JP2777452B2 - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JP2777452B2
JP2777452B2 JP6039590A JP6039590A JP2777452B2 JP 2777452 B2 JP2777452 B2 JP 2777452B2 JP 6039590 A JP6039590 A JP 6039590A JP 6039590 A JP6039590 A JP 6039590A JP 2777452 B2 JP2777452 B2 JP 2777452B2
Authority
JP
Japan
Prior art keywords
temperature
absorbent
refrigerant
absorbing liquid
temperature generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6039590A
Other languages
Japanese (ja)
Other versions
JPH03263560A (en
Inventor
雅裕 古川
数恭 伊良皆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP6039590A priority Critical patent/JP2777452B2/en
Publication of JPH03263560A publication Critical patent/JPH03263560A/en
Application granted granted Critical
Publication of JP2777452B2 publication Critical patent/JP2777452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は吸収冷凍機に関し、特に熱回収器を備えた吸
収冷凍機に関する。
The present invention relates to an absorption refrigerator, and more particularly, to an absorption refrigerator having a heat recovery unit.

(ロ)従来の技術 例えば実開昭58−164967号公報には、吸収液ポンプか
らの稀吸収液を低温熱交換器の上流で分流し、冷媒排熱
回収熱交換器にて低温発生器から凝縮器に至る間の冷媒
と熱交換し、さらに熱源排熱回収熱交換器にて高温発生
器からの熱源排熱媒体と熱交換させるとともに、上記稀
吸収液ポンプから低温熱交換器を経て流れて来た稀吸収
液と合流させ、合流した稀吸収液を低温発生器及び高温
熱交換器を経て高温発生器へ流すようにした吸収式冷凍
機が開示されている。
(B) Conventional technology For example, Japanese Utility Model Application Laid-Open No. 58-166496 discloses that a rare absorbing liquid from an absorbing liquid pump is diverted upstream of a low-temperature heat exchanger, and is discharged from a low-temperature generator by a refrigerant exhaust heat recovery heat exchanger. It exchanges heat with the refrigerant before reaching the condenser, and further exchanges heat with the heat source waste heat medium from the high temperature generator in the heat source waste heat recovery heat exchanger, and flows from the rare absorbing liquid pump through the low temperature heat exchanger. An absorption refrigerating machine is disclosed in which the diluted absorption liquid is merged with the diluted absorption liquid, and the merged diluted absorption liquid flows through the low-temperature generator and the high-temperature heat exchanger to the high-temperature generator.

(ハ)発明が解決しようとする課題 上記従来の技術において、吸収液ポンプから吐出され
た稀吸収液は低温熱交換器の上流で分流し、稀吸収液の
一部が冷媒排熱回収熱交換器及び熱源排熱回収熱交換器
へ流れるため、稀吸収液の低温熱交換器への流量と、各
排熱回収熱交換器への流量との調節がむずかしく、又、
吸収液ポンプの吐出量を例えば冷水出口温度に基づいて
変化させた場合には、吸収液ポンプの吐出量の変化に応
じて各排熱回収熱交換器を流れる稀吸収液の量も変化し
て排熱回収の効率が低下するおそれがある。又、各排熱
回収熱交換器に流れる稀吸収液の量が多過ぎた場合に
は、低温熱交換器及び高温熱交換器での熱交換量が低下
して、高温発生器の加熱量を増加する必要があり、成績
係数が低下するという問題が発生する。
(C) Problems to be Solved by the Invention In the above-mentioned conventional technology, the diluted absorbing liquid discharged from the absorbing liquid pump is diverted upstream of the low-temperature heat exchanger, and a part of the diluted absorbing liquid is subjected to refrigerant exhaust heat recovery heat exchange. Flow to the low-temperature heat exchanger and the flow to each exhaust heat recovery heat exchanger is difficult because
When the discharge amount of the absorbent pump is changed based on, for example, the cold water outlet temperature, the amount of the diluted absorbent flowing through each exhaust heat recovery heat exchanger also changes according to the change in the discharge amount of the absorbent pump. Exhaust heat recovery efficiency may be reduced. Also, if the amount of the diluted absorbent flowing into each heat recovery heat exchanger is too large, the heat exchange amount in the low-temperature heat exchanger and the high-temperature heat exchanger decreases, and the heating amount of the high-temperature generator decreases. It is necessary to increase, and the problem that the coefficient of performance is lowered occurs.

本発明は、各排熱回収熱交換器と低温熱交換器及び高
温熱交換器とへの稀吸収液の配分を容易にし、かつ、各
排熱回収熱交換器及び低温熱交換器及び高温熱交換器で
の熱交換量の大幅な低下を防止することを目的とする。
The present invention facilitates the distribution of the rare absorbing solution to each of the waste heat recovery heat exchangers, the low temperature heat exchanger, and the high temperature heat exchanger, and furthermore, each of the waste heat recovery heat exchangers, the low temperature heat exchanger, and the high temperature heat exchanger. An object of the present invention is to prevent a large decrease in the amount of heat exchange in an exchanger.

(ニ)課題を解決するための手段 本発明は上記課題を解決するために、吸収器(3),
(4)と高温発生器(7)との間に第2稀吸収液配管
(B)を接続し、この第2稀吸収液配管(B)に吸収器
(3),(4)からの稀吸収液と高温発生器(7)から
の排熱媒体とを熱交換する熱源排熱回収器(41)と第2
吸収液ポンプ(40)とを設け、かつ吸収器(3),
(4)と低温発生器(9)との間に第3稀吸収液配管
(C)を接続し、この第3稀吸収液配管(C)に吸収器
(3),(4)からの稀吸収液と低温発生器(9)から
の冷媒とを熱交換する冷媒排熱回収器(46)と第3吸収
液ポンプ(45)とを設けた吸収冷凍機を提供するもので
ある。
(D) Means for solving the problem The present invention provides an absorber (3),
A second diluted absorbent pipe (B) is connected between (4) and the high-temperature generator (7), and the rare water from the absorbers (3) and (4) is connected to the second diluted absorbent pipe (B). A heat source waste heat recovery unit (41) for exchanging heat between the absorbing liquid and the waste heat medium from the high temperature generator (7);
An absorbent pump (40) and an absorber (3),
A third rare absorbing liquid pipe (C) is connected between (4) and the low temperature generator (9), and the rare water from the absorbers (3) and (4) is connected to the third rare absorbing liquid pipe (C). The present invention provides an absorption refrigerator provided with a refrigerant exhaust heat recovery device (46) for exchanging heat between the absorption liquid and the refrigerant from the low-temperature generator (9) and a third absorption liquid pump (45).

又、吸収器(3),(4)と高温発生器(7)との間
に第1,第2稀吸収液配管(A),(B)を接続し、第1
稀吸収液配管(A)に第1吸収液ポンプ(5)を設け、
第2稀吸収液配管(B)に熱源排熱回収器(41)と第2
吸収液ポンプ(40)とを設け、かつ、吸収器(3),
(4)と低温発生器(9)との間に第3稀吸収液配管
(C)を接続し、この第3稀吸収液配管(C)に冷媒排
熱回収器(46)と第3吸収液ポンプ(45)とを設けた吸
収冷凍機を提供するものである。
Also, first and second dilute absorbent pipes (A) and (B) are connected between the absorbers (3) and (4) and the high temperature generator (7), and the first
A first absorbent pump (5) is provided in the rare absorbent pipe (A),
A heat source exhaust heat recovery unit (41) and a second
An absorbent pump (40) and an absorber (3),
A third rare absorbent pipe (C) is connected between (4) and the low temperature generator (9), and the refrigerant exhaust heat recovery device (46) and the third absorbent are connected to the third rare absorbent pipe (C). An absorption refrigerator provided with a liquid pump (45) is provided.

