送給される。そし
て、この稀吸収液は、この低温再生器4において低温再
生され、吸収している冷媒の一部を放出し濃度がその分
高くなって中間濃度の中間吸収液となる。
The absorption liquid circulation cycle will be described in order. First, the diluted absorbent, which has been diluted in concentration by absorbing a large amount of refrigerant vapor in the absorber 1, is absorbed in the absorber 1 by the diluted liquid pump 2.
Is fed from the low temperature heat exchanger 3 to the low temperature regenerator 4 after being heated by the low temperature heat exchanger 3. Then, this rare absorption liquid is regenerated at a low temperature in the low temperature regenerator 4 and releases a part of the absorbed refrigerant to increase its concentration to become an intermediate absorption liquid having an intermediate concentration.

【0018】次に、この中間濃縮吸収液の大部分は、低
温再生器4から中間吸収液ポンプ5によって高温熱交換
器6に送給され、この高温熱交換器6により加熱された
後に高温再生器7に送給される。この中間濃縮吸収液
は、この高温再生器7において高温再生され、吸収して
いる冷媒の一部を放出し濃度がさらに高くなって高濃度
の濃吸収液となる。低温再生器4からの中間濃縮吸収液
の残部は、吸収器1へ戻る濃吸収液配管にバイパス管1
9を経てバイパス供給される。
Next, most of this intermediate concentrated absorption liquid is sent from the low temperature regenerator 4 to the high temperature heat exchanger 6 by the intermediate absorption liquid pump 5, heated by this high temperature heat exchanger 6 and then regenerated at high temperature. It is sent to the container 7. The intermediate concentrated absorption liquid is regenerated at high temperature in the high temperature regenerator 7 and a part of the absorbed refrigerant is released to further increase the concentration to become a high concentration concentrated absorption liquid. The remainder of the intermediate concentrated absorption liquid from the low temperature regenerator 4 is returned to the absorber 1 in the concentrated absorption liquid pipe by the bypass pipe 1
It is bypass-supplied via 9.

【0019】高温再生器7からの濃吸収液の一部又は全
部は、第1吸収液ポンプ13により第1付加熱交換器2
1へ送給され、ここで、後述の第2付加熱交換器22、
又は第2付加熱交換器22及び溶液濃縮器30からの濃
吸収液と熱交換して加熱された後、濃縮器30に供給さ
れる。高温再生器7からの濃吸収液の残部(零の場合も
あり得る)は、バイパス管50を経て第1付加熱交換器
21からの加熱側の吸収液配管に合流する。濃縮器30
において、後述の貫流ボイラ40からの冷媒蒸気により
加熱濃縮された濃吸収液の一部又は全部は、第2吸収液
ポンプ14により第2付加熱交換器22へ送給され、こ
こで、貫流ボイラ40からの濃吸収液と熱交換して加熱
された後、貫流ボイラ40に供給される。
A part or all of the concentrated absorbing liquid from the high temperature regenerator 7 is transferred to the first additional heat exchanger 2 by the first absorbing liquid pump 13.
1 to the second additional heat exchanger 22, which will be described later.
Alternatively, it is supplied to the concentrator 30 after being heated by exchanging heat with the concentrated absorption liquid from the second additional heat exchanger 22 and the solution concentrator 30. The rest of the concentrated absorbing liquid from the high temperature regenerator 7 (which may be zero) joins the absorbing liquid pipe on the heating side from the first additional heat exchanger 21 via the bypass pipe 50. Concentrator 30
In the above, a part or all of the concentrated absorbing liquid that has been heated and concentrated by the refrigerant vapor from the once-through boiler 40 described later is fed to the second additional heat exchanger 22 by the second absorbing liquid pump 14, where the once-through boiler is used. After being heated by exchanging heat with the concentrated absorption liquid from 40, it is supplied to the once-through boiler 40.

【0020】貫流ボイラ40において、燃料の燃焼熱に
より加熱濃縮された濃吸収液は、第2付加熱交換器22
の加熱側に導入されて濃縮器30からの濃吸収液を加熱
した後、第1付加熱交換器21の加熱側に導入される。
濃縮器30からの濃吸収液の残部(零の場合もあり得
る)は、バイパス管51を経て第2付加熱交換器22
らの加熱側の吸収液配管に合流する。貫流ボイラ40か
らの冷媒蒸気は冷媒蒸気配管18を経て濃縮器30へ導
入され、ここで吸収液を加熱濃縮させた後、冷媒ドレン
は高温再生器7へ導入される。濃縮器30からの冷媒蒸
気は冷媒蒸気配管17を経て、上記の濃縮器30からの
冷媒ドレンとともに高温再生器7に送られ、ここで吸収
液を加熱濃縮させる。
In the once-through boiler 40, the concentrated absorption liquid heated and concentrated by the heat of combustion of the fuel is used as the second additional heat exchanger 22.
Is introduced into the heating side of the first additional heat exchanger 21 after heating the concentrated absorption liquid from the concentrator 30.
The rest of the concentrated absorbing liquid (may be zero) from the concentrator 30 joins the absorbing liquid pipe on the heating side from the second additional heat exchanger 22 via the bypass pipe 51. The refrigerant vapor from the once-through boiler 40 is introduced into the concentrator 30 via the refrigerant vapor pipe 18, where the absorbing liquid is heated and concentrated, and then the refrigerant drain is introduced into the high temperature regenerator 7. The refrigerant vapor from the concentrator 30 is sent to the high temperature regenerator 7 together with the refrigerant drain from the concentrator 30 through the refrigerant vapor pipe 17, where the absorption liquid is heated and concentrated.

