JPS5913665B2 - Hybrid absorption heat pump - Google Patents

Hybrid absorption heat pump

Info

Publication number
JPS5913665B2
JPS5913665B2 JP15365176A JP15365176A JPS5913665B2 JP S5913665 B2 JPS5913665 B2 JP S5913665B2 JP 15365176 A JP15365176 A JP 15365176A JP 15365176 A JP15365176 A JP 15365176A JP S5913665 B2 JPS5913665 B2 JP S5913665B2
Authority
JP
Japan
Prior art keywords
absorber
pressure
solution
generator
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15365176A
Other languages
Japanese (ja)
Other versions
JPS5377369A (en
Inventor
昭三 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP15365176A priority Critical patent/JPS5913665B2/en
Publication of JPS5377369A publication Critical patent/JPS5377369A/en
Publication of JPS5913665B2 publication Critical patent/JPS5913665B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system

Description

【発明の詳細な説明】 本発明は高温水と冷水とを同時に生成することが可能な
ハイブリッド型吸収式ヒートポンプに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid absorption heat pump capable of simultaneously producing high temperature water and cold water.

従来吸収冷凍サイクルにおいて冷房と同時に温水を得た
い場合は、例えば発生器において発生する蒸気の熱を利
用しての温水の生成を凝縮器や別途の専用温水熱交換器
などで行なわれていたが発生器での溶液加熱の熱源とし
て温水あるいは蒸気などを用いる場合、得られる温水の
温度は熱源温水あるいは蒸気などの温度よりも低く、特
に最近省エネルギー上、公害防止上問題になっている発
電所の温排水などの比較的低温の熱源温水を従来の吸収
式ヒートポンプに用いる場合には得られる温水の温度が
低く利用価値があいものであった。
Conventionally, in an absorption refrigeration cycle, if you wanted to obtain hot water at the same time as cooling, you would use a condenser or a separate dedicated hot water heat exchanger to generate hot water using the heat of steam generated in a generator, for example. When hot water or steam is used as a heat source for heating a solution in a generator, the temperature of the hot water obtained is lower than the temperature of the heat source hot water or steam, which is particularly important in power plants, which have recently become a problem in terms of energy conservation and pollution prevention. When using relatively low-temperature heat source hot water, such as heated waste water, in conventional absorption heat pumps, the temperature of the hot water obtained is low, making it of little value.

また特に高温水を得るためにはターボ冷凍機を利用した
ヒートポンプなどの別個の装置を必要とした0 これを改良するために、中間圧の発生器と凝縮器の高圧
側に吸収器と蒸発器を含むヒートポンプサイクル、低圧
側fこ吸収器と蒸発器を含む冷凍サイクルを備えた第1
図に例を示す如き吸収式ヒートポンプが考えられている
In addition, in order to obtain particularly high-temperature water, separate equipment such as a heat pump using a centrifugal chiller was required. a heat pump cycle comprising a heat pump cycle, a refrigeration cycle comprising a low-pressure side absorber and an evaporator;
Absorption heat pumps such as the example shown in the figure have been considered.

ここにGは発生器、Cは凝縮器、AHは高圧吸収器、A
Lは低圧吸収器、EHは高圧蒸発器、ELは低圧蒸発器
、xHは高圧熱交換器、xLは低圧熱交換器、1は溶液
ポンプ、2は中間濃度溶液管、3は稀溶液管、5は濃溶
液管、7は冷媒ポンプ、8は冷媒管、12は分岐管、1
3,14.15は蒸気管、16.17は温水管、30は
戻り管、31.32は冷却水管。
Here, G is the generator, C is the condenser, AH is the high pressure absorber, and A
L is a low pressure absorber, EH is a high pressure evaporator, EL is a low pressure evaporator, xH is a high pressure heat exchanger, xL is a low pressure heat exchanger, 1 is a solution pump, 2 is an intermediate concentration solution tube, 3 is a dilute solution tube, 5 is a concentrated solution pipe, 7 is a refrigerant pump, 8 is a refrigerant pipe, 12 is a branch pipe, 1
3, 14.15 are steam pipes, 16.17 are hot water pipes, 30 are return pipes, and 31.32 are cooling water pipes.

33は高温水管、34は冷水管である。33 is a high temperature water pipe, and 34 is a cold water pipe.

第2図はその溶液サイクル線図を示しMlooは冷媒1
00%線である。
Figure 2 shows the solution cycle diagram, and Mloo is the refrigerant 1
This is the 00% line.

外部から、温熱源として温水などを温水管16.17に
導き、冷熱源として冷却水などを冷却水管31.32に
導き装置を運転せしめれば、高温水管33fこで温熱源
より温度の高い高温水が得られ、また冷水管34にて冷
熱源より温度の低い冷水が得られるものである。
From the outside, if hot water or the like as a heat source is led to the hot water pipe 16.17, and cooling water or the like as a cold heat source is led to the cooling water pipe 31.32 to operate the device, the high temperature water pipe 33f is heated to a high temperature that is higher than the heat source. Water is obtained, and cold water whose temperature is lower than that of the cold heat source is obtained in the cold water pipe 34.

ここにおいて、冷水温度は低圧蒸発器ELの飽和蒸気圧
PELに対する飽和蒸気温装置で決まり、この飽和蒸気
圧PELは低圧吸収器ALを出る溶液の濃度と溶液温度
t2Lにて決まり、この濃度と溶液温度t2Lとは冷却
水条件によってはぼ決定されると考えられる。
Here, the cold water temperature is determined by a saturated vapor temperature device for the saturated vapor pressure PEL of the low pressure evaporator EL, and this saturated vapor pressure PEL is determined by the concentration of the solution exiting the low pressure absorber AL and the solution temperature t2L, and this concentration and the solution temperature It is considered that the temperature t2L is determined depending on the cooling water conditions.

従って加熱源条件が与えられている場合冷水温度は、低
圧吸収器AL内の冷却水条件、即ち例えは冷却水入口温
度、冷却水量などが定まればほぼ一定となる。
Therefore, when the heating source conditions are given, the chilled water temperature becomes approximately constant if the cooling water conditions in the low pressure absorber AL, ie, the cooling water inlet temperature, the amount of cooling water, etc., are determined.

また、高温水温度は高圧吸収器AHを出る溶液の温度j
4Hで決まり、この溶液温度14Hは高圧蒸発器EHの
飽和蒸気圧PEHで決まり、これは高圧蒸発器EH内の
飽和蒸気温度TEHで決まり、この飽和蒸気温度TEH
は加熱源条件によってほぼ決定されると考えられる。
Also, the high temperature water temperature is the temperature of the solution exiting the high pressure absorber AH j
This solution temperature 14H is determined by the saturated vapor pressure PEH of the high pressure evaporator EH, which is determined by the saturated vapor temperature TEH in the high pressure evaporator EH, and this solution temperature 14H is determined by the saturated vapor temperature TEH in the high pressure evaporator EH.
is considered to be determined approximately by the heating source conditions.

従って高温水温度は、高圧蒸発器EH内の加熱源条件、
即ち例えば温水の場合であれば温水入口温度、温水流量
などが定まればほぼ一定となる。
Therefore, the high temperature water temperature depends on the heating source conditions in the high pressure evaporator EH,
That is, in the case of hot water, for example, once the hot water inlet temperature, hot water flow rate, etc. are determined, the temperature will be approximately constant.