さらに、第2吸収液ポンプ(40)の回転数を熱源排熱
回収器(41)の排熱媒体出口側の温度、或いは稀吸収液
出口側の温度に応じて制御し、かつ、第3吸収液ポンプ
(45)の回転数を冷媒排熱回収器(46)の冷媒液出口側
の温度、或いは稀吸収液の出口側の温度に応じて制御す
る回転数制御装置(50)を備えた吸収冷凍機を提供する
ものである。
Further, the number of rotations of the second absorbent pump (40) is controlled according to the temperature of the exhaust heat medium outlet side of the heat source exhaust heat recovery unit (41) or the temperature of the diluted absorbent outlet side, and An absorption device having a rotation speed control device (50) for controlling the rotation speed of the liquid pump (45) according to the temperature of the refrigerant liquid outlet side of the refrigerant exhaust heat recovery device (46) or the temperature of the diluted absorption liquid outlet side A refrigerator is provided.

(ホ)作用 上記吸収冷凍機の運転時、第1,第2,第3吸収液ポンプ
(5),(40),(45)がそれぞれ運転され、稀吸収液
が第1,第2,第3稀吸収液配管(A),(B),(C)に
各ポンプ(5),(40),(45)の能力に応じて配分さ
れ、稀吸収液の配分を容易に行うことが可能になる。
又、稀吸収液配管(A),(B)、及び(C)に流れる
稀吸収液の量が大幅に減少することが回避され、熱源排
熱回収器(41)及び冷媒排熱回収器(46)での熱回収を
安定させることが可能になる。
(E) Operation During the operation of the absorption refrigerator, the first, second, and third absorption liquid pumps (5), (40), and (45) are operated, respectively, and the diluted absorption liquid is supplied to the first, second, and second absorption pumps. 3Distributed to the diluted absorbent pipes (A), (B) and (C) according to the capacity of each pump (5), (40) and (45), making it possible to easily distribute the diluted absorbent. become.
Further, it is possible to prevent the amount of the rare absorbing liquid flowing through the rare absorbing liquid pipes (A), (B), and (C) from being greatly reduced, and the heat source exhaust heat recovery unit (41) and the refrigerant exhaust heat recovery unit ( The heat recovery in 46) can be stabilized.

又、熱源排熱回収器(41)の排熱媒体出口側の温度に
応じて第2吸収液ポンプ(40)の回転数を制御すること
により、排熱媒体温度の低下時の第2吸収液ポンプ(4
0)の動力を低減することが可能になり、又、熱源排熱
回収器(41)からボイラーなどの熱源へ戻る排熱媒体の
温度管理が容易になる。又、熱源排熱回収器(41)の稀
回収液出口側の温度に応じて第2吸収液ポンプ(40)の
回転数を制御することにより、高温発生器(7)へ流れ
る稀吸収液の温度をほぼ一定に保つことが可能になり、
又、稀吸収液出口側の温度が低下したときの第2吸収液
ポンプ(40)の動力を低減することが可能になり、又、
高温発生器(7)にて冷媒蒸気を安定して発生させるこ
とが可能になる。さらに、冷媒排熱回収器(46)の冷媒
液出口側の温度に応じて第3吸収液ポンプ(45)の回転
数を制御することにより、冷媒液出口側の温度が低下し
たときの第3吸収液ポンプ(45)の動力を低減すること
が可能になり、又、低温発生器(9)から凝縮器(10)
へ流れる冷媒の温度がほぼ一定に保たれ、凝縮器(10)
の運転を安定させることが可能になる。又、冷媒排熱回
収器(46)の稀吸収液出口側の温度に応じて第3吸収液
ポンプ(45)の回転数を制御することにより、熱回収量
が減少して稀吸収液出口側の温度が低下したときの第3
吸収液ポンプ(45)の動力を低減することが可能にな
り、又、低温発生器(9)へ流れる稀吸収液の温度がほ
ぼ一定に保たれ、低温発生器(9)にて冷媒蒸気を安定
して発生させることが可能になる。
Also, by controlling the rotation speed of the second absorbent pump (40) according to the temperature of the exhaust heat medium outlet side of the heat source exhaust heat recovery unit (41), the second absorbent liquid when the temperature of the exhaust heat medium decreases is reduced. Pumps (4
The power of 0) can be reduced, and the temperature control of the heat discharge medium returning from the heat source heat recovery unit (41) to a heat source such as a boiler becomes easy. Also, by controlling the rotation speed of the second absorbent pump (40) according to the temperature of the diluted recovery liquid outlet side of the heat source exhaust heat recovery unit (41), the dilution of the diluted absorption liquid flowing to the high temperature generator (7) is controlled. It is possible to keep the temperature almost constant,
In addition, it is possible to reduce the power of the second absorbent pump (40) when the temperature of the diluted absorbent outlet decreases.
The high-temperature generator (7) can stably generate the refrigerant vapor. Further, by controlling the number of revolutions of the third absorbent pump (45) in accordance with the temperature of the refrigerant exhaust heat recovery unit (46) on the refrigerant liquid outlet side, the third absorption liquid when the temperature of the refrigerant liquid outlet side decreases is reduced. The power of the absorption liquid pump (45) can be reduced, and the low temperature generator (9) to the condenser (10)
The temperature of the refrigerant flowing to the condenser (10)
Operation can be stabilized. Further, by controlling the number of revolutions of the third absorbent pump (45) in accordance with the temperature of the refrigerant exhaust heat recovery unit (46) on the diluted absorbent outlet side, the heat recovery amount is reduced and the diluted absorbent outlet side is reduced. The third when the temperature of
The power of the absorbing liquid pump (45) can be reduced, and the temperature of the rare absorbing liquid flowing to the low-temperature generator (9) is kept almost constant. It can be generated stably.

(ヘ)実施例 以下、本発明の一実施例を図面に基づいて詳細に説明
する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

図面に示したものは二重効用吸収冷凍機であり、冷媒
に水(H2O)、吸収液に臭化リチウム(LiBr)水溶液を
使用したものである。又、吸収液には後述する吸収器で
の伝熱性能を良くするためにオクチルアルコールなどの
界面活性剤が例えば0.1〜0.2wt%添加されている。
The drawing shows a double effect absorption refrigerator in which water (H 2 O) is used as a refrigerant and a lithium bromide (LiBr) aqueous solution is used as an absorption liquid. Further, a surfactant such as octyl alcohol is added to the absorbing solution in an amount of, for example, 0.1 to 0.2 wt% in order to improve the heat transfer performance in an absorber described later.