【0021】高温再生器7からの冷媒蒸気は冷媒蒸気配
管16を経て、高温再生器7からの冷媒ドレンとともに
低温再生器4に送られ、ここで吸収液を加熱濃縮させ
る。低温再生器4からの冷媒蒸気は冷媒蒸気配管15を
経て、低温再生器4からの冷媒ドレンとともに凝縮器に
導入される。
The refrigerant vapor from the high temperature regenerator 7 is sent to the low temperature regenerator 4 through the refrigerant vapor pipe 16 together with the refrigerant drain from the high temperature regenerator 7, where the absorbing liquid is heated and concentrated. The refrigerant vapor from the low temperature regenerator 4 is introduced into the condenser through the refrigerant vapor pipe 15 together with the refrigerant drain from the low temperature regenerator 4.

【0022】図2は本発明の実施の第2形態による吸収
冷凍機を示している。本実施形態は、貫流ボイラ40か
ら排出される燃焼排ガスと熱交換する排ガス熱交換器
(熱回収器)26、27、28、補助再生器(排ガス熱
交換器)29を単独に又は同時に設け、高温熱交換器
6、第1付加熱交換器21、第2付加熱交換器22又は
高温再生器7へ供給される吸収液の一部をバイパスさせ
て、排ガスと熱交換させることにより、排ガスの顕熱を
熱回収して省エネルギー化を図るようにしたものであ
る。
FIG. 2 shows an absorption refrigerator according to the second embodiment of the present invention. In the present embodiment, exhaust gas heat exchangers (heat recovery units) 26, 27, 28 for exchanging heat with combustion exhaust gas discharged from the once-through boiler 40, auxiliary regenerators (exhaust gas heat exchanger) 29 are provided individually or simultaneously, By bypassing a part of the absorbing liquid supplied to the high temperature heat exchanger 6, the first additional heat exchanger 21, the second additional heat exchanger 22 or the high temperature regenerator 7 and exchanging heat with the exhaust gas, It is intended to save energy by recovering sensible heat.

【0023】本実施形態を詳細に説明すると、高温熱交
換器6の被加熱側の吸収液配管、第1付加熱交換器21
の被加熱側の吸収液配管、第2付加熱交換器22の被加
熱側の吸収液配管、及び高温再生器7の入口吸収液配管
と出口吸収液配管との間に、それぞれバイパス管52、
53、54、55が接続され、これらのバイパス管に貫
流ボイラ40から出る排ガスが導入される排ガス熱交換
器26、27、28、29が設けられている。すなわ
ち、排ガス熱交換器26、27、28は、それぞれ高温
熱交換器6、第1付加熱交換器21、第2付加熱交換器
22にパラレルに設置されて、熱回収器としての役目を
果し、排ガス熱交換器29は補助再生器としての役目を
果す。排ガス熱交換器26、27、28、29は、単独
に、又は組み合わされて設置される。他の構成及び作用
は実施の第1形態の場合と同様である。
The present embodiment will be described in detail. The absorption liquid pipe on the heated side of the high temperature heat exchanger 6 and the first additional heat exchanger 21.
Between the heated absorbent side of the second additional heat exchanger 22, the heated heated side absorbent liquid of the second additional heat exchanger 22, and the high temperature regenerator 7 between the inlet and outlet absorbent liquid pipes, respectively.
53, 54, 55 are connected, and exhaust gas heat exchangers 26, 27, 28, 29 into which the exhaust gas from the once-through boiler 40 is introduced are provided in these bypass pipes. That is, the exhaust gas heat exchangers 26, 27, and 28 are installed in parallel with the high-temperature heat exchanger 6, the first additional heat exchanger 21, and the second additional heat exchanger 22, respectively, and serve as heat recoverers. However, the exhaust gas heat exchanger 29 serves as an auxiliary regenerator. The exhaust gas heat exchangers 26, 27, 28, 29 are installed individually or in combination. Other configurations and operations are similar to those of the first embodiment.

【0024】図3は本発明の実施の第3形態による吸収
冷凍機を示している。本実施形態は、低温再生器4、高
温再生器7、濃縮器30からそれぞれ出る凝縮冷媒(冷
媒ドレン)と熱交換する冷媒熱回収器23、24、25
を単独に又は同時に設け、低温熱交換器3、高温熱交換
器6、第1付加熱交換器21へ供給する吸収液の一部を
それぞれバイパスさせて、冷媒ドレンと熱交換させるこ
とにより、冷媒ドレンの保有熱を回収して省エネルギー
化を図るようにしたものである。
FIG. 3 shows an absorption refrigerator according to the third embodiment of the present invention. In the present embodiment, the refrigerant heat recovery units 23, 24, 25 that exchange heat with the condensed refrigerant (refrigerant drain) discharged from the low temperature regenerator 4, the high temperature regenerator 7, and the condenser 30, respectively.
Are provided individually or simultaneously, and a part of the absorbing liquid supplied to the low-temperature heat exchanger 3, the high-temperature heat exchanger 6, and the first additional heat exchanger 21 is bypassed, and the heat is exchanged with the refrigerant drain. It is intended to save energy by recovering the drain heat.