従って第1図の如く、溶液サイクルを形成する溶液径路
が、溶液を低圧吸収器ALから、高圧吸収器AHへ導く
中間濃度溶液管2、高圧吸収器AHから発生器Gへ導く
稀溶液管3及び発生器Gから低圧吸収器ALへ導く濃溶
液管5のみであり、各機器及び溶液管の間に他に接続が
ない場合には、冷却水条件及び加熱源条件が一定の場合
には冷却水温度を低くしたり、高温水温度を高くしたり
効率の改善をはかるなどの手段対策を行なうことが困難
であり、使用条件が限られて適用範囲が狭いという欠点
を有するものであった。
Therefore, as shown in FIG. 1, the solution path forming the solution cycle is an intermediate concentration solution pipe 2 that leads the solution from the low pressure absorber AL to the high pressure absorber AH, and a dilute solution pipe 3 that leads the solution from the high pressure absorber AH to the generator G. and the concentrated solution pipe 5 leading from the generator G to the low pressure absorber AL, and if there are no other connections between each device and the solution pipe, the cooling water condition and heating source condition are constant. It is difficult to take measures such as lowering the water temperature, increasing the high-temperature water temperature, or improving efficiency, and the disadvantage is that the usage conditions are limited and the range of application is narrow.

本発明は、溶液サイクルを形成する各機器及び異なる濃
度の各溶液管との間を、使用条件に応じて適宜接続する
ことにより、適当な温度及び濃度の溶液を混入又は分岐
せしめて適当な温度及び濃度の溶液のサイクルを高圧側
及び/又は低圧側に形成しこれを以って所要の使用条件
(冷熱源条件、温熱源条件、即ち所要冷水温度、所要高
温水温など)に適合せしめることを可能として適用範囲
が著しく広いハイブリッド型吸収式ヒートポンプを提供
することを目的とするものである。
The present invention enables solutions at appropriate temperatures and concentrations to be mixed or branched by appropriately connecting each device forming a solution cycle and each solution tube with a different concentration depending on the conditions of use. and concentration solution cycle is formed on the high pressure side and/or the low pressure side, thereby adapting it to the required usage conditions (cold heat source conditions, hot heat source conditions, i.e., required cold water temperature, required hot water temperature, etc.). The object is to provide a hybrid absorption heat pump which has a significantly wider range of possible applications.

本発明の他の目的は低圧側の吸収器と蒸発器を含む冷凍
サイクルで冷水の生成lこより得た熱を、高圧側の吸収
器と蒸発器を含むヒートポンプサイクルで高温水の生成
の熱エネルギーとして有効利用することにある。
Another object of the present invention is to use the heat obtained from the production of cold water in a refrigeration cycle including an absorber and an evaporator on the low pressure side to generate thermal energy for producing high temperature water in a heat pump cycle including an absorber and an evaporator on the high pressure side. The aim is to use it effectively as a

この結果凝縮器での冷却水への排熱量を少くすることが
できかつ高圧側蒸発器での加熱エネルギーを減少するこ
とができることにある。
As a result, the amount of heat discharged to the cooling water in the condenser can be reduced, and the heating energy in the high-pressure side evaporator can be reduced.

本発明の他の目的は、高効率かつ安価で経済的な装置を
目的として吸収溶液サイクルの低圧側サイクルと高圧側
サイクルを使用条件に最も適した個所で両サイクル間の
液の混合を、−個所又は複数個所での接続手段によって
行なうことができるハイブリッド型吸収式ヒートポンプ
を提供することにもある。
Another object of the present invention is to mix the liquid between the low-pressure side cycle and the high-pressure side cycle of the absorption solution cycle at a location most suitable for the usage conditions, with the aim of providing a highly efficient, inexpensive, and economical device. It is also an object to provide a hybrid absorption heat pump which can be operated by means of connection at one or more points.

本発明の他の目的は低圧吸収器および発生器に溶液循環
ポンプを設けることにより、吸収溶液サイクルの低圧側
サイクルと高圧側サイクルを前記の使用条件に最も適し
たサイクルをそれぞれ形成させることにより高効率かつ
安価で経済的な装置を提供することを目的とするもので
ある。
Another object of the present invention is to provide a solution circulation pump to the low-pressure absorber and generator, so that the low-pressure side cycle and the high-pressure side cycle of the absorption solution cycle can be formed into cycles most suitable for the above-mentioned usage conditions. The purpose is to provide an efficient, inexpensive, and economical device.

本発明の他の目的は発生器からの吸収溶液をそれぞれ低
圧吸収器と高圧吸収器に、前記の使用条件に最も適した
溶液量を分配することにより、低圧側と高圧側サイクル
を最適なサイクルに形成させることにより高効率でかつ
安価で経済的な装置を提供することを目的とするもので
ある。
Another object of the present invention is to distribute the absorption solution from the generator to the low-pressure absorber and the high-pressure absorber, respectively, in the amount of solution most suitable for the above-mentioned usage conditions, thereby optimizing the low-pressure side and high-pressure side cycles. The purpose of this invention is to provide a highly efficient, inexpensive, and economical device by forming such a structure.

本発明の他の目的は高圧発生器からの吸収溶液を主とし
て低圧吸収器に供給することにより前記の使用条件に最
も適した低圧側と高圧側サイクルを形成させることによ
り高効率でかつ安価で経済的な装置を提供することを目
的とするものである。
Another object of the present invention is to supply absorption solution from a high-pressure generator mainly to a low-pressure absorber to form a low-pressure side and high-pressure side cycle most suitable for the above-mentioned usage conditions, thereby achieving high efficiency, low cost, and economy. The purpose is to provide a device that can

本発明は、吸収器、発生器、蒸発器、凝縮器、稀濃溶液
熱交換器およびこれらを接続する流体径路を有する吸収
式ヒートポンプにおいて、発生器と凝縮器とを中間圧に
保ち、これより高圧に保持された少くとも一段の吸収器
および蒸発器を備え、かつ上記中間圧より低圧に保持さ
れた少くとも一段の吸収器および蒸発器を備え、発生器
と高圧段蒸発器に熱源として温水などの加熱媒体を導ひ
き、凝縮器と低圧吸収器に冷却水などの冷却媒体を導ひ
き、前記熱源よりも高温の高温水などの熱エネルギー源
の生成と、冷却水などの冷却媒体よりも低温の冷水など
の冷熱源の生成とを同時に又は必要に応じて何れか一方
の生成を行なうことができるようにし、低圧吸収器AL
、高圧吸収器AH及び発生器0間を接続する溶液径路と
して、(1)第1の発明においてはAL−+AH−+G
−+AL経路及び濃度の異なる部分を接続するバイパス
径路 (2)第2の発明においてはAL→G→AH−+G→A
L径路 (3)第3の発明においてはAL−+G−+AH→AL
径路 を備えていることを特徴とするハイブリッド型吸収式ヒ
ートポンプである。
The present invention provides an absorption heat pump having an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path that connects these. at least one stage of absorber and evaporator held at a high pressure and at least one stage of absorber and evaporator held at a pressure lower than said intermediate pressure; A heating medium such as cooling water is introduced into the condenser and a low-pressure absorber, and a cooling medium such as cooling water is introduced into the condenser and the low pressure absorber to generate a thermal energy source such as high-temperature water that is higher temperature than the heat source and higher than the cooling medium such as cooling water. The low-pressure absorber
, as a solution path connecting high pressure absorber AH and generator 0, (1) In the first invention, AL-+AH-+G
-+AL route and bypass route connecting parts with different concentrations (2) In the second invention, AL → G → AH - + G → A
L path (3) In the third invention, AL-+G-+AH→AL
This is a hybrid absorption heat pump characterized by having a path.