図面において(1)は蒸気吸収器胴、(1A)は吸収液
溜め、(2)は蒸発吸収器胴(1)内の中央に配置され
た蒸発器、(3)及び(4)はそれぞれ蒸発器(2)の
両側に配置された吸収器、(5)は第1吸収液ポンプ、
(6A)は低温熱交換器、(6B)は高温熱交換器、(68)
は第1吸収液ポンプ(5)から低温熱交換器(6A)への
み稀吸収液を流す逆止弁、(7)は蒸気を加熱源とする
高温発生器、(8)は発生凝縮器胴、(9)は低温発生
器、(10)は凝縮器、(11)ないし(14)は稀吸収液管
(以下稀液管という)、(15)及び(16)は中間吸収液
管(以下中間液管という)、(17)及び(18)は濃吸収
液管(以下濃液管という)、(17P)は濃液ポンプ、(2
0),(21)は冷媒管、(22)及び(23)は蒸発器
(2)の上部の冷媒散布器(2A)と下部の冷媒液溜め
(2B)との間に接続された冷媒液循環管、(24)は冷媒
液ポンプ、(25)は凝縮器(10)の冷媒液溜め(10A)
と冷媒液ポンプ(24)の吐出側の冷媒液循環管(23)と
の間に接続された冷媒液流下管であり、それぞれは図面
に示したように配管接続されている。ここで、吸収液溜
め(1A)と高温発生器(7)との間の第1稀吸収液配管
(A)は稀液管(11)ないし(14)、第1吸収液ポンプ
(5)、各熱交換器(6A),(6B)から構成されてい
る。
In the drawing, (1) is a vapor absorber body, (1A) is an absorbing liquid reservoir, (2) is an evaporator arranged in the center of the evaporative absorber body (1), (3) and (4) are evaporators, respectively. Absorbers arranged on both sides of the vessel (2), (5) a first absorbent pump,
(6A) is a low-temperature heat exchanger, (6B) is a high-temperature heat exchanger, (68)
Is a check valve that allows the diluted absorbent to flow only from the first absorbent pump (5) to the low-temperature heat exchanger (6A), (7) is a high-temperature generator using steam as a heating source, and (8) is a generating condenser body. , (9) is a low-temperature generator, (10) is a condenser, (11) to (14) are dilute absorption liquid tubes (hereinafter referred to as dilute liquid tubes), (15) and (16) are intermediate absorption liquid tubes (hereinafter, referred to as dilute liquid tubes). (17) and (18) are concentrated absorption liquid tubes (hereinafter referred to as concentrated liquid tubes), (17P) is concentrated liquid pumps, (2
0) and (21) are refrigerant tubes, and (22) and (23) are refrigerant liquids connected between the refrigerant sprayer (2A) at the upper part of the evaporator (2) and the refrigerant liquid reservoir (2B) at the lower part. Circulation pipe, (24) is a refrigerant liquid pump, (25) is a refrigerant liquid reservoir (10A) of condenser (10)
And a refrigerant liquid circulating pipe (23) connected to a refrigerant liquid circulation pipe (23) on the discharge side of the refrigerant liquid pump (24), and each pipe is connected as shown in the drawing. Here, the first diluted absorbent pipe (A) between the absorbent reservoir (1A) and the high-temperature generator (7) is composed of diluted liquid pipes (11) to (14), a first absorbent pump (5), It consists of each heat exchanger (6A) and (6B).

又、(26)はオーバーフロー管であり、このオーバー
フロー管(26)は凝縮器(10)の冷媒液溜め(10A)と
冷媒液ポンプ(24)の吸込側の冷媒液循環管(22)との
間に接続されており、このオーバーフロー管(26)の冷
媒液溜め(10A)側先端は冷媒液流下管(25)の冷媒液
溜め(10A)への接続部より上方の冷媒液溜め側壁に接
続されている。(27)及び(28)は冷媒液の補給管であ
る。これらの補給管(27)及び(28)は冷媒液循環管
(22)などにより内径が小さい管であり、冷媒液循環管
(23)とオーバーフロー管(26)との間に接続されてい
る。(30)は補給管(27),(28)が接続され、蒸発吸
収器胴(1)より高い位置に設けられた冷媒液タンクで
ある。又、(31)は冷水管、(32),(33)、及び(3
4)はそれぞれ冷却水管であり、(31A)は蒸発器熱交換
器、(32A),(33A)は吸収器熱交換器、(34A)は凝
縮器熱交換器である。
An overflow pipe (26) is provided between the refrigerant reservoir (10A) of the condenser (10) and the refrigerant liquid circulation pipe (22) on the suction side of the refrigerant liquid pump (24). The end of the overflow pipe (26) on the side of the refrigerant reservoir (10A) is connected to the refrigerant reservoir side wall above the connection portion of the refrigerant liquid downflow pipe (25) to the refrigerant reservoir (10A). Have been. (27) and (28) are refrigerant liquid supply pipes. These supply pipes (27) and (28) are small-diameter pipes such as a refrigerant liquid circulation pipe (22), and are connected between the refrigerant liquid circulation pipe (23) and the overflow pipe (26). (30) is a refrigerant liquid tank connected to the supply pipes (27) and (28) and provided at a position higher than the evaporator / absorber body (1). (31) is a cold water pipe, (32), (33), and (3)
4) is a cooling water pipe, (31A) is an evaporator heat exchanger, (32A) and (33A) are absorber heat exchangers, and (34A) is a condenser heat exchanger.

さらに(B)は吸収液溜め(1A)と高温発生器(7)
との間に接続された第2稀吸収液配管であり、この第2
稀吸収液配管(B)は稀吸収液管(35),(36)、及び
(37)、第2吸収液ポンプ(40)、及び熱源排熱回収器
(41)から構成されている。ここで第2吸収液ポンプ
(40)の稀吸収液吐出能力は第1吸収液ポンプ(5)の
吐出能力より小さい。又、第2稀吸収液配管(B)の各
稀吸収液管(35),(36)、及び(37)の内径は第1稀
吸収液配管(A)の各稀吸収液管(11)ないし(14)よ
り小さい。さらに、熱源排熱回収器(41)は熱源蒸気管
(7A)の途中に設けられており、吸収器(3),(4)
からの稀吸収液と高温発生器(7)からの蒸気などの熱
源蒸気ドレンとが熱源排熱回収器(41)で熱交換する。
(B) shows the absorption liquid reservoir (1A) and high temperature generator (7)
And a second diluted absorption liquid pipe connected between
The dilute absorbent pipe (B) is composed of dilute absorbent pipes (35), (36) and (37), a second absorbent pump (40), and a heat source exhaust heat recovery unit (41). Here, the discharge capacity of the second absorbent pump (40) is smaller than that of the first absorbent pump (5). The inner diameter of each of the diluted absorbent pipes (35), (36), and (37) of the second diluted absorbent pipe (B) is the same as the diameter of each diluted absorbent pipe (11) of the first diluted absorbent pipe (A). Or less than (14). Furthermore, the heat source exhaust heat recovery device (41) is provided in the middle of the heat source steam pipe (7A), and the absorber (3), (4)
The rare-absorbent liquid from the heat source and the heat-source vapor drain such as steam from the high-temperature generator (7) exchange heat in the heat-source exhaust heat recovery device (41).

又、(C)は吸収液溜め(1A)と低温発生器(9)と
の間に接続された第3稀吸収液配管である。この第3稀
吸収液配管(C)は稀吸収液管(42),(43)、及び
(44)、第3吸収液ポンプ(45)、及び冷媒排熱回収器
(46)から構成されている。ここで、第3吸収液ポンプ
(45)の稀吸収液吐出能力は第1吸収液ポンプ(5)の
吐出能力より小さく、かつ、第2吸収液ポンプ(40)の
吐出能力より小さい。又、各稀吸収液配管(42),(4
3)、及び(44)の内径は第2稀吸収液配管(B)の各
稀吸収液管(35),(36)、及び(37)の内径とほぼ等
しい。又、冷媒排熱回収器(46)は冷媒管(21)の途中
に設けられており、吸収器(3),(4)からの稀吸収
液と低温発生器(9)からの冷媒とが冷媒熱源回収器
(46)で熱交換する。
(C) is a third diluted absorbing liquid pipe connected between the absorbing liquid reservoir (1A) and the low temperature generator (9). The third rare absorbent pipe (C) is composed of the rare absorbent pipes (42), (43), and (44), the third absorbent pump (45), and the refrigerant exhaust heat recovery unit (46). I have. Here, the discharge ability of the third absorbent pump (45) is lower than the discharge ability of the first absorbent pump (5) and smaller than the discharge ability of the second absorbent pump (40). In addition, each diluted absorption liquid piping (42), (4
The inner diameters of 3) and (44) are substantially equal to the inner diameters of the diluted absorption liquid pipes (35), (36) and (37) of the second diluted absorption liquid pipe (B). Further, the refrigerant exhaust heat recovery device (46) is provided in the middle of the refrigerant pipe (21), and the refrigerant from the low-temperature generator (9) and the rare absorbing liquid from the absorbers (3) and (4) exchange the refrigerant. Heat is exchanged in the refrigerant heat source recovery unit (46).