【0025】本実施形態を詳細に説明すると、低温熱交
換器3の被加熱側の吸収液配管、高温熱交換器6の被加
熱側の吸収液配管及び第1付加熱交換器21の被加熱側
の吸収液配管に、それぞれバイパス管56、52、53
が接続され、これらのバイパス管に低温再生器4、高温
再生器7又は濃縮器30からの凝縮冷媒が導入される冷
媒熱回収器23、24、25が設けられている。すなわ
ち、冷媒熱回収器23、24、25は、それぞれ低温熱
交換器3、高温熱交換器6、第1付加熱交換器21にパ
ラレルに設置されている。冷媒熱回収器23、24、2
5は、単独に、又は組み合わされて設置される。他の構
成及び作用は実施の第1、2形態の場合と同様である。
Explaining this embodiment in detail, the heating liquid of the low temperature heat exchanger 3 on the heated side, the heating liquid of the high temperature heat exchanger 6 on the heating side, and the first additional heat exchanger 21 to be heated. The bypass pipes 56, 52, 53 to the absorption liquid pipes on the side, respectively.
Are connected to these bypass pipes, and refrigerant heat recovery units 23, 24, 25 into which the condensed refrigerant from the low temperature regenerator 4, the high temperature regenerator 7 or the condenser 30 are introduced are provided. That is, the refrigerant heat recovery units 23, 24, 25 are installed in parallel with the low temperature heat exchanger 3, the high temperature heat exchanger 6, and the first additional heat exchanger 21, respectively. Refrigerant heat recovery unit 23, 24, 2
5 are installed alone or in combination. Other configurations and operations are similar to those of the first and second embodiments.

【0026】図4は本発明の実施の第4形態による吸収
冷凍機を示している。本実施形態は、高温熱交換器6と
パラレルに排ガス熱交換器26を設けるとともに、低温
熱交換器3とパラレルに冷媒熱回収器23を設けて、貫
流ボイラ40からの燃焼排ガス及び冷媒ドレンの保有熱
を回収することにより、省エネルギー化を図るようにし
たものである。詳しくは、高温熱交換器6の被加熱側の
吸収液配管にバイパス管52を接続し、このバイパス管
52に貫流ボイラ40から出る燃焼排ガスと熱交換させ
て熱回収する排ガス熱交換器26を設け、さらに、低温
熱交換器3の被加熱側の吸収液配管にバイパス管56を
接続し、このバイパス管56に低温再生器4からの凝縮
冷媒と熱交換させる冷媒熱回収器56を設けて構成され
ている。他の構成及び作用は実施の第1形態の場合と同
様である。
FIG. 4 shows an absorption refrigerator according to the fourth embodiment of the present invention. In the present embodiment, the exhaust gas heat exchanger 26 is provided in parallel with the high temperature heat exchanger 6, and the refrigerant heat recovery device 23 is provided in parallel with the low temperature heat exchanger 3 to remove the combustion exhaust gas from the once-through boiler 40 and the refrigerant drain. It is designed to save energy by recovering the retained heat. Specifically, the bypass pipe 52 is connected to the absorption liquid pipe on the heated side of the high-temperature heat exchanger 6, and the exhaust gas heat exchanger 26 that recovers heat by exchanging heat with the combustion exhaust gas from the once-through boiler 40 is connected to the bypass pipe 52. Further, a bypass pipe 56 is connected to the absorption liquid pipe on the heated side of the low temperature heat exchanger 3, and a refrigerant heat recovery device 56 for exchanging heat with the condensed refrigerant from the low temperature regenerator 4 is provided in the bypass pipe 56. It is configured. Other configurations and operations are similar to those of the first embodiment.

【0027】図5は本発明の実施の第5形態による吸収
冷凍機を示している。本実施形態は、低温再生器4、高
温再生器7、濃縮器30からそれぞれ出る凝縮冷媒(冷
媒ドレン)と熱交換する冷媒熱回収器23、24、25
を単独に又は同時に設け、低温熱交換器3、高温熱交換
器6、第1付加熱交換器21へ供給する吸収液の一部を
それぞれバイパスさせて、冷媒ドレンと熱交換させ、吸
収液と熱交換したそれぞれの冷媒ドレンを、順に合流さ
せて下位の冷媒熱回収器に導入し、熱交換して合流した
冷媒ドレンを凝縮器8へ導入して、凝縮冷媒の熱を有効
に熱交換し熱回収することにより、省エネルギー化を図
るようにしたものである。
FIG. 5 shows an absorption refrigerator according to a fifth embodiment of the present invention. In the present embodiment, the refrigerant heat recovery units 23, 24, 25 that exchange heat with the condensed refrigerant (refrigerant drain) discharged from the low temperature regenerator 4, the high temperature regenerator 7, and the condenser 30, respectively.
Are provided individually or simultaneously, and a part of the absorbing liquid supplied to the low temperature heat exchanger 3, the high temperature heat exchanger 6, and the first additional heat exchanger 21 is bypassed, and heat is exchanged with the refrigerant drain to obtain the absorbing liquid. The respective heat-exchanged refrigerant drains are merged in order and introduced into the lower-layer refrigerant heat recovery device, and the heat exchanged and merged refrigerant drains are introduced into the condenser 8 to effectively exchange heat of the condensed refrigerant. Energy is saved by recovering the heat.