以上の溶液径路は部分的に共通の管路を用いるようにな
っていてもよい。
The above solution paths may partially use a common pipe line.

本発明を実施例につき説明すれば第3図において、Gは
発生器、Cは凝縮器で発生器Gの方が僅かに高いがほぼ
同圧(これを中間圧と称す)に保たれている。
To explain the present invention in terms of an embodiment, in Fig. 3, G is a generator and C is a condenser, and although the pressure in generator G is slightly higher, it is maintained at approximately the same pressure (this is called intermediate pressure). .

AHは高圧吸収器、ALは高圧蒸発器であり中間圧より
高圧、ALは低圧吸収器、ELは低圧蒸発器であり中間
圧より低圧となっている。
AH is a high pressure absorber, AL is a high pressure evaporator and the pressure is higher than the intermediate pressure, AL is a low pressure absorber, and EL is a low pressure evaporator and the pressure is lower than the intermediate pressure.

溶液側サイクルについては低圧吸収器ALは溶液ポンプ
1、中間濃度溶液管2を経て高圧段吸収器AHと接続し
、高圧段吸収器AHは稀溶液管3、弁4を経て発生器G
と接続し、発生器Gは濃溶液管5、弁6を経て低圧吸収
器ALに接続している。
Regarding the solution side cycle, the low pressure absorber AL is connected to the high pressure stage absorber AH via the solution pump 1 and intermediate concentration solution pipe 2, and the high pressure stage absorber AH is connected to the generator G via the dilute solution pipe 3 and valve 4.
The generator G is connected to the low pressure absorber AL via a concentrated solution pipe 5 and a valve 6.

冷媒側サイクルについては、低圧蒸発器ELは冷媒ポン
プ1、冷媒管8、弁9,10を経て高圧蒸発器EHに接
続している。
Regarding the refrigerant side cycle, the low pressure evaporator EL is connected to the high pressure evaporator EH via a refrigerant pump 1, a refrigerant pipe 8, and valves 9 and 10.

また低圧蒸発器EL内の冷媒液を循環せしめるために弁
11を有する分岐管12が冷媒管8に接続している。
Further, a branch pipe 12 having a valve 11 is connected to the refrigerant pipe 8 in order to circulate the refrigerant liquid in the low-pressure evaporator EL.

凝縮器Cと低圧蒸発器ELとは減圧弁29、戻り管30
により接続している。
The condenser C and the low pressure evaporator EL have a pressure reducing valve 29 and a return pipe 30.
Connected by

溶液側と冷媒側とを接続するものとして高圧吸収器AH
と高圧蒸発器EHとを接続する蒸気管13、発生器Gと
凝縮器Cとを接続する蒸気管14、低圧吸収器ALと低
圧蒸発器EELとを接続する蒸気管15とが備えられて
いる。
High pressure absorber AH connects the solution side and refrigerant side
A steam pipe 13 connects the generator G and the condenser C, a steam pipe 14 connects the low pressure absorber AL and the low pressure evaporator EEL, and a steam pipe 15 connects the low pressure absorber AL and the low pressure evaporator EEL. .

外部との熱の授受の関係としては熱源としての温水管1
6.17がそれぞれ発生器G1高圧蒸発器EHに装備さ
れており、温水管16の入口部18には弁19を有し三
方弁20への分岐を有する入口管21が接続され出口部
22を三方弁20と接続し、三方弁20は他の三方弁2
3と連絡管24により接続している。
Hot water pipe 1 as a heat source in relation to the exchange of heat with the outside
6.17 are respectively installed in the generator G1 and the high-pressure evaporator EH, and the inlet pipe 21 having a valve 19 and a branch to a three-way valve 20 is connected to the inlet part 18 of the hot water pipe 16, and the outlet part 22 is connected to the inlet pipe 21 having a valve 19 and a branch to a three-way valve 20. The three-way valve 20 is connected to the other three-way valve 2.
3 through a communication pipe 24.

三方弁23の一つの口は温水管17の入口部26に、他
の口は出口部27に連なる出口管28に接続してさらに
熱交換器Xsに接続している。
One port of the three-way valve 23 is connected to the inlet section 26 of the hot water pipe 17, and the other port is connected to an outlet pipe 28 connected to the outlet section 27 and further connected to the heat exchanger Xs.

凝縮器Cと低圧吸収器ALには冷却水を通ずる冷却水管
3L32が装備されている。
The condenser C and the low pressure absorber AL are equipped with a cooling water pipe 3L32 through which cooling water passes.

冷却水管31の出口は熱交換器Xwに接続している。The outlet of the cooling water pipe 31 is connected to the heat exchanger Xw.

高圧吸収器AHには所要の高温水を得るための高温水管
33が、低圧蒸発器ELには所要の冷水を得るための冷
水管34が装備されている。
The high pressure absorber AH is equipped with a high temperature water pipe 33 for obtaining the required high temperature water, and the low pressure evaporator EL is equipped with a cold water pipe 34 for obtaining the required cold water.

さらに本実施例においては、溶液サイクルを使用条件に
適合させるために、低圧吸収器ALから高圧吸収器AH
に接続する中間濃度溶液管2、高圧吸収器AHから発生
器Gに接続する稀溶液管3、発生器Gから低圧吸収器A
Lに接続する濃溶液管5及び低圧熱交換器ALから高圧
熱交換器XHまでの間の中間濃度溶液径路から高圧熱交
換器xHから発生器Gまでの間の稀溶液径路に接続する
接続管49が設けられている。
Furthermore, in this embodiment, in order to adapt the solution cycle to the usage conditions, from the low pressure absorber AL to the high pressure absorber AH
intermediate concentration solution pipe 2 connected to the high pressure absorber AH, dilute solution pipe 3 connected from the high pressure absorber AH to the generator G, and from the generator G to the low pressure absorber A
A concentrated solution pipe 5 connected to L and a connecting pipe connected from the intermediate concentration solution path between the low pressure heat exchanger AL and the high pressure heat exchanger XH to the dilute solution path between the high pressure heat exchanger xH and the generator G. 49 are provided.

制御関係としては高温水関係としては高温水管33の出
口に温度検出器35が備えられ、三方弁23と信号切換
器25を経て弁20を制御する。
Regarding the control of high temperature water, a temperature detector 35 is provided at the outlet of the high temperature water pipe 33 and controls the valve 20 via the three-way valve 23 and the signal switch 25.

冷水管34の出口には温度検出器36が設けられ信号切
換器25を経て三方弁20を制御する。
A temperature detector 36 is provided at the outlet of the cold water pipe 34 and controls the three-way valve 20 via a signal switch 25.

37.38に液面検出計でそれぞれ弁10あるいは弁6
を制御する。
At 37.38, the liquid level detector detects valve 10 or valve 6, respectively.
control.

熱交換器Xs、Xwにより冷媒が加熱され熱の有効利用
をはかり効率が増大する。
The refrigerant is heated by the heat exchangers Xs and Xw, and the efficiency is increased by effectively utilizing the heat.