(50)は第2,第3吸収液ポンプ(40),(45)の回転
数を制御する回転数制御装置、(51)は稀吸収液管(3
7)に取付けられた第1温度検出器、(52)は稀吸収液
管(44)に取付けられた第2温度検出器である。ここ
で、回転数制御装置(50)は制御装置(53)とインバー
タ装置(54A),(54B)とから構成されている。さらに
制御装置(53)は第1,第2温度検出器(51),(52)か
ら温度信号(アナログ信号)を入力して変換して出力す
るアナログ信号入力部(55)と、熱源排熱回収器(41)
からの稀吸収液温度、即ち第1温度検出器(51)の検出
温度に応じた第2吸収液ポンプ(40)の運転プログラム
が記憶されるとともに、冷媒排熱回収器(46)からの稀
回収液温度、即ち第2温度検出器(52)の検出温度に応
じた第3吸収液ポンプ(45)の運転プログラムが記憶さ
れた記憶装置(以下ROMという)(56)と、アナログ信
号入力部(55)から信号を入力してROM(56)に記憶さ
れているプログラムに基づいて各ポンプ(40),(45)
の制御を行う中央演算処理装置(以下CPUという)(5
7)と、このCPU(57)からの信号を入力して変換して周
波数信号をインバータ装置(54A)又はインバータ装置
(54B)へ出力するアナログ信号出力部(58)とから構
成されている。
(50) is a rotation speed control device for controlling the rotation speeds of the second and third absorbing liquid pumps (40) and (45), and (51) is a rare absorbing liquid pipe (3).
A first temperature detector attached to 7), and (52) is a second temperature detector attached to the diluted absorption liquid pipe (44). Here, the rotation speed control device (50) includes a control device (53) and inverter devices (54A) and (54B). The control device (53) further includes an analog signal input section (55) for inputting and converting a temperature signal (analog signal) from the first and second temperature detectors (51) and (52) and outputting the converted signal. Collection device (41)
The operating program of the second absorbent pump (40) corresponding to the temperature of the rare absorbing liquid from the refrigerant, that is, the temperature detected by the first temperature detector (51) is stored, and the rare absorbing liquid from the refrigerant exhaust heat recovery unit (46) is stored. A storage device (hereinafter referred to as a ROM) (56) storing an operation program of the third absorbent pump (45) corresponding to the temperature of the recovered liquid, that is, the temperature detected by the second temperature detector (52); A signal is input from (55) and each pump (40), (45) is based on a program stored in ROM (56).
Central processing unit (hereinafter referred to as CPU) that controls
7) and an analog signal output unit (58) that inputs and converts the signal from the CPU (57) and outputs a frequency signal to the inverter device (54A) or the inverter device (54B).

上記のように構成された吸収冷凍機の運転時、ボイラ
ーから熱源蒸気管(7A)を流れて来た蒸気によって高温
発生器(7)の稀吸収液は加熱される。そして、従来の
吸収冷凍機と同様に高温発生器(7)で吸収液から分離
した冷媒は低温発生器(9)を経て凝縮して凝縮器(1
0)へ流れる。又、低温発生器(9)から凝縮器(10)
へ流入した冷媒蒸気は凝縮器熱交換器(34A)を流れる
水と熱交換して凝縮液化する。そして、凝縮器(10)の
冷媒液は冷媒液溜め(10A)に溜る。冷媒液溜め(10A)
の冷媒液は冷媒液流下管(25)の経て冷媒液循環管(2
3)へ流れ、冷媒液ポンプ(24)から吐出された冷媒液
とともに冷媒散布器(2A)から散布される。そして、冷
媒液が蒸発器熱交換器(31A)にて冷水と熱交換して蒸
発し、気化熱によって冷水が冷却される。蒸発器(2)
にて蒸発した冷媒は吸収器(3),(4)へ流れ、吸収
器熱交換器(32A),(33A)に散布されている濃吸収液
に吸収される。
During operation of the absorption refrigerator configured as described above, the rare absorption liquid of the high-temperature generator (7) is heated by the steam flowing from the boiler through the heat source steam pipe (7A). Then, similarly to the conventional absorption refrigerator, the refrigerant separated from the absorbing liquid by the high-temperature generator (7) is condensed through the low-temperature generator (9) and condensed.
Flow to 0). In addition, low temperature generator (9) to condenser (10)
The refrigerant vapor flowing into the heat exchanger exchanges heat with water flowing through the condenser heat exchanger (34A) and condenses and liquefies. Then, the refrigerant liquid of the condenser (10) accumulates in the refrigerant liquid reservoir (10A). Refrigerant liquid reservoir (10A)
Refrigerant liquid flows through the refrigerant liquid downflow pipe (25).
It flows to 3) and is sprayed from the refrigerant sprayer (2A) together with the refrigerant liquid discharged from the refrigerant liquid pump (24). Then, the refrigerant liquid exchanges heat with the cold water in the evaporator heat exchanger (31A) to evaporate, and the cold water is cooled by the heat of vaporization. Evaporator (2)
The refrigerant evaporated in the above flows into the absorbers (3) and (4), and is absorbed by the concentrated absorption liquid sprayed on the absorber heat exchangers (32A) and (33A).

冷媒を吸収して濃度が薄くなった稀吸収液は蒸発吸収
器胴(1)下部の吸収液溜め(1A)に溜る。そして、稀
吸収液は第1吸収液ポンプ(5)から吐出されて高温発
生器(7)へ流れ加熱され、稀吸収液から冷媒蒸気が分
離する。そして、中濃度になった吸収液(以下中間吸収
液という)が高温発生器(7)から高温熱交換器(6B)
を経て低温発生器(9)へ流れる。そして、低温発生器
(9)で中間吸収液が冷媒蒸気と熱交換して加熱され。
中間吸収液からさらに冷媒が分離する。そして、さらに
濃度が高くなった濃吸収液が低温発生器(9)から吸収
器(3),(4)へ流れ散布される。又、低温発生器
(9)で中間吸収液と熱交換して凝縮した冷媒液が冷媒
管(21)を経て凝縮器(10)へ流れ、冷媒液溜め(10
A)に溜る。又、冷媒液から分離して冷媒液溜め(10A)
に溜ったアルコールは液位が上昇したときにオーバーフ
ロー管(26)、冷媒液循環管(22),(23)を経て蒸発
器(2)へ流れる。そして、蒸発器(2)で気化したア
ルコールは吸収器(3),(4)へ流れ、濃吸収液に吸
収される。
The diluted absorbing liquid having a reduced concentration by absorbing the refrigerant is stored in the absorbing liquid reservoir (1A) below the evaporative absorber body (1). Then, the rare absorbing liquid is discharged from the first absorbing liquid pump (5), flows to the high-temperature generator (7), and is heated, whereby refrigerant vapor is separated from the rare absorbing liquid. Then, the absorbent having a medium concentration (hereinafter referred to as an intermediate absorbent) is supplied from the high temperature generator (7) to the high temperature heat exchanger (6B).
Flows to the low-temperature generator (9). Then, the intermediate absorption liquid exchanges heat with the refrigerant vapor in the low-temperature generator (9) and is heated.
The refrigerant is further separated from the intermediate absorbing liquid. Then, the concentrated absorbent having a higher concentration flows from the low-temperature generator (9) to the absorbers (3) and (4) and is dispersed. The refrigerant liquid condensed by exchanging heat with the intermediate absorbing liquid in the low-temperature generator (9) flows through the refrigerant pipe (21) to the condenser (10), and is stored in the refrigerant liquid reservoir (10).
A). Separate from refrigerant liquid and store refrigerant liquid (10A)
When the liquid level rises, the alcohol accumulated in the evaporator (2) flows through the overflow pipe (26) and the refrigerant liquid circulation pipes (22) and (23) to the evaporator (2). Then, the alcohol vaporized in the evaporator (2) flows to the absorbers (3) and (4) and is absorbed by the concentrated absorbent.