【0028】本実施形態を詳細に説明すると、低温熱交
換器3の被加熱側の吸収液配管、高温熱交換器6の被加
熱側の吸収液配管及び第1付加熱交換器21の被加熱側
の吸収液配管に、それぞれバイパス管56、52、53
が接続され、これらのバイパス管に低温再生器4、高温
再生器7又は濃縮器30からの凝縮冷媒が導入される冷
媒熱回収器23、24、25が設けられている。すなわ
ち、冷媒熱回収器23、24、25は、それぞれ低温熱
交換器3、高温熱交換器6、第1付加熱交換器21にパ
ラレルに設置されている。そして、濃縮器30、高温再
生器7及び低温再生器4において吸収液と熱交換したそ
れぞれの凝縮冷媒を、順に合流させて凝縮冷媒の流れ方
向における下位の冷媒熱回収器に導入するように、それ
ぞれ凝縮冷媒配管57、58、59で接続し、最終的に
熱交換して合流した凝縮冷媒が凝縮器8に導入されるよ
うに、最下位の冷媒熱回収器23と凝縮器8とが合流凝
縮冷媒配管60で接続されている。冷媒熱回収器23、
24、25は、単独に、又は組み合わされて設置され
る。他の構成及び作用は実施の第1、2形態の場合と同
様である。
Explaining this embodiment in detail, the heating liquid of the low temperature heat exchanger 3 on the heating side, the heating liquid of the high temperature heat exchanger 6 on the heating liquid side, and the heating of the first additional heat exchanger 21. The bypass pipes 56, 52, 53 to the absorption liquid pipes on the side, respectively.
Are connected to these bypass pipes, and refrigerant heat recovery units 23, 24, 25 into which the condensed refrigerant from the low temperature regenerator 4, the high temperature regenerator 7 or the condenser 30 are introduced are provided. That is, the refrigerant heat recovery units 23, 24, 25 are installed in parallel with the low temperature heat exchanger 3, the high temperature heat exchanger 6, and the first additional heat exchanger 21, respectively. Then, the condensing refrigerants that have exchanged heat with the absorbing liquid in the concentrator 30, the high temperature regenerator 7, and the low temperature regenerator 4 are sequentially merged and introduced into the lower refrigerant heat recovery device in the flow direction of the condensed refrigerant. The lowest-level refrigerant heat recovery unit 23 and the condenser 8 join so that the condensed refrigerant that is connected by the condensed refrigerant pipes 57, 58, and 59, and finally exchanges heat and joins is introduced into the condenser 8. They are connected by a condensed refrigerant pipe 60. Refrigerant heat recovery device 23,
24 and 25 are installed individually or in combination. Other configurations and operations are similar to those of the first and second embodiments.

【0029】図6は本発明の実施の第6形態による吸収
冷凍機の要部を示している。本実施形態は、吸収器1と
蒸発器9との組合せを複数組、例えば、二組とし、すな
わち吸収器1と蒸発器9を第1吸収器1Aと第1蒸発器
9Aとの組からなる第1ブロックAと、第2吸収器1B
と第2蒸発器9Bとの組からなる第2ブロックBとによ
り構成し、冷水及び冷却水を第2ブロックBから第1ブ
ロックAにシリーズに供給する一方、高濃吸収液を第1
ブロックAから第2ブロックBにシリーズに供給するよ
うに構成したものである。本実施形態はこのように構成
されているので、吸収液1内の圧力、蒸発器9内の圧力
をブロックごとに段階的に変えることが可能になり、吸
収液を広い濃度範囲で利用できるようになるので、稀薄
な濃度領域まで利用できる範囲が広がり、吸収液循環量
の低減、低温熱源の有効利用が図られるという効果が得
られる。他の構成及び作用は実施の第1〜5形態の場合
と同様である。
FIG. 6 shows the essential parts of an absorption refrigerator according to the sixth embodiment of the present invention. In the present embodiment, the combination of the absorber 1 and the evaporator 9 is a plurality of sets, for example, two sets, that is, the absorber 1 and the evaporator 9 are composed of a set of the first absorber 1A and the first evaporator 9A. First block A and second absorber 1B
And a second block B composed of a second evaporator 9B. Cold water and cooling water are supplied from the second block B to the first block A in series, while the high-concentration absorption liquid is supplied to the first block A.
The block A is configured to be supplied to the second block B in series. Since the present embodiment is configured in this way, it is possible to change the pressure in the absorbing liquid 1 and the pressure in the evaporator 9 step by step for each block, so that the absorbing liquid can be used in a wide concentration range. Therefore, it is possible to obtain an effect that the usable range is expanded to a dilute concentration region, the amount of circulation of the absorbing solution is reduced, and the low temperature heat source is effectively used. Other configurations and operations are similar to those of the first to fifth embodiments.