本実施例の作用、効果を説明するに、熱源温水の系統は
、外部から例えば発電所の排温水が入口管21に供給さ
れ弁19は開き、三方弁20は入口管21側は閉じ出口
部22と連絡管24とが連通ずる状態に置かれ、三方弁
23は連絡管24と入口部26とが連通ずる状態に置か
れ、熱源温水は温水管16、連絡管24、温水管17を
経て出口管28より外部に排出されている。
To explain the operation and effect of this embodiment, in the heat source hot water system, waste water from a power plant, for example, is supplied from the outside to the inlet pipe 21, the valve 19 is opened, and the three-way valve 20 is closed on the inlet pipe 21 side and the outlet part is 22 and the communication pipe 24 are placed in communication with each other, and the three-way valve 23 is placed in a state where the communication pipe 24 and the inlet portion 26 are placed in communication with each other, and the heat source hot water passes through the hot water pipe 16, the communication pipe 24, and the hot water pipe 17. It is discharged to the outside from the outlet pipe 28.

勿論、温水管16.17には直列でなく並列に温水を通
水することあるいは別個の温水源から別々に通水するこ
とも可能である。
Of course, it is also possible to supply hot water to the hot water pipes 16, 17 not in series but in parallel, or separately from separate hot water sources.

低圧蒸発器ELの冷媒液は冷媒ポンプ7により冷媒管8
、弁9,10を経て高圧蒸発器EHに入り温水管17の
温水により加熱されて蒸発し蒸気管13を経て高圧吸収
器AHに入る。
The refrigerant liquid in the low-pressure evaporator EL is supplied to the refrigerant pipe 8 by the refrigerant pump 7.
, enters the high-pressure evaporator EH via valves 9 and 10, is heated by hot water in the hot water pipe 17, evaporates, and enters the high-pressure absorber AH via the steam pipe 13.

一方低圧吸収器ALから中間濃度溶液は溶液ポンプ1、
中間濃度溶液管2を通り低圧段および高圧段熱交換器x
LおよびxHを経て加熱され高圧段吸収器AHに入り前
述の冷媒蒸気を吸収する。
On the other hand, the intermediate concentration solution is supplied from the low pressure absorber AL by the solution pump 1,
Intermediate concentration solution tube 2 passes through low pressure stage and high pressure stage heat exchanger x
It is heated through L and xH and enters the high-pressure stage absorber AH, where it absorbs the aforementioned refrigerant vapor.

この際吸収熱により沸点上昇に相当する温度まで溶液が
加熱され高温水管33を加熱し、熱源温水より高い温度
の高温水を得ることができる。
At this time, the solution is heated by the absorbed heat to a temperature corresponding to an increase in the boiling point, heating the high temperature water pipe 33, and high temperature water having a higher temperature than the heat source hot water can be obtained.

冷媒を吸収して稀薄となった稀溶液は稀溶液管3、弁を
経て発生器Gに入り、温水管16の温水により加熱され
て蒸気を発生し濃縮され、濃溶液は濃溶液管5、弁6を
経て低圧段吸収器ALに入り冷却水管32の冷却水に冷
やされ再び溶液ポンプ1に送られる。
The dilute solution that has absorbed the refrigerant enters the generator G through the dilute solution pipe 3 and the valve, and is heated by hot water in the hot water pipe 16 to generate steam and concentrate, and the concentrated solution is passed through the dilute solution pipe 5, The liquid enters the low-pressure stage absorber AL through the valve 6, is cooled by the cooling water in the cooling water pipe 32, and is sent to the solution pump 1 again.

中間濃度溶液管2の溶液の一部は接続管49を通って稀
溶液管3内の稀溶液に合流する。
A portion of the solution in the intermediate concentration solution tube 2 passes through the connecting tube 49 and joins the dilute solution in the dilute solution tube 3.

この際、接続管49および中間濃度溶液管2にバルブs
o、siをそれぞれ設けて使用条件に適した流量配分に
調整を容易にすることもできる。
At this time, the valve s is attached to the connecting pipe 49 and the intermediate concentration solution pipe 2.
It is also possible to provide each of o and si to facilitate adjustment of flow rate distribution suitable for usage conditions.

以上の如く溶液サイクルが繰り返される。The solution cycle is repeated as described above.

一方発生器Gにて発生した冷媒蒸気は蒸気管14を経て
凝縮器Cに達し冷却水管31の冷却水により冷やされて
凝縮し戻り管30減圧弁29を経て低圧蒸発器ELに入
り冷水管34の冷水の熱により一部蒸発しその蒸気は蒸
気管15を経て低圧段吸収器ALに入り溶液に吸収され
る。
On the other hand, the refrigerant vapor generated in the generator G passes through the steam pipe 14 to the condenser C, is cooled and condensed by the cooling water in the cooling water pipe 31, and enters the low pressure evaporator EL through the return pipe 30 and the pressure reducing valve 29, and enters the cold water pipe 34. Part of the vapor is evaporated by the heat of the cold water, and the vapor enters the low pressure stage absorber AL through the steam pipe 15 and is absorbed into the solution.

冷水管34内の冷水は冷媒蒸発により熱を奮われて低温
となり、出口からは冷却水より低温の冷水を得ることが
できる。
The cold water in the cold water pipe 34 is heated by the evaporation of the refrigerant and becomes low temperature, and cold water at a lower temperature than the cooling water can be obtained from the outlet.

冷媒ポンプ7により送られる冷媒のうち一部は分岐管1
2に入り再び低圧段蒸発器ELに戻り蒸発が促進される
Some of the refrigerant sent by the refrigerant pump 7 is transferred to the branch pipe 1
2 and returns to the low pressure stage evaporator EL again to promote evaporation.

負荷の変動その他の熱的変動があった場合は出力端に設
けられた温度検出器35.36により検知し三方弁20
.23を操作し温水管16.17を通る熱源温水を制御
し高温水および冷水の温度を所要の値に保つ。
If there is a load fluctuation or other thermal fluctuation, it is detected by the temperature detector 35, 36 installed at the output end, and the three-way valve 20
.. 23 to control the heat source hot water passing through hot water pipes 16 and 17 to maintain the temperatures of hot water and cold water at required values.

本実施例のような高温水と冷水とを同時に得るためには
従来のものであればAH,EH,G、Cの組み合せの装
置とG、C、AL 、ELの組合せの装置が別個に必要
であったが、本実施例においてはG、Cを共通とし一体
構成となるので構造が非常に簡単となり、かつ、熱源温
水よりも高温の利用価値の高い高温水を、冷却水よりも
低温の冷水と同時に生成すること又は必要に応じて高温
水あるいは冷水の一方を生成することが可能であり、暖
熱と冷熱を両方共有効に利用せしめることができるもの
である。
In order to obtain high-temperature water and cold water at the same time as in this embodiment, a conventional device would require separate devices for the combination of AH, EH, G, and C and devices for the combination of G, C, AL, and EL. However, in this embodiment, G and C are common and are integrated, so the structure is very simple, and the high temperature water, which is higher in temperature than the heat source hot water and has high utility value, can be used at a temperature lower than the cooling water. It is possible to generate cold water at the same time, or to generate either high temperature water or cold water as needed, and it is possible to effectively utilize both hot and cold water.

冷水のみ生成する場合は信号切換器は36→20に切換
え、弁9は閉、弁23は温水管17への流れを遮断して
出口管に短絡して温水を流す。
When only cold water is generated, the signal switch is switched from 36 to 20, valve 9 is closed, and valve 23 blocks the flow to hot water pipe 17 and short-circuits the outlet pipe to allow hot water to flow.