又、回転数制御装置(50)が第1温度検出器(51)か
ら熱源排熱回収器(41)出口側の稀吸収液温度のデータ
を入力する。そして、アナログデータ入力部(55)を介
してCPU(57)が温度データを入力し、ROM(56)に記憶
されているプログラムに基づいて動作し、温度データに
応じた周波数が設定される。この周波数は上記温度デー
タに応じて例えば0〜60Hzの範囲で設定された稀吸収液
の温度が低いときには低く設定され、稀吸収液温度が高
いときには高く設定される。そして、CPU(57)から周
波数の信号をアナログ信号出力部(58)が入力して周波
数信号をインバータ装置(54A)へ出力する。インバー
タ装置(54A)はアナログ信号出力部(58)からの周波
数信号に応じた周波数の電力を第2吸収液ポンプ(40)
へ供給する。
Further, the rotation speed control device (50) inputs the data of the temperature of the diluted absorbent at the outlet side of the heat source exhaust heat recovery device (41) from the first temperature detector (51). Then, the CPU (57) inputs the temperature data via the analog data input unit (55), operates based on the program stored in the ROM (56), and sets a frequency according to the temperature data. This frequency is set low according to the temperature data, for example, in the range of 0 to 60 Hz when the temperature of the diluted absorbing liquid is low, and is set high when the temperature of the diluted absorbing liquid is high. Then, the analog signal output unit (58) receives the frequency signal from the CPU (57) and outputs the frequency signal to the inverter device (54A). The inverter device (54A) supplies electric power of a frequency corresponding to the frequency signal from the analog signal output section (58) to the second absorbent pump (40).
Supply to

第2吸収液ポンプ(40)の運転により、吸収液溜め
(1A)の稀吸収液が稀吸収液管(35),(36)を経て熱
源排熱回収器(41)へ流れる。そして、熱源排熱回収器
(41)で稀吸収液と高温発生器(7)からの例えば蒸気
の熱源媒体とが熱交換し、例えば40℃から130℃に温度
上昇した稀吸収液が高温発生器(7)へ流れる。上記の
ように第2稀吸収液配管(B)を経て高温発生器(7)
へ流れた稀吸収液と第1稀吸収液配管(A)を経て高温
発生器(7)へ流れた稀吸収液とが高温発生器(7)で
加熱され、稀吸収液から冷媒蒸気が分離する。又、熱源
排熱回収器(41)から流出した熱源蒸気はボイラーへ戻
り再び加熱される。
By the operation of the second absorbing liquid pump (40), the diluted absorbing liquid in the absorbing liquid reservoir (1A) flows through the diluted absorbing liquid pipes (35) and (36) to the heat source exhaust heat recovery device (41). Then, in the heat source exhaust heat recovery unit (41), the rare absorbing liquid exchanges heat with, for example, a steam heat source medium from the high temperature generator (7), and the rare absorbing liquid whose temperature has risen from 40 ° C. to 130 ° C. generates high temperature. Flow to vessel (7). High temperature generator (7) via the second diluted absorbent pipe (B) as described above
The rare absorbent flowing into the high-temperature generator (7) via the first rare absorbent pipe (A) and the rare absorbent flowing into the high-temperature generator (7) is heated by the high-temperature generator (7), and refrigerant vapor is separated from the rare absorbent. I do. Also, the heat source steam flowing out of the heat source exhaust heat recovery device (41) returns to the boiler and is heated again.

又、回転数制御装置(50)が第2温度検出器(52)か
ら冷媒排熱回収器(46)出口側の稀吸収液温度のデータ
を入力する。そして、上記熱源排熱回収器(41)出口側
の稀吸収液温度に基づく周波数の設定と同様に、冷媒排
熱回収器(46)出口側の稀吸収液温度に応じた周波数が
例えば0〜60Hzの範囲で設定される。そして、この周波
数は稀吸収液温度が低いときには低く設定され、高いと
きには高く設定される。そして、アナログ信号出力部
(58)が周波数信号をインバータ装置(54B)へ出力
し、インバータ装置(54B)は周波数信号に応じた周波
数の電力を第3吸収液ポンプ(45)へ供給する。
In addition, the rotation speed control device (50) inputs data of the temperature of the diluted absorbent at the outlet side of the refrigerant exhaust heat recovery device (46) from the second temperature detector (52). Then, similarly to the setting of the frequency based on the temperature of the diluted absorbent at the outlet of the heat source exhaust heat recovery device (41), the frequency corresponding to the temperature of the diluted absorbent at the outlet of the refrigerant exhaust heat recovery device (46) is, for example, 0 to 0. Set in the range of 60Hz. This frequency is set to be low when the temperature of the diluted absorbing liquid is low, and set to be high when the temperature of the diluted absorbing liquid is high. Then, the analog signal output section (58) outputs the frequency signal to the inverter device (54B), and the inverter device (54B) supplies power of a frequency corresponding to the frequency signal to the third absorbent pump (45).

第3吸収液ポンプ(45)の運転により、吸収液溜め
(1A)の稀吸収液が稀吸収液管(42),(43)を経て冷
媒排熱回収器(46)へ流れる。そして、冷媒排熱回収器
(46)で稀吸収液と低温発生器(9)から流れて来た冷
媒とが熱交換し、稀吸収液が例えば40℃から70℃に温度
上昇して低温発生器(9)へ流れる。低温発生器(9)
へ流れた稀吸収液は高温発生器(7)から流れて来た中
間吸収液と一緒に加熱され、低温発生器(7)の吸収液
から冷媒蒸気が分離する。
By operation of the third absorbent pump (45), the diluted absorbent in the absorbent reservoir (1A) flows to the refrigerant exhaust heat recovery device (46) via the diluted absorbent tubes (42) and (43). Then, in the refrigerant exhaust heat recovery unit (46), the rare absorbing liquid exchanges heat with the refrigerant flowing from the low temperature generator (9), and the temperature of the rare absorbing liquid rises from, for example, 40 ° C. to 70 ° C., and low temperature is generated. Flow to vessel (9). Low temperature generator (9)
The diluted absorbent flowing into the low temperature generator (7) is heated together with the intermediate absorbent flowing from the high temperature generator (7), and the refrigerant vapor is separated from the absorbent in the low temperature generator (7).