【0030】図7は本発明の実施の第7形態による吸収
冷凍機の要部を示している。本実施形態は、吸収器1と
蒸発器9との組合せを複数組、例えば、二組とし、すな
わち吸収器1と蒸発器9を第1吸収器1Aと第1蒸発器
9Aとの組からなる第1ブロックAと、第2吸収器1B
と第2蒸発器9Bとの組からなる第2ブロックBとによ
り構成し、冷水を第2ブロックBから第1ブロックAに
シリーズに供給し、高濃吸収液を第1ブロックAから第
2ブロックBにシリーズに供給し、冷却水を第1ブロッ
クA及び第2ブロックBにパラレルに供給するように構
成したものである。本実施形態はこのように構成されて
いるので、吸収液1内の圧力、蒸発器9内の圧力をブロ
ックごとに段階的に変えることが可能になり、吸収液を
広い濃度範囲で利用できるようになるので、稀薄な濃度
領域まで利用できる範囲が広がり、吸収液循環量の低
減、低温熱源の有効利用が図られるという効果が得られ
る。他の構成及び作用は実施の第1〜5形態の場合と同
様である。
FIG. 7 shows the essential parts of an absorption refrigerator according to the seventh embodiment of the present invention. In the present embodiment, the combination of the absorber 1 and the evaporator 9 is a plurality of sets, for example, two sets, that is, the absorber 1 and the evaporator 9 are composed of a set of the first absorber 1A and the first evaporator 9A. First block A and second absorber 1B
And a second block B composed of a second evaporator 9B. Cold water is supplied from the second block B to the first block A in series, and the high-concentration absorption liquid is supplied from the first block A to the second block. B is supplied in series to cooling water, and cooling water is supplied in parallel to the first block A and the second block B. Since the present embodiment is configured in this way, it is possible to change the pressure in the absorbing liquid 1 and the pressure in the evaporator 9 step by step for each block, so that the absorbing liquid can be used in a wide concentration range. Therefore, it is possible to obtain an effect that the usable range is expanded to a dilute concentration region, the amount of circulation of the absorbing solution is reduced, and the low temperature heat source is effectively used. Other configurations and operations are similar to those of the first to fifth embodiments.

【0031】図8は本発明の実施の第8形態による吸収
冷凍機を示している。本実施形態は、通常とは逆に、冷
却水を凝縮器8から吸収器1に冷却水連絡配管61を介
してシリーズに流すように構成したものである。本実施
形態はこのように構成されているので、凝縮器8へ温度
の低い冷却水を先に通すことにより、凝縮器8の温度、
圧力が低下し、それにより低温再生器4の温度、圧力が
下がり、高温再生器7の温度、圧力が下がりボイラ系の
温度、圧力が下げられるので、吸収液の温度、濃度を低
くすることができ低温熱源の有効利用という効果が得ら
れる。他の構成及び作用は実施の第1〜7形態の場合と
同様である。
FIG. 8 shows an absorption refrigerator according to an eighth embodiment of the present invention. Contrary to the usual case, the present embodiment is configured such that cooling water flows from the condenser 8 to the absorber 1 in series through the cooling water communication pipe 61. Since the present embodiment is configured in this way, the temperature of the condenser 8 can be reduced by passing cooling water of low temperature to the condenser 8 first.
Since the pressure decreases, the temperature and pressure of the low temperature regenerator 4 decrease, the temperature and pressure of the high temperature regenerator 7 decrease, and the temperature and pressure of the boiler system decrease. Therefore, the temperature and concentration of the absorbing liquid can be decreased. The effect of effective use of the low temperature heat source can be obtained. Other configurations and operations are similar to those of the first to seventh embodiments.

【0032】[0032]

【発明の効果】本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 二重効用形吸収冷凍機に対し、溶液濃縮器及び
溶液濃縮ボイラを組み合わせて一体化することにより、
溶液濃縮器を第三の再生器、溶液濃縮ボイラを第四の再
生器として四重効用化させることができ、全体として冷
房出力当たりの燃料消費量の低減を図ることができると
同時に、省エネルギー及び省資源を図ることができ、併
せて吸収冷凍機全体のコンパクト化をも図ることができ
) 低温熱交換器の被加熱側の吸収液配管、高温熱
交換器の被加熱側の吸収液配管及び第1付加熱交換器の
被加熱側の吸収液配管の少なくともいずれかにバイパス
管を接続し、該バイパス管に低温再生器、高温再生器又
は溶液濃縮器からの凝縮冷媒と熱交換させる冷媒熱回収
器を設け、溶液濃縮器、高温再生器及び低温再生器にお
いて吸収液と熱交換したそれぞれの凝縮冷媒を、順に合
流させて凝縮冷媒の流れ方向における下位の冷媒熱回収
器に導入するように凝縮冷媒配管で接続し、最終的に熱
交換して合流した凝縮冷媒が凝縮器に導入されるよう
に、最下位の冷媒熱回収器と凝縮器とが合流凝縮冷媒配
管で接続された構成とすることにより、凝縮冷媒(冷媒
ドレン)の熱を有効に熱交換し熱回収してエネルギーを
削減することができる。 () 溶液濃縮ボイラとして貫流ボイラを用いる場合
は、吸収冷凍機全体のコンパクト化及び取扱いの簡易化
に加え、吸収液コストの低減をも図ることができる。
Since the present invention is configured as described above, it has the following effects. (1) By combining and integrating a solution concentrator and a solution concentration boiler with a double-effect absorption refrigerator,
The solution concentrator can be used as the third regenerator and the solution condensing boiler as the fourth regenerator, and the effect of quadruple can be achieved, and the fuel consumption per cooling output can be reduced as a whole, and at the same time, energy saving and Resources can be saved, and at the same time, the entire absorption refrigerator can be made compact . ( 2 ) A bypass pipe for at least one of the heated liquid side of the low temperature heat exchanger, the heated liquid side of the high temperature heat exchanger and the heated liquid side of the first additional heat exchanger. And a refrigerant heat recovery device for exchanging heat with the condensed refrigerant from the low-temperature regenerator, high-temperature regenerator or solution concentrator in the bypass pipe, and the absorption liquid and heat in the solution concentrator, high-temperature regenerator and low-temperature regenerator. Condensed refrigerant pipes are connected so that the exchanged condensed refrigerants are merged in order and introduced into a lower refrigerant heat recovery unit in the flow direction of the condensed refrigerant, and finally the condensed refrigerant that has merged by heat exchange is the condenser. As described above, the lowest refrigerant heat recovery device and the condenser are connected by a confluent condensed refrigerant pipe, so that the heat of the condensed refrigerant (refrigerant drain) is effectively exchanged to recover the heat. Can save energy . ( 3 ) When the once-through boiler is used as the solution concentrating boiler, the absorption liquid cost can be reduced in addition to downsizing of the entire absorption refrigerator and simplification of handling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態による吸収冷凍機の概
略構成図である。
FIG. 1 is a schematic configuration diagram of an absorption refrigerator according to a first embodiment of the present invention.