高温水のみ生成する場合は信号切換器25は35−20
に切換え、弁9は閉、三方弁20.23は温水管16.
17に通水できる回路を生かす。
If only high temperature water is generated, the signal switch 25 should be 35-20.
, valve 9 is closed, and three-way valve 20.23 is switched to hot water pipe 16.
Make use of the circuit that allows water to flow through 17.

しかも本実施例においては、溶液サイクルはその要点を
第4図aに示す如く機器間溶液径路として高圧吸収器A
H1発生器G1低圧吸収器ALの間を接続する中間濃度
溶液管2、稀溶液管3.濃溶液管5を有するほか、バイ
パス径路として低圧熱交換器xLと高圧熱交換器xHと
の間の中間濃度溶液管2から稀溶液管3へ接続する接続
管49を有することにより、接続管49がないものに比
べ、高圧サイクルへ流れる中間濃度溶液の一部が分岐さ
れるので高圧サイクルの循環量が減少でき高圧側の効率
が向上し、また低圧サイクルの循環量が増大するので濃
度幅が狭くなり低圧吸収器AL内の温度が下がり従って
低圧蒸発器の温度が下がり、より低温の冷水を得ること
ができる。
Moreover, in this embodiment, the main points of the solution cycle are as shown in FIG.
Intermediate concentration solution pipe 2 and dilute solution pipe 3 connecting between H1 generator G1 and low pressure absorber AL. In addition to having the concentrated solution tube 5, by having a connecting tube 49 connecting the intermediate concentration solution tube 2 to the dilute solution tube 3 between the low pressure heat exchanger xL and the high pressure heat exchanger xH as a bypass path, the connecting tube 49 Compared to the case where there is no intermediate concentration solution, a part of the intermediate concentration solution flowing to the high pressure cycle is branched, so the circulation volume of the high pressure cycle is reduced, improving the efficiency on the high pressure side, and the circulation volume of the low pressure cycle is increased, so the concentration range is widened. The narrowing reduces the temperature in the low pressure absorber AL and therefore the temperature in the low pressure evaporator, making it possible to obtain cold water at a lower temperature.

本実施例の溶液サイクル線図を第4図すに示す。A solution cycle diagram of this example is shown in FIG.

図中二点鎖線は接続管49を用いない場合のサイクル線
図を示す。
The two-dot chain line in the figure shows a cycle diagram when the connecting pipe 49 is not used.

バイパス径路はその両端の一方あるいは両端が高圧熱交
換器又は低圧熱交換器の内部で接続する場合があるが、
上述の例及び以下の例にはこの場合も含むものとする。
One or both ends of the bypass path may be connected inside the high-pressure heat exchanger or the low-pressure heat exchanger, but
This case is also included in the above examples and the following examples.

上述の第4図の実施例ないし以下の第10図までの実施
例は、機器間溶液径路が、低圧吸収器から高圧吸収器へ
接続する溶液径路、高圧吸収器から発生器へ接続する溶
液径路及び発生器から低圧吸収器へ接続する溶液径路で
あり、バイパス径路が、異なる濃度の溶液の溶液径路間
又は溶液径路と作動機器間を接続するバイパス径路であ
るものの実施例である。
In the embodiment shown in FIG. 4 above to the embodiment shown in FIG. and a solution path connecting from the generator to the low pressure absorber, an embodiment in which the bypass path is a bypass path connecting between solution paths of solutions of different concentrations or between a solution path and an operating device.

第5図の別の実施例は、第4図のものと同様であるが、
バイパス径路が、低圧熱交換器xLと高圧熱交換器xH
との間の中間濃度溶液管2から発生器Gへ直接接続する
接続管49である場合である。
The alternative embodiment of FIG. 5 is similar to that of FIG. 4, but
Bypass path connects low pressure heat exchanger xL and high pressure heat exchanger xH
This is the case when the connecting pipe 49 directly connects the intermediate concentration solution pipe 2 to the generator G.

サイクル線図は第5図すに示し、第4図のものと同様な
効果を有するが、さらに高圧側のサイクルで発生器に入
る溶液の抵抗損失が小さくなり循環を容易にする利点が
ある。
A cycle diagram is shown in FIG. 5, which has the same effect as the one in FIG. 4, but has the added advantage that the resistance loss of the solution entering the generator in the high-pressure side cycle is reduced, making circulation easier.

第6図は別の実施例を示し、バイパス径路が高圧熱交換
器xHと高圧吸収器AHとの間の中間濃度溶液管2より
稀溶液管3へ接続する接続管49である場合を示す。
FIG. 6 shows another embodiment in which the bypass path is a connecting pipe 49 connecting the medium concentration solution pipe 2 to the dilute solution pipe 3 between the high pressure heat exchanger xH and the high pressure absorber AH.

第4図の例と同様な効果を示す0 第7図は別の実施例を示し、バイパス径路が、高圧熱交
換器xHと発生器Gとの間の稀溶液管3と、発生器Gと
低圧熱交換器xLとの間の濃溶液管5との間を接続する
接続管49である場合を示す。
FIG. 7 shows another embodiment, which shows the same effect as the example in FIG. A case is shown in which the connection pipe 49 connects the concentrated solution pipe 5 to the low pressure heat exchanger xL.

低圧サイクル側の濃度が高濃度側で下げられるので結晶
線Kから離すことができ、溶液サイクルの結晶の防止に
効果がある。
Since the concentration on the low-pressure cycle side is lowered on the high-concentration side, it can be separated from the crystal line K, which is effective in preventing crystals in the solution cycle.

接続管49の先端を低温熱交換器xLと低温吸収器AL
との間の濃溶液管5に接続してもよい。
Connect the tip of the connecting pipe 49 to the low temperature heat exchanger xL and the low temperature absorber AL.
It may also be connected to the concentrated solution tube 5 between the two.

第8図は第4図と第7図の併用の如き実施例で接続管4
9,49’を設けたものであり、両者の効果を兼ね有す
るものである。
Figure 8 shows an example of the combined use of Figures 4 and 7, with connecting pipe 4.
9 and 49', and has the effects of both.

第9図は別の実施例を示し、バイパス径路が発生器Gと
低温吸収器ALとの間の濃溶液管5から低圧熱交換器x
Lと高圧熱交換器xHとの間の中間濃度溶液管2にエジ
ェクタ50を介して接続する接続管49である場合で、
高圧側サイクルを高濃度側に寄せられるので高温の高温
水が得られる。
FIG. 9 shows another embodiment in which the bypass path runs from the concentrated solution tube 5 between the generator G and the low temperature absorber AL to the low pressure heat exchanger
In the case where the connecting pipe 49 is connected to the intermediate concentration solution pipe 2 between L and the high pressure heat exchanger xH via the ejector 50,
Since the high-pressure side cycle is shifted to the high-concentration side, high-temperature water can be obtained.

第10図は別の実施例を示し、バイパス径路が低圧熱交
換器xLと低圧吸収器Gとの間の濃溶液管゛5から溶液
ポンプ1と低圧熱交換器xLとの間の中間濃度溶液管2
ヘエジエクタ50を介して接続する接続管49である場
合で、第9図と同様の効果を有する。
FIG. 10 shows another embodiment in which the bypass path runs from the concentrated solution pipe 5 between the low pressure heat exchanger xL and the low pressure absorber G to the intermediate concentration solution between the solution pump 1 and the low pressure heat exchanger xL. tube 2
In this case, the connection pipe 49 is connected via the hegejector 50, and the same effect as in FIG. 9 is obtained.