上記のように吸収冷凍機が運転しているとき、例えば
冷凍負荷が減少した場合にはそれに伴い熱源蒸気管(7
A)の制御弁(7B)の開度が小さくなり、高温発生器
(7)から流出する熱源蒸気の量が減少するとともに熱
源蒸気の温度が低下する。そして、熱源排熱回収器(4
1)で熱源蒸気と熱交換した後の稀吸収液の温度が設定
温度より低下した場合には、第1温度検出器(51)から
温度データを入力した回転数制御装置(50)が動作す
る。回転数制御装置(50)の制御装置(53)では低下し
た稀吸収液温度に応じて低い周波数が設定され、インバ
ータ装置(54A)へ出力される周波数信号が変化する。
そして、インバータ装置(54A)から第2吸収液ポンプ
(40)へ供給される電力の周波数が低下する。このた
め、第2吸収液ポンプ(40)の回転数が低下して稀吸収
液の吐出量が減少する。そして、熱源排熱回収器(41)
を流れる稀吸収液の量が減少し、熱源排熱回収器(41)
の出口側の稀吸収液の温度は上昇する。
When the absorption chiller is operating as described above, for example, when the refrigeration load decreases, the heat source steam pipe (7
The opening degree of the control valve (7B) in (A) becomes small, the amount of heat source steam flowing out of the high temperature generator (7) decreases, and the temperature of the heat source steam decreases. And heat source waste heat recovery unit (4
When the temperature of the diluted absorbing liquid after the heat exchange with the heat source vapor in step 1) falls below the set temperature, the rotation speed control device (50) to which the temperature data is inputted from the first temperature detector (51) operates. . In the control device (53) of the rotation speed control device (50), a low frequency is set in accordance with the lowered diluted absorbent temperature, and the frequency signal output to the inverter device (54A) changes.
Then, the frequency of the electric power supplied from the inverter device (54A) to the second absorbent pump (40) decreases. For this reason, the rotation speed of the second absorbent pump (40) decreases, and the discharge amount of the rare absorbent decreases. And heat source exhaust heat recovery unit (41)
The amount of the rare absorbing liquid flowing through the tank decreases, and the heat source waste heat recovery unit (41)
The temperature of the diluted absorbing liquid at the outlet side increases.

上記のように稀吸収液の温度が上昇して、第1温度検
出器(51)の検出温度が上昇すると、それに伴い回転数
制御装置(50)が動作して制御装置(53)にて設定され
る周波数が上昇してインバータ装置(54A)へ出力され
る周波数信号が変化する。そして、インバータ装置(54
A)から第2吸収液ポンプ(40)へ供給される電力の周
波数が上昇し、稀吸収液吐出量が増加する。このため、
熱源排熱回収器(41)を流れる稀吸収液の量が増加し熱
源排熱回収器(41)の出口側の稀吸収液の温度の上昇速
度はしだいに遅くなる。そして、稀吸収液の温度が設定
温度になると、第1温度検出器(51)から信号を入力し
た回転数制御装置(50)が動作し、インバータ装置(54
A)から第2吸収液ポンプ(40)へ供給される電力の周
波数はほぼ一定になり、第2吸収液ポンプ(40)の吐出
量はほぼ一定に保たれる。その後、再び第1温度検出器
(51)の検出温度が設定温度より高くなった場合、或い
は低くなった場合には、それに応じて上記と同様に第2
吸収液ポンプ(40)の稀吸収液の吐出量が変化する。こ
のため、第2稀吸収液配管(B)を経て高温発生器
(7)へ流れる稀吸収液の温度はほぼ一定に保たれる。
As described above, when the temperature of the diluted absorbent rises and the temperature detected by the first temperature detector (51) rises, the rotation speed control device (50) operates accordingly and is set by the control device (53). And the frequency signal output to the inverter device (54A) changes. And the inverter device (54
The frequency of the power supplied from A) to the second absorbent pump (40) increases, and the discharge amount of the rare absorbent increases. For this reason,
The amount of the rare absorbing liquid flowing through the heat-source exhaust heat recovery device (41) increases, and the rising speed of the temperature of the rare absorbing solution at the outlet side of the heat-source exhaust heat recovery device (41) gradually decreases. Then, when the temperature of the diluted absorbing solution reaches the set temperature, the rotation speed control device (50) that has received a signal from the first temperature detector (51) operates, and the inverter device (54).
The frequency of the electric power supplied from A) to the second absorbent pump (40) becomes substantially constant, and the discharge amount of the second absorbent pump (40) is kept substantially constant. Thereafter, if the detected temperature of the first temperature detector (51) becomes higher or lower than the set temperature again, the second temperature is accordingly changed in the same manner as above.
The discharge amount of the rare absorbing liquid from the absorbing liquid pump (40) changes. For this reason, the temperature of the diluted absorbent flowing to the high-temperature generator (7) through the second diluted absorbent pipe (B) is kept substantially constant.

又、例えば冷凍負荷が減少した場合には、高温発生器
(7)にて発生する冷媒蒸気の量が減少し、低温発生器
(9)にて吸収液と熱交換して冷媒排熱回収器(46)へ
流れる冷媒の温度が低下する。そして、冷媒排熱回収器
(46)での熱交換量が減少して出口側の稀吸収液温度が
低下した場合には、第2温度検出器(52)から温度デー
タを入力した回転数制御装置(50)が動作する。そし
て、制御装置(53)にて上記温度データに基づいた周波
数が設定され、制御装置(53)からインバータ装置(54
B)へ出力される周波数信号が変化する。ここで、周波
数は稀吸収液の温度の低下に伴い減少する。インバータ
装置(54B)から第3吸収液ポンプ(45)へ供給される
電力の周波数は上記周波数信号に応じて減少し、第3吸
収液ポンプ(45)の稀吸収液吐出量は減少する。そし
て、冷媒排熱回収器(46)を流れる稀吸収液の量が減少
して出口側の稀吸収液温度が上昇する。
Further, for example, when the refrigeration load is reduced, the amount of refrigerant vapor generated in the high-temperature generator (7) is reduced, and the low-temperature generator (9) exchanges heat with the absorbing liquid to perform the refrigerant exhaust heat recovery. The temperature of the refrigerant flowing to (46) decreases. When the amount of heat exchange in the refrigerant exhaust heat recovery device (46) decreases and the temperature of the diluted absorbent at the outlet decreases, the rotation speed control based on the temperature data input from the second temperature detector (52). The device (50) operates. Then, a frequency based on the temperature data is set in the control device (53), and the control device (53) transmits the frequency to the inverter device (54).
The frequency signal output to B) changes. Here, the frequency decreases as the temperature of the rare absorbing liquid decreases. The frequency of the electric power supplied from the inverter device (54B) to the third absorbent pump (45) decreases in accordance with the frequency signal, and the discharge amount of the rare absorbent from the third absorbent pump (45) decreases. Then, the amount of the rare absorbing liquid flowing through the refrigerant exhaust heat recovery device (46) decreases, and the temperature of the rare absorbing liquid at the outlet increases.