【図2】本発明の実施の第2形態による吸収冷凍機の概
略構成図である。
FIG. 2 is a schematic configuration diagram of an absorption refrigerator according to a second embodiment of the present invention.

【図3】本発明の実施の第3形態による吸収冷凍機の概
略構成図である。
FIG. 3 is a schematic configuration diagram of an absorption refrigerator according to a third embodiment of the present invention.

【図4】本発明の実施の第4形態による吸収冷凍機の概
略構成図である。
FIG. 4 is a schematic configuration diagram of an absorption refrigerator according to a fourth embodiment of the present invention.

【図5】本発明の実施の第5形態による吸収冷凍機の概
略構成図である。
FIG. 5 is a schematic configuration diagram of an absorption refrigerator according to a fifth embodiment of the present invention.

【図6】本発明の実施の第6形態による吸収冷凍機にお
ける要部の概略構成図である。
FIG. 6 is a schematic configuration diagram of a main part in an absorption refrigerator according to a sixth embodiment of the present invention.

【図7】本発明の実施の第7形態による吸収冷凍機にお
ける要部の概略構成図である。
FIG. 7 is a schematic configuration diagram of a main part in an absorption refrigerator according to a seventh embodiment of the present invention.

【図8】本発明の実施の第8形態による吸収冷凍機の概
略構成図である。
FIG. 8 is a schematic configuration diagram of an absorption refrigerator according to an eighth embodiment of the present invention.

【図9】従来の吸収冷凍機の一例を示す概略構成図であ
る。
FIG. 9 is a schematic configuration diagram showing an example of a conventional absorption refrigerator.

【符号の説明】[Explanation of symbols]

1、1A、1B 吸収器 2 稀液ポンプ 3 低温熱交換器 4 低温再生器 5 中間液ポンプ 6 高温熱交換器 7 高温再生器 8 凝縮器 9、9A、9B 蒸発器 10 冷媒ポンプ 13 第1吸収液(濃液)ポンプ(第1供給手段) 14 第2吸収液(濃縮液)ポンプ(第2供給手段) 15、16、17、18 冷媒蒸気配管 19、50、51、52、53、54、55、56 バ
イパス管 21 第1付加熱交換器 22 第2付加熱交換器 23、24、25 冷媒熱回収器 26、27、28 排ガス熱交換器(排ガス熱回収器) 29 排ガス熱交換器(補助再生器) 30 溶液濃縮器 40 貫流ボイラ(溶液濃縮ボイラ) 57、58、59 凝縮冷媒配管 60 合流凝縮冷媒配管 61 冷却水連絡配管
1, 1A, 1B Absorber 2 Dilute liquid pump 3 Low temperature heat exchanger 4 Low temperature regenerator 5 Intermediate liquid pump 6 High temperature heat exchanger 7 High temperature regenerator 8 Condenser 9, 9A, 9B Evaporator 10 Refrigerant pump 13 First absorption Liquid (concentrated liquid) pump (first supply means) 14 Second absorption liquid (concentrated liquid) pump (second supply means) 15, 16, 17, 18 Refrigerant vapor pipes 19, 50, 51, 52, 53, 54, 55, 56 Bypass pipe 21 First additional heat exchanger 22 Second additional heat exchanger 23, 24, 25 Refrigerant heat recovery device 26, 27, 28 Exhaust gas heat exchanger (exhaust gas heat recovery device) 29 Exhaust gas heat exchanger (auxiliary Regenerator) 30 Solution concentrator 40 Through-flow boiler (solution concentration boiler) 57, 58, 59 Condensing refrigerant pipe 60 Combined condensing refrigerant pipe 61 Cooling water communication pipe

フロントページの続き (56)参考文献 特開 平8−159594(JP,A) 特開 昭63−116066(JP,A) 特開 平11−182966(JP,A) 特開 平2−290474(JP,A) 特開 平9−250837(JP,A) 特開 昭58−219371(JP,A) 特開 昭60−162166(JP,A) 特表 平9−503285(JP,A) 特表 平9−512332(JP,A) 特表 平7−501611(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00 102 Continuation of front page (56) Reference JP-A-8-159594 (JP, A) JP-A-63-116066 (JP, A) JP-A-11-182966 (JP, A) JP-A-2-290474 (JP , A) JP 9-250837 (JP, A) JP 58-219371 (JP, A) JP 60-162166 (JP, A) JP 9-503285 (JP, A) JP 9-512332 (JP, A) Special Table 7-501611 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 15/00 102