なお接続管49の先端を低温発生器AI、と溶液ポンプ
1との間に接続する場合はエジェクタ50は不要となる
が、キャビテーション対策を必要とする。
Note that when the tip of the connecting pipe 49 is connected between the low temperature generator AI and the solution pump 1, the ejector 50 is not necessary, but cavitation countermeasures are required.

第11図ないし第15図は機器間溶液径路が、低圧吸収
器ALからポンプを介して発生器へ接続する溶液径路、
発生器Gからポンプを介して高圧吸収器AHへ接続する
溶液径路、高圧吸収器AHから発生器Gへ接続する溶液
径路及び発生器Gから低圧吸収器へ接続する溶液径路で
あるものの実施例である。
11 to 15 show that the inter-equipment solution path is a solution path connecting from the low pressure absorber AL to the generator via the pump;
An embodiment of the solution path connecting from the generator G to the high pressure absorber AH via a pump, the solution path connecting from the high pressure absorber AH to the generator G, and the solution path connecting from the generator G to the low pressure absorber. be.

第11図はバイパス径路を有さないものの実施例である
FIG. 11 shows an embodiment without a bypass path.

発生器Gから直接高濃度溶液を高圧吸収器AHに送れる
ので第4図ないし第10図の例に比べ、同一温度の加熱
媒体に対し比較的高温の高温水が得られる。
Since the highly concentrated solution can be sent directly from the generator G to the high pressure absorber AH, compared to the examples shown in FIGS. 4 to 10, relatively high temperature water can be obtained for the heating medium at the same temperature.

41は濃溶液管である。第12図は、低圧吸収器ALか
らポンプ1を介して発生器Gへ接続する溶液径路と、高
圧吸収器AHから発生器Gへ接続する溶液径路とが、発
生器Gに入る前に合流しているものの実施例である。
41 is a concentrated solution tube. FIG. 12 shows that the solution path connecting from the low-pressure absorber AL to the generator G via pump 1 and the solution path connecting from the high-pressure absorber AH to the generator G merge before entering the generator G. This is an example of what is happening.

第11図のものと同様の効果を有するほか、高圧熱交換
器xHの容量が小さい場合でも発生器Gで高圧側サイク
ルの溶液がフラッシュすることを避は熱損失を防ぐ。
In addition to having the same effect as the one in FIG. 11, even if the capacity of the high-pressure heat exchanger xH is small, the solution in the high-pressure side cycle is prevented from flashing in the generator G, thereby preventing heat loss.

第13図は、さらにバイパス径路が、低圧熱交換器xL
と発生器との間の中間濃度溶液管2から発生器Gと高圧
熱交換器xHとの間の濃溶液管41へ接続する接続管4
9である場合の実施例で、前例と同様の効果を有するほ
か、高圧吸収器AHにおける溶液循環量が増加するので
高圧吸収器AH内での散布量が十分とれる。
FIG. 13 shows that the bypass path is further connected to the low pressure heat exchanger xL.
A connecting pipe 4 connecting from the intermediate concentration solution pipe 2 between the generator G and the generator G to the concentrated solution pipe 41 between the generator G and the high pressure heat exchanger xH.
9, in addition to having the same effect as the previous example, the amount of solution circulated in the high-pressure absorber AH increases, so that a sufficient amount of spraying can be obtained in the high-pressure absorber AH.

なお第11図の実施例に本図と同様の接続管49を用い
ることもできる。
Note that a connecting pipe 49 similar to that shown in this figure can also be used in the embodiment shown in FIG.

第14図はバイパス径路の接続管49が高圧熱交換器x
Hを経て高圧吸収器に達しているものの実施例で、前項
の例と同様の効果を有する。
Figure 14 shows that the connecting pipe 49 of the bypass route is connected to the high pressure heat exchanger
This is an example in which the high-pressure absorber is reached through H, and has the same effect as the example in the previous section.

第15図は第11図と同様の実施例であるが、濃溶液管
5と41とがポンプ39の吐出口以降で分岐しているも
のの実施例を示す。
FIG. 15 shows an embodiment similar to FIG. 11, but in which the concentrated solution tubes 5 and 41 are branched after the discharge port of the pump 39.

第11図のものと同様の効果を有し、かつ発生器Gから
低圧吸収器ALへの循環を補助することができる。
It has an effect similar to that of FIG. 11 and can assist the circulation from the generator G to the low pressure absorber AL.

第16図ないし第18図は機器間溶液径路が、低圧吸収
器からポンプを介して発生器へ接続する溶液径路、発生
器からポンプを介して高圧吸収器へ接続する溶液径路及
び高圧吸収器から低圧吸収器へ接続する溶液径路である
ものの実施例である。
Figures 16 to 18 show the solution paths between devices: a solution path connecting from the low-pressure absorber to the generator via the pump, a solution path connecting from the generator to the high-pressure absorber via the pump, and a solution path connecting from the high-pressure absorber to the high-pressure absorber. Figure 3 is an example of a solution path connecting to a low pressure absorber.

第16図は、バイパス径路のないものの例で、低圧側サ
イクルが溶液の結晶線Kから離れるので結晶防止が容易
に行なえ、従って、また、高圧側サイクルを低圧側サイ
クルの結晶線に接近を考慮することなく寄せられるので
比較的高温の高温水を得ることができ、またフラッシュ
損失も少ない、などの効果を有する。
Figure 16 shows an example without a bypass path. Since the low-pressure side cycle is away from the crystalline line K of the solution, crystallization can be easily prevented. Therefore, the high-pressure side cycle should also be considered to be close to the crystalline line of the low-pressure side cycle. Since the water is collected without causing any damage, it is possible to obtain relatively high-temperature water, and there are also effects such as less flash loss.

40は稀溶液管、45は中間濃度溶液管である。40 is a dilute solution tube, and 45 is an intermediate concentration solution tube.

第17図は、バイパス径路が、低温熱交換器xLと発生
器Gとの間の稀溶液管40から発生器Gと高圧熱交換器
xHとの間の濃溶液管43へ接続する接続管49である
ものの例である。
FIG. 17 shows a connecting pipe 49 in which the bypass path connects the dilute solution pipe 40 between the low temperature heat exchanger xL and the generator G to the concentrated solution pipe 43 between the generator G and the high pressure heat exchanger xH. This is an example of something that is.

上側と同様の効果を有するが、さらに高圧吸収器AHに
おける溶液循環量が増加し、散布量が十分とれる利点を
有する。
It has the same effect as the upper side, but also has the advantage that the amount of solution circulated in the high-pressure absorber AH increases and the amount of spraying can be sufficient.

なお接続管49は第14図の如く高圧熱交換器xHを経
て高圧吸収器AHに導いてもよい。
Note that the connecting pipe 49 may be led to the high-pressure absorber AH via the high-pressure heat exchanger xH as shown in FIG.

第18図は、バイパス径路が、発生器Gと高圧熱交換器
xHとの間の濃溶液管43から中間濃度溶液管45へ接
続する接続管49であるものの実施例を示す。
FIG. 18 shows an embodiment in which the bypass path is a connecting pipe 49 connecting a concentrated solution pipe 43 to an intermediate solution pipe 45 between the generator G and the high-pressure heat exchanger xH.