第2温度検出器(52)の検出温度が上昇すると、それ
に応じて回転数制御装置(50)が動作し、制御装置(5
3)にて温度データに基づいた周波数が設定される。こ
こで、周波数は稀吸収液の温度の上昇に伴い増加する。
そして、インバータ装置(54B)から第3吸収液ポンプ
(45)へ供給される電力の周波数は増加し、第3吸収液
ポンプ(45)の稀吸収液吐出量は増加する。そして、冷
媒排熱回収器(46)を流れる稀吸収液の量が増加して出
口側の稀吸収液温度の上昇速度はしだいに遅くなる。そ
して、稀吸収液温度が設定温度になると、インバータ装
置(54B)から第3吸収液ポンプ(45)へ供給される電
力の周波数はほぼ一定になり、第3吸収液ポンプ(45)
の吐出量はほぼ一定に保たれる。その後、再び第2温度
検出器(52)の検出温度が設定温度より高くなった場
合、或いは低くなった場合には、それに応じて第3吸収
液ポンプ(45)の稀吸収液の吐出量が変化する。このた
め、第3稀吸収液配管(C)を経て低温発生器(9)へ
流れる稀吸収液の温度はほぼ一定に保たれる。
When the temperature detected by the second temperature detector (52) rises, the rotation speed control device (50) operates accordingly, and the control device (5
In 3), the frequency is set based on the temperature data. Here, the frequency increases as the temperature of the rare absorbing liquid increases.
Then, the frequency of the electric power supplied from the inverter device (54B) to the third absorbent pump (45) increases, and the discharge amount of the rare absorbent from the third absorbent pump (45) increases. Then, the amount of the rare absorbing liquid flowing through the refrigerant exhaust heat recovery device (46) increases, and the rising speed of the rare absorbing liquid temperature on the outlet side gradually decreases. When the temperature of the diluted absorbent reaches the set temperature, the frequency of the electric power supplied from the inverter device (54B) to the third absorbent pump (45) becomes substantially constant, and the third absorbent pump (45)
Is kept almost constant. Thereafter, when the detected temperature of the second temperature detector (52) becomes higher or lower than the set temperature again, the discharge amount of the rare absorbent from the third absorbent pump (45) is accordingly reduced. Change. For this reason, the temperature of the rare absorbing liquid flowing to the low-temperature generator (9) via the third rare absorbing liquid pipe (C) is kept almost constant.

上記実施例によれば、第1稀吸収液配管(A)と別に
吸収液溜め(1A)と高温発生器(7)との間に第2稀吸
収液配管(B)を接続し、この第2稀吸収液配管(B)
に第2吸収液ポンプ(40)と熱源排熱回収器(41)とを
設け、さらに、吸収液溜め(1A)と低温発生器(9)と
の間に第3稀吸収液配管(C)を接続し、この第3稀吸
収液配管(C)に第3吸収液ポンプ(45)と冷媒排熱回
収器(46)とを設けたので、吸収液溜め(1A)の稀吸収
液を各ポンプ(5),(40)、及び(45)の運転によ
り、第1,第2,第3稀吸収液配管(A),(B)、及び
(C)に容易に配分することができ、特に大型の吸収冷
凍機などにおいて、稀吸収液を容易に配分することがで
きる。又、各稀吸収液配管(A),(B)、及び(C)
に流れる稀吸収液の量が大幅に減少することを防止で
き、各熱交換器(6A),(6B)での熱交換量熱源排熱回
収器(41)及び冷媒排熱回収器(46)での熱回収量の大
幅な減少を回避することができる。
According to the above embodiment, the second diluted absorbent pipe (B) is connected between the absorbent reservoir (1A) and the high temperature generator (7) separately from the first diluted absorbent pipe (A). 2 dilute absorption liquid piping (B)
Provided with a second absorbent pump (40) and a heat source exhaust heat recovery unit (41), and a third rare absorbent pipe (C) between the absorbent reservoir (1A) and the low-temperature generator (9). And a third absorbent pump (45) and a refrigerant exhaust heat recovery unit (46) are provided in the third diluted absorbent pipe (C), so that the diluted absorbent in the absorbent reservoir (1A) is By operating the pumps (5), (40), and (45), it can be easily distributed to the first, second, and third diluted absorbent pipes (A), (B), and (C), Particularly in a large absorption refrigerator or the like, the rare absorption liquid can be easily distributed. In addition, each diluted absorption liquid pipe (A), (B), and (C)
It is possible to prevent the amount of the rare absorbing liquid flowing into the heat exchanger from dropping significantly, and the heat exchange heat source exhaust heat recovery unit (41) and refrigerant exhaust heat recovery unit (46) in each heat exchanger (6A) and (6B) It is possible to avoid a large decrease in the amount of heat recovery in the system.

さらに、第2吸収液ポンプ(40)に供給される電力の
周波数を熱源排熱回収器(41)の出口側の稀吸収液の温
度に応じて変化させ、第2吸収液ポンプ(40)の回転数
を変化させているので、熱源排熱回収器(41)を流れる
稀吸収液の量が出口側の稀吸収液の温度に応じて変化
し、吸収器(3),(4)から熱源排熱回収器(41)を
介して高温発生器(7)へ流れる稀吸収液の温度をほぼ
一定に保つことができ、この結果、吸収冷凍機の成績係
数を向上させることができる。又、熱源排熱回収器(4
1)の出口側の稀吸収液温度が低下したときの第2吸収
液ポンプ(40)の動力を低減することができる。
Further, the frequency of the electric power supplied to the second absorbent pump (40) is changed according to the temperature of the diluted absorbent at the outlet side of the heat source exhaust heat recovery unit (41), and the frequency of the second absorbent pump (40) is changed. Since the number of revolutions is changed, the amount of the diluted absorbent flowing through the heat source exhaust heat recovery device (41) changes according to the temperature of the diluted absorbent at the outlet side, and the heat source is removed from the absorbers (3) and (4). The temperature of the diluted absorption liquid flowing to the high-temperature generator (7) via the exhaust heat recovery device (41) can be kept almost constant, and as a result, the coefficient of performance of the absorption refrigerator can be improved. In addition, heat source waste heat recovery unit (4
The power of the second absorbent pump (40) when the temperature of the diluted absorbent at the outlet side in 1) is reduced can be reduced.

又、第3吸収液ポンプ(45)に供給される電力の周波
数を冷媒排熱回収器(46)の出口側稀吸収液温度に基づ
いて制御し、第3吸収液ポンプ(45)の回転数を変化さ
せることにより、冷媒排熱回収器(46)から低温発生器
(9)へ流れる稀吸収液の温度を高温発生器(7)から
の冷媒蒸気量の変化などにかかわらずほぼ一定に保つこ
とができ、この結果、低温発生器(9)での吸収液温度
の低下を回避して、低温発生器(9)から冷媒蒸気を安
定して発生させることができ、吸収冷凍機の成績係数を
向上させることができる。又、冷媒排熱回収器(46)の
出口側の稀吸収液温度が低下したときの第3吸収液ポン
プ(45)の動力を低減することができる。
Further, the frequency of the electric power supplied to the third absorbent pump (45) is controlled based on the temperature of the diluted absorbent on the outlet side of the refrigerant exhaust heat recovery device (46), and the rotation speed of the third absorbent pump (45) is controlled. , The temperature of the diluted absorbent flowing from the refrigerant exhaust heat recovery unit (46) to the low-temperature generator (9) is kept substantially constant irrespective of changes in the amount of refrigerant vapor from the high-temperature generator (7). As a result, refrigerant vapor can be stably generated from the low-temperature generator (9) while avoiding a decrease in the temperature of the absorbent in the low-temperature generator (9), and the coefficient of performance of the absorption refrigerator can be improved. Can be improved. Further, it is possible to reduce the power of the third absorbent pump (45) when the temperature of the diluted absorbent at the outlet of the refrigerant exhaust heat recovery device (46) decreases.