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 吸収液を吸収器から順に低温熱交換器、
低温再生器、高温熱交換器、高温再生器、高温熱交換器
及び低温熱交換器を経て吸収器に循環させるように構成
され、低温再生器を出て高温再生器へ供給される中間濃
縮吸収液の一部を、吸収器へ戻る濃吸収液配管にバイパ
スさせるバイパス管を備えるリバースサイクルの蒸気式
吸収冷凍機において、 高温再生器から高温熱交換器へ戻る吸収液配管に、高温
再生器からの吸収液の少なくとも一部を抽出して後述の
溶液濃縮器に供給する第1供給手段と、第1供給手段か
らの吸収液を加熱濃縮する溶液濃縮器とを直列に接続
し、第1供給手段と溶液濃縮器との間に、高温再生器か
らの濃吸収液と後述の溶液濃縮ボイラで加熱濃縮され後
述の第2付加熱交換器で熱交換された吸収液とを熱交換
する第1付加熱交換器を設け、さらに、溶液濃縮器から
第1付加熱交換器へ戻る吸収液配管に、溶液濃縮器から
第1付加熱交換器へ戻る吸収液の少なくとも一部を抽出
して後述の溶液濃縮ボイラに供給する第2供給手段と、
第2供給手段からの吸収液を加熱濃縮する溶液濃縮ボイ
ラとを直列に接続し、第2供給手段と溶液濃縮ボイラと
の間に、溶液濃縮器からの濃縮液と溶液濃縮ボイラから
出る加熱濃縮された吸収液とを熱交換する第2付加熱交
換器を設け、 溶液濃縮ボイラで加熱濃縮された吸収液を第2付加熱交
換器の加熱側に戻すように、溶液濃縮ボイラと第2付加
熱交換器とが吸収液配管で接続され、一方、溶液濃縮ボ
イラにおいて加熱濃縮された吸収液から蒸発した冷媒蒸
気を溶液濃縮器に加熱源として供給するように、溶液濃
縮ボイラと溶液濃縮器とが冷媒蒸気配管で接続され、 溶液濃縮ボイラで加熱濃縮され第2付加熱交換器で熱交
換された吸収液を、第1付加熱交換器の加熱側に戻すよ
うに、第2付加熱交換器と第1付加熱交換器とが吸収液
配管で接続され、一方、溶液濃縮器において吸収液から
蒸発した冷媒蒸気を高温再生器の加熱源として供給する
ように、溶液濃縮器と高温再生器とが冷媒蒸気配管で接
続された吸収冷凍機であって、 低温熱交換器の被加熱側の吸収液配管、高温熱交換器の
被加熱側の吸収液配管及び第1付加熱交換器の被加熱側
の吸収液配管の少なくともいずれかにバイパス管を接続
し、該バイパス管に低温再生器、高温再生器又は溶液濃
縮器からの凝縮冷媒と熱交換させる冷媒熱回収器を設
け、溶液濃縮器、高温再生器及び低温再生器において吸
収液と熱交換したそれぞれの凝縮冷媒を、順に合流させ
て凝縮冷媒の流れ方向における下位の冷媒熱回収器に導
入するように凝縮冷媒配管で接続し、最終的に熱交換し
て合流した凝縮冷媒が凝縮器に導入されるように、最下
位の冷媒熱回収器と凝縮器とが合流凝縮冷媒配管で接続
されたことを特徴とする吸収冷凍機。
1. A low temperature heat exchanger for absorbing liquid in order from the absorber,
Intermediate concentrated absorption that is configured to circulate to the absorber via the low temperature regenerator, high temperature heat exchanger, high temperature regenerator, high temperature heat exchanger, and low temperature heat exchanger, and is output from the low temperature regenerator to the high temperature regenerator. In a reverse cycle vapor absorption refrigerator equipped with a bypass pipe that bypasses a portion of the liquid to the concentrated absorbent pipe returning to the absorber, in the absorbing liquid pipe returning from the high temperature regenerator to the high temperature heat exchanger, from the high temperature regenerator First supply means for extracting at least a part of the absorption liquid of (1) and supplying it to a solution concentrator described later, and a solution concentrator for heating and concentrating the absorption liquid from the first supply means are connected in series to provide a first supply. First, heat exchange is performed between the means and the solution concentrator between the concentrated absorption liquid from the high temperature regenerator and the absorption liquid that has been heated and concentrated by the solution concentrating boiler described below and heat-exchanged by the second additional heat exchanger described below. Install an additional heat exchanger, and Second supply means for extracting at least a part of the absorption liquid returning from the solution concentrator to the first additional heat exchanger into the absorption liquid pipe returning to the first addition heat exchanger from the solution concentrator and supplying the solution concentration boiler described below,
A solution concentrating boiler for heating and concentrating the absorption liquid from the second supplying means is connected in series, and a concentrating solution from the solution concentrator and a heating concentrating solution from the solution concentrating boiler are connected between the second supplying means and the solution concentrating boiler. A second additional heat exchanger for exchanging heat with the absorbed absorption liquid is provided, and the solution concentration boiler and the second auxiliary unit are provided so that the absorption liquid heated and concentrated by the solution concentration boiler is returned to the heating side of the second additional heat exchanger. The heating exchanger is connected by an absorption liquid pipe, and on the other hand, so that the refrigerant vapor evaporated from the absorption liquid heated and concentrated in the solution concentrating boiler is supplied to the solution concentrating device as a heating source, the solution concentrating boiler and the solution concentrating device. Are connected by a refrigerant vapor pipe, the second additional heat exchanger is used to return the absorbing liquid heated and concentrated in the solution concentrating boiler and heat-exchanged in the second additional heat exchanger to the heating side of the first additional heat exchanger. And the first additional heat exchanger are absorption liquid piping On the other hand, it is an absorption refrigerating machine in which the solution concentrator and the high temperature regenerator are connected by refrigerant vapor piping so that the refrigerant vapor evaporated from the absorption liquid in the solution concentrator is supplied as a heating source of the high temperature regenerator. A bypass pipe to at least one of the heated liquid side of the low temperature heat exchanger, the heated liquid side of the high temperature heat exchanger and the heated liquid side of the first additional heat exchanger. Connected to the bypass pipe, a refrigerant heat recovery device for exchanging heat with the condensed refrigerant from the low-temperature regenerator, high-temperature regenerator or solution concentrator is provided, and heat exchange with the absorbing liquid is performed in the solution concentrator, high-temperature regenerator and low-temperature regenerator Each of the condensed refrigerant was connected in a condensing refrigerant pipe so as to be introduced into a lower refrigerant heat recovery device in the condensing refrigerant flow direction in order, and finally the condensed condensing refrigerant that has merged by heat exchange into the condenser. To be introduced Absorption refrigerating machine, characterized in that the lowest of the refrigerant heat recovery unit and the condenser is connected at the joining condensing refrigerant pipe.
【請求項2】 吸収器と蒸発器とを組み合わせたブロッ
クを複数個設け、冷水、冷却水及び吸収液が複数個のブ
ロックにシリーズに供給されるように、各ブロックが冷
水配管、冷却水配管及び吸収液配管で接続された請求項
記載の吸収冷凍機。
2. A plurality of blocks in which an absorber and an evaporator are combined are provided, and each block is provided with a cold water pipe and a cooling water pipe so that the cold water, the cooling water and the absorbing liquid are supplied to the plurality of blocks in series. And claim connected by absorbing liquid piping
1. The absorption refrigerator according to 1 .
【請求項3】 吸収器と蒸発器とを組み合わせたブロッ
クを複数個設け、冷水及び吸収液が複数個のブロックに
シリーズに供給され、冷却水が複数個のブロックにパラ
レルに供給されるように、各ブロックが冷水配管、吸収
液配管及び冷却水配管で接続された請求項記載の吸収
冷凍機。
3. A plurality of blocks in which an absorber and an evaporator are combined are provided, and cold water and absorbing liquid are supplied in series to the plurality of blocks, and cooling water is supplied to the plurality of blocks in parallel. each block is chilled water piping, absorption liquid pipe and absorption refrigerating machine according to claim 1, wherein connected with the cooling water pipe.
【請求項4】 冷却水が凝縮器から吸収器へ供給される
ように、凝縮器と吸収器とが冷却水連絡配管で接続され
た請求項1、2又は3記載の吸収冷凍機。
4. The absorption refrigerator according to claim 1, 2 or 3 , wherein the condenser and the absorber are connected by a cooling water connecting pipe so that the cooling water is supplied from the condenser to the absorber.
【請求項5】 溶液濃縮ボイラが貫流ボイラである請求
1〜4のいずれかに記載の吸収冷凍機。
Absorption refrigerating machine according to claim 1 wherein the solution concentrated boiler is once-through boiler.
JP31643099A 1999-11-08 1999-11-08 Absorption refrigerator Expired - Fee Related JP3469144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31643099A JP3469144B2 (en) 1999-11-08 1999-11-08 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31643099A JP3469144B2 (en) 1999-11-08 1999-11-08 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001133069A JP2001133069A (en) 2001-05-18
JP3469144B2 true JP3469144B2 (en) 2003-11-25