前例と同様の効果を有するほか、低圧吸収器AL内での
濃度を高濃度側に寄せることができるので、比較的低温
の冷水を得ることができる。
In addition to having the same effect as the previous example, since the concentration in the low pressure absorber AL can be brought to the high concentration side, relatively low temperature cold water can be obtained.

以上の各種の実施例において、バイパス径路の位置が図
示されているが、本発明はこれに限るものではなく、溶
液サイクル中の異なる二点間を任意のバイパス径路で接
続することを含むもので、これにより異なる濃度の溶液
の混合による濃度の調整、圧力、温度の調整、流量の増
大あるいは分岐による流量の縮減などを行なうことがで
きる。
Although the positions of the bypass paths are illustrated in the various embodiments described above, the present invention is not limited thereto, and includes connecting two different points during the solution cycle with any bypass path. This makes it possible to adjust the concentration by mixing solutions of different concentrations, to adjust the pressure and temperature, to increase the flow rate, or to reduce the flow rate by branching.

また調整を容易にするため第3図の実施例の如くバルブ
を設けることができる。
Also, in order to facilitate adjustment, a valve can be provided as in the embodiment shown in FIG.

また以上の例では高圧側も低圧側も一段の吸収器、蒸発
器の例が示されているが、何れも複数段とすることがで
きる。
Further, in the above example, a single-stage absorber and evaporator are shown on both the high-pressure side and the low-pressure side, but both can be made into multiple stages.

本発明により、溶液サイクル中の各部の溶液の濃度、温
度、流量を適切な値に選び、これにより冷媒の温度、流
量、冷媒蒸気の温度、流量、圧力も併せ調整し、定めら
れた冷却水条件(温度、流量など)、加熱源条件(温度
、流量など)などの条件に対して、所要の出力条件、例
えば高温水や冷水の所要温度、所要流量などを得るのに
適切なる溶液サイクルを形成せしめて、適用範囲が著し
く広いハイブリッド型吸収式ヒートポンプを提供するこ
とができ、実用上極めて犬なる効果を有するものである
According to the present invention, the concentration, temperature, and flow rate of the solution at each part during the solution cycle are selected to appropriate values, and thereby the temperature, flow rate, and temperature, flow rate, and pressure of the refrigerant vapor are also adjusted. Based on the conditions (temperature, flow rate, etc.), heating source conditions (temperature, flow rate, etc.), select the appropriate solution cycle to obtain the required output conditions, such as the required temperature and flow rate of hot water or cold water. By forming the present invention, it is possible to provide a hybrid type absorption heat pump which has an extremely wide range of application, and has an extremely effective effect in practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例のフローシート、第2図はその溶液サイ
クル線図、第3図ないし第18図は本発明の実施例を示
し、第3図はフローシート、第4図ないし第18図はそ
れぞれ異なる本発明の実施例の溶液サイクルを示し、そ
れぞれaはフローシート、bはサイクル線図を示す。 G・・・・・・発生器、C・・・・・・凝縮器、AH・
・・・・・高圧吸収器、AL・・・・・・低圧吸収器、
EH・・・・・・高圧蒸発器、EL・・・・・・低圧蒸
発器、XH・・・・・・高圧熱交換器、xL・・・・・
・低圧熱交換器、Xs、Xw・・・・・・熱交換器、K
・・・・・・結晶線、Mloo・・・・・・冷媒100
%線、1゜39・・・・・・溶液ポンプ、2,45・・
・・・・中間濃度溶液管、3,40,44・・・・・・
稀溶液管、4,6,9゜10.11,19,46・・・
・・・弁、5,41,43・・・・・・濃溶液管、7・
・・・・・冷媒ポンプ、8・・・・・・冷媒管、12・
・・・・・分岐管、13,14,15・・・・・・蒸気
管、16.17・・・・・・温水管、18.26・・・
・・・入口部、20.23・・・・・・三方弁、21・
・・・・・入口管、22゜27・・・・・・出口部、2
4・・・・・・連絡管、25・・・・・・信号切換器、
28・・・・・・出口管、29・・・・・・減圧弁、3
0・・・・・・戻り管、31.32・・・・・・冷却水
管、33・・・・・・高温水管、34・・・・・・冷水
管、35 、36・・・・・・温度検出器、37.38
・・・・・・液面検出計、47 、48・・・・・・搬
熱管、49・・・・・・接続管、50・・・・・・エジ
ェクタ、51,52・・・・・・バルブ。
Figure 1 shows a flow sheet of a conventional example, Figure 2 shows its solution cycle diagram, Figures 3 to 18 show examples of the present invention, Figure 3 is a flow sheet, and Figures 4 to 18 1 and 2 show solution cycles of different embodiments of the present invention, respectively, a shows a flow sheet, and b shows a cycle diagram. G... Generator, C... Condenser, AH.
...High pressure absorber, AL...Low pressure absorber,
EH...High pressure evaporator, EL...Low pressure evaporator, XH...High pressure heat exchanger, xL...
・Low pressure heat exchanger, Xs, Xw...Heat exchanger, K
...Crystal line, Mloo... Refrigerant 100
% line, 1°39...Solution pump, 2,45...
...Intermediate concentration solution tube, 3,40,44...
Dilute solution tube, 4,6,9°10.11,19,46...
... Valve, 5, 41, 43... Concentrated solution tube, 7.
... Refrigerant pump, 8 ... Refrigerant pipe, 12.
...Branch pipe, 13,14,15...Steam pipe, 16.17...Hot water pipe, 18.26...
...Inlet section, 20.23...Three-way valve, 21.
...Inlet pipe, 22゜27 ...Outlet part, 2
4...Connection pipe, 25...Signal switch,
28... Outlet pipe, 29... Pressure reducing valve, 3
0...Return pipe, 31.32...Cooling water pipe, 33...High temperature water pipe, 34...Cold water pipe, 35, 36...・Temperature detector, 37.38
...Liquid level detector, 47, 48...Heat transfer tube, 49...Connection pipe, 50...Ejector, 51, 52... ·valve.

Claims (1)

【特許請求の範囲】 1 吸収器、発生器、蒸発器、凝縮器、稀濃溶液熱交換
器およびこれらを接続する流体径路を有する吸収式ヒー
トポンプにおいて、発生器と凝縮器とを中間圧に保ち、
これより高圧に保持された少くとも一段の吸収器および
蒸発器を備え、かつ上記中間圧より低圧に保持された少
くとも一段の吸収器および蒸発器を備え、発生器と高圧
段蒸発器に熱源として温水などの加熱媒体を導ひき、凝
縮器と低圧段吸収器に冷却水などの冷却媒体を導ひき、
前記熱源よりも高温の高温水などの熱エネルギー源の生
成と、冷却水などの冷却媒体よりも低温の冷水などの冷
熱源の生成とを同時に又は必要に応じて何れか一方の生
成を行なうことができるようにし、かつ次の(AI )
、 (Bl ) 、 (CI )及び(Dl)の溶液径
路を備えていることを特徴とするハイブリッド型吸収式
ヒートポンプ。 (AI)低圧吸収器からポンプを介して高圧吸収器へ接
続する溶液径路 (B1)高圧吸収器から発生器へ接続する溶液径路(C
1)発生器から低圧吸収器へ接続する溶液径路(Dl)
上記各機器又は溶液径路の互に異なる濃度の部分を接続
するバイパス径路 2 吸収器、発生器、蒸発器、凝縮器、稀濃溶液熱交換
器およびこれらを接続する流体径路を有する吸収式ヒー
トポンプにおいて、発生器と凝縮器とを中間圧に保ち、
これより高圧に保持された少くとも一段の吸収器および
蒸発器を備え、かつ上記中間圧より低圧に保持された少
くとも一段の吸収器および蒸発器を備え、発生器と高圧
段蒸発器に熱源として温水などの加熱媒体を導ひき、凝
縮器と低圧段吸収器に冷却水などの冷却媒体を導ひき、
前記熱源よりも高温の高温水などの熱エネルギー源の生
成と、冷却水などの冷却媒体よりも低温の冷水などの冷
熱源の生成とを同時に又は必要に応じて何れか一方の生
成を行なうことができるようにし、かつ次の(A2)、
(B2)、(C2)及び(B2)の溶液径路を備えてい
ることを特徴とするハイブリッド型吸収式ヒートポンプ
。 (A2)低圧吸収器からポンプを介して発生器へ接続す
る溶液径路 (B2)発生器からポンプを介して高圧吸収器へ接続す
る溶液径路 (C2)高圧吸収器から発生器へ接続する溶液径路(B
2)発生器から低圧吸収器へ接続する溶液径路3 吸収
器、発生器、蒸発器、凝縮器、稀濃溶液熱交換器および
これらを接続する流体径路を有する吸収式ヒートポンプ
において、発生器と凝縮器とを中間圧に保ち、これより
高圧に保持された少くとも一段の吸収器および蒸発器を
備え、かつ上記中間圧より低圧に保持された少くとも一
段の吸収器および蒸発器を備え、発生器と高圧段蒸発器
に熱源として温水などの加熱媒体を導ひき、凝縮器と低
圧段吸収器に冷却水などの冷却媒体を導ひき、前記熱源
よりも高温の高温水などの熱エネルギー源の生成と、冷
却水などの冷却媒体よりも低温の冷水などの冷熱源の生
成とを同時に又は必要に応じて倒れか一方の生成を行な
うことができるようをこし、かつ次の(A3)、(B3
)及び(C3)の溶液径路を備えていることを特徴とす
るハイブリッド型吸収式ヒートポンプ。 (A3)低圧吸収器からポンプを介して発生器へ接続す
る溶液径路 (B3)発生器からポンプを介して高圧吸収器へ接続す
る溶液径路 (C3)高圧吸収器から低圧吸収器へ接続する溶液径路
[Claims] 1. In an absorption heat pump having an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, the generator and the condenser are maintained at an intermediate pressure. ,
at least one stage of absorber and evaporator held at a pressure higher than said intermediate pressure, and at least one stage of absorber and evaporator held at a pressure lower than said intermediate pressure; A heating medium such as hot water is introduced into the condenser and a low-pressure stage absorber, and a cooling medium such as cooling water is introduced into the condenser and low-pressure stage absorber.
Generating a thermal energy source such as high-temperature water with a higher temperature than the heat source and generating a cold heat source such as cold water with a lower temperature than a cooling medium such as cooling water at the same time or generating either one of them as necessary. and the following (AI)
, (Bl), (CI), and (Dl) solution paths. (AI) Solution path connecting the low pressure absorber to the high pressure absorber via the pump (B1) Solution path connecting the high pressure absorber to the generator (C
1) Solution path (Dl) connecting the generator to the low pressure absorber
Bypass path 2 connecting parts of the above devices or solution paths with mutually different concentrations In an absorption heat pump having an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these , maintaining the generator and condenser at intermediate pressure;
at least one stage of absorber and evaporator held at a pressure higher than said intermediate pressure, and at least one stage of absorber and evaporator held at a pressure lower than said intermediate pressure; A heating medium such as hot water is introduced into the condenser and a low-pressure stage absorber, and a cooling medium such as cooling water is introduced into the condenser and low-pressure stage absorber.
Generating a thermal energy source such as high-temperature water with a higher temperature than the heat source and generating a cold heat source such as cold water with a lower temperature than a cooling medium such as cooling water at the same time or generating either one of them as necessary. and the following (A2):
A hybrid absorption heat pump characterized by comprising solution paths (B2), (C2), and (B2). (A2) Solution path connecting from the low pressure absorber to the generator via the pump (B2) Solution path connecting from the generator to the high pressure absorber via the pump (C2) Solution path connecting from the high pressure absorber to the generator (B
2) Solution path 3 connecting the generator to the low-pressure absorber In an absorption heat pump that has an absorber, a generator, an evaporator, a condenser, a dilute solution heat exchanger, and a fluid path connecting these, and at least one stage of absorber and evaporator held at a pressure higher than said intermediate pressure, and at least one stage of absorber and evaporator held at a pressure lower than said intermediate pressure, A heating medium such as hot water is introduced as a heat source to the condenser and the high-pressure stage evaporator, and a cooling medium such as cooling water is introduced to the condenser and the low-pressure stage absorber. generation and the generation of a cold source such as cold water at a lower temperature than the cooling medium such as cooling water at the same time or as necessary, or one of them can be generated, and the following (A3), ( B3
) and (C3). (A3) Solution path connecting from the low pressure absorber to the generator via the pump (B3) Solution path connecting from the generator to the high pressure absorber via the pump (C3) Solution path connecting from the high pressure absorber to the low pressure absorber course
JP15365176A 1976-12-21 1976-12-21 Hybrid absorption heat pump Expired JPS5913665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15365176A JPS5913665B2 (en) 1976-12-21 1976-12-21 Hybrid absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15365176A JPS5913665B2 (en) 1976-12-21 1976-12-21 Hybrid absorption heat pump

Publications (2)

Publication Number Publication Date
JPS5377369A JPS5377369A (en) 1978-07-08
JPS5913665B2 true JPS5913665B2 (en) 1984-03-31

Family

ID=15567190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15365176A Expired JPS5913665B2 (en) 1976-12-21 1976-12-21 Hybrid absorption heat pump

Country Status (1)

Country Link
JP (1) JPS5913665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602734B2 (en) * 2004-10-13 2010-12-22 株式会社荏原製作所 Two-stage temperature rising type absorption heat pump

Also Published As

Publication number Publication date
JPS5377369A (en) 1978-07-08

Similar Documents

Publication Publication Date Title
JPS5818574B2 (en) heat pump
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP4885467B2 (en) Absorption heat pump
JP2782555B2 (en) Absorption heat pump
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
JP4056028B2 (en) Triple effect absorption refrigerator
WO2004102085A1 (en) Absorption chiller
JPS5913665B2 (en) Hybrid absorption heat pump
JPS5830515B2 (en) Hybrid heat pump
KR20090103740A (en) Absorption heat pump
JPS5812507B2 (en) Hybrid type absorption heat pump
JP2000154946A (en) Triple effect absorption refrigeration machine
JPS5857667B2 (en) Dual effect absorption refrigeration device and its control method
JP3812934B2 (en) Double-effect absorption refrigerator
JPH05280825A (en) Absorption heat pump
JPH0552438A (en) Absorption heat pump
JP2657703B2 (en) Absorption refrigerator
SU659847A1 (en) Absorption refrigerator
JP2785154B2 (en) Single effect absorption refrigerator
JP2696574B2 (en) Absorption refrigerator
JPS6113550B2 (en)
JPH0621730B2 (en) Single-double-effect absorption refrigerator
JP2004011928A (en) Absorption refrigerator
JPS62225869A (en) Multiple effect absorption refrigerator
JP3811632B2 (en) Waste heat input type absorption refrigerator