又、図面に示したように、熱源排熱回収器(41)の出
口側の熱源蒸気管(7a)に第3温度検出器(60)を取付
ける。そして、この第3温度検出器(60)の検出温度、
即ち、熱源排熱回収器(41)の出口側の熱源蒸気の温度
に基づいて、回転数制御装置(50)が動作し、熱源蒸気
の温度が上昇したときには第2吸収液ポンプ(40)へ供
給される電力の周波数を増加させ、熱源蒸気の温度が低
下したときには第2吸収液ポンプ(40)へ供給される電
力の周波数を減少させる。上記のように第2吸収液ポン
プ(40)に供給される電力を制御することにより、高温
発生器(7)の加熱量が変化した場合にも、熱源排熱回
収器(41)から高温発生器(7)へ流れる稀吸収液の温
度をほぼ一定に保つことができるとともに、熱源排熱回
収器(41)から流出する熱源蒸気の温度をほぼ一定に保
つことができ吸収冷凍機からボイラーへ戻る熱源蒸気の
温度管理を容易に行うことができる。また、熱源排熱回
収器(41)へ流れる熱源蒸気の量が減少したときなどに
第2吸収液ポンプ(40)が無駄に運転されることを回避
でき、この結果、第2吸収液ポンプ(40)の動力を低減
することができる。
Further, as shown in the drawing, a third temperature detector (60) is attached to the heat source steam pipe (7a) on the outlet side of the heat source exhaust heat recovery device (41). And the temperature detected by the third temperature detector (60),
That is, based on the temperature of the heat source steam on the outlet side of the heat source exhaust heat recovery device (41), the rotation speed control device (50) operates, and when the temperature of the heat source steam rises, the rotation to the second absorbent pump (40) is started. The frequency of the supplied power is increased, and the frequency of the power supplied to the second absorbent pump (40) is reduced when the temperature of the heat source vapor decreases. By controlling the electric power supplied to the second absorbent pump (40) as described above, even when the heating amount of the high-temperature generator (7) changes, the high-temperature generation from the heat source exhaust heat recovery unit (41) is performed. The temperature of the rare absorbing liquid flowing to the heat generator (7) can be kept almost constant, and the temperature of the heat source steam flowing out of the heat source exhaust heat recovery unit (41) can be kept almost constant, so that the absorption chiller moves from the absorption refrigerator to the boiler. The temperature of the returning heat source steam can be easily controlled. Further, it is possible to prevent the second absorbent pump (40) from being wastefully operated, for example, when the amount of the heat source vapor flowing to the heat source exhaust heat recovery device (41) is reduced. As a result, the second absorbent pump ( 40) The power can be reduced.

さらに、図面に示したように、冷媒排熱回収器(46)
の出口側の冷媒管(21)に第4温度検出器(62)を取付
ける。そして、この第4温度検出器(62)の検出温度、
即ち、冷媒排熱回収器(46)の出口側の冷媒温度に基づ
いて回転数制御装置(50)が動作し、冷媒温度が上昇し
たときに第3吸収液ポンプ(45)へ供給される電力の周
波数を増加させて回転数を増加させ、冷媒温度が低下し
たときに、第3吸収液ポンプ(45)へ供給される電力の
周波数を減少させて回転数を低下させる。上記のよう
に、第3吸収液ポンプ(45)の回転数を制御することに
より、冷媒排熱回収器(46)から低温発生器(9)へ流
れる稀吸収液の温度をほぼ一定に保つことができ、又、
冷媒管(21)を経て凝縮器(10)へ流れる冷媒の温度を
一定に保つことができ、この結果、吸収冷凍機の成績係
数を向上させることができる。さらに、冷媒排熱回収器
(46)の出口側の冷媒温度が低下したときの第3吸収液
ポンプ(45)の動力を低減することができる。
Further, as shown in the drawing, the refrigerant exhaust heat recovery device (46)
The fourth temperature detector (62) is attached to the refrigerant pipe (21) on the outlet side of the above. Then, the detected temperature of the fourth temperature detector (62),
That is, the rotation speed control device (50) operates based on the refrigerant temperature at the outlet side of the refrigerant exhaust heat recovery device (46), and the electric power supplied to the third absorbent pump (45) when the refrigerant temperature rises The frequency of the electric power supplied to the third absorbent pump (45) is reduced when the refrigerant temperature is decreased by decreasing the frequency of the refrigerant. As described above, by controlling the number of revolutions of the third absorbent pump (45), the temperature of the rare absorbent flowing from the refrigerant exhaust heat recovery unit (46) to the low temperature generator (9) is kept almost constant. Can be
The temperature of the refrigerant flowing to the condenser (10) through the refrigerant pipe (21) can be kept constant, and as a result, the coefficient of performance of the absorption refrigerator can be improved. Further, the power of the third absorbent pump (45) when the refrigerant temperature on the outlet side of the refrigerant exhaust heat recovery device (46) decreases can be reduced.

(ト)発明の効果 本発明は以上のように構成された吸収冷凍機であり、
吸収器と高温発生器との間に第1稀吸収液配管と第2稀
吸収液配管とを接続し、第1稀吸収液配管に第1吸収液
ポンプを設け、第2稀吸収液配管に第2吸収液ポンプと
熱源排熱回収器とを設け、さらに、吸収器と低温発生器
との間に第3稀吸収液配管を接続し、この第3稀吸収液
配管に第3吸収液ポンプと冷媒排熱回収器とを設けたの
で、第1,第2,第3吸収液ポンプの運転により第1,第2,第
3稀吸収液配管へ稀吸収液を容易に配分することがで
き、又、各稀吸収液配管を流れる稀吸収液の量が大幅に
減少することを回避することができ、吸収冷凍機の運転
を安定させることができる。
(G) Effects of the Invention The present invention is an absorption refrigerator configured as described above,
The first diluted absorbent pipe and the second diluted absorbent pipe are connected between the absorber and the high temperature generator, the first diluted absorbent pipe is provided with the first absorbent pump, and the second diluted absorbent pipe is connected to the second diluted absorbent pipe. A second absorbent pump and a heat source exhaust heat recovery unit, and a third rare absorbent pipe connected between the absorber and the low-temperature generator; and a third absorbent pump connected to the third rare absorbent pipe. And the refrigerant exhaust heat recovery unit, the first, second, and third absorbent pumps can be operated to easily distribute the diluted absorbent to the first, second, and third diluted absorbent pipes. Also, it is possible to avoid a large decrease in the amount of the diluted absorbing liquid flowing through each diluted absorbing liquid pipe, and to stabilize the operation of the absorption refrigerator.

又、吸収器と高温発生器との間に稀吸収液配管を並列
に接続し、一方の稀吸収液配管に第1吸収液ポンプを設
け、他方の稀吸収液配管に第2吸収液ポンプと熱源排熱
回収器とを設け、さらに吸収器と低温発生器との間に稀
吸収液配管を接続し、この稀吸収液配管に第3吸収液ポ
ンプと冷媒排熱回収器とを設けることにより、上記第1,
第2,第3吸収液ポンプの運転により、第1,第2,第3稀吸
収液配管へ稀吸収液を容易に配分することができ、又、
各稀吸収液配管を流れる稀吸収液の量が大幅に減少する
ことを回避でき、吸収冷凍機の運転を安定させることが
可能になる。
Also, a rare absorbent pipe is connected in parallel between the absorber and the high temperature generator, a first absorbent pump is provided in one rare absorbent pipe, and a second absorbent pump is provided in the other rare absorbent pipe. By providing a heat source exhaust heat recovery device, further connecting a rare absorbing solution pipe between the absorber and the low temperature generator, and providing a third absorbing solution pump and a refrigerant exhaust heat recovery device in the rare absorbing solution pipe. , The first,
By operating the second and third absorbent pumps, the diluted absorbent can be easily distributed to the first, second and third diluted absorbent pipes, and
It is possible to avoid a large decrease in the amount of the rare absorbing liquid flowing through each diluted absorbing liquid pipe, and to stabilize the operation of the absorption refrigerator.

さらに、第2吸収液ポンプの回転数を熱源排熱回収器
の出口側の稀吸収液温度、或いは排熱媒体の温度に応じ
て制御し、第3吸収液ポンプの回転数を冷