Family

ID=18077002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31643099A Expired - Fee Related JP3469144B2 (en) 1999-11-08 1999-11-08 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3469144B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160399A (en) * 2012-02-01 2013-08-19 Kawasaki Thermal Engineering Co Ltd Control operation method of absorption refrigerating machine

Also Published As

Publication number Publication date
JP2001133069A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
WO2002018849A1 (en) Absorption refrigerating machine
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP2000257976A (en) Absorption refrigerating machine
JP3481530B2 (en) Absorption chiller / heater
JP3283621B2 (en) Absorption refrigerators and chiller / heaters using both low-temperature regenerators and low-temperature regenerators for waste heat recovery
JP3401546B2 (en) Absorption refrigerator
JP3469144B2 (en) Absorption refrigerator
JP2000205691A (en) Absorption refrigerating machine
JP3297720B2 (en) Absorption refrigerator
JP4148830B2 (en) Single double effect absorption refrigerator
JP3479269B2 (en) Absorption refrigerator
JP3331363B2 (en) Absorption refrigerator
JP2002098435A (en) Absorption freezer
WO2002018850A1 (en) Absorption refrigerating machine
JP3401545B2 (en) Absorption refrigerator
JP2005300047A (en) Heat exchanger system and absorption refrigerating machine using the same
JP2001133067A (en) Absorption refrigerating machine
JPS6122225B2 (en)
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2777427B2 (en) Absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JP3404225B2 (en) Absorption refrigerator
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JP2004011928A (en) Absorption refrigerator
JP3723372B2 (en) Waste heat input type absorption chiller / heater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3469144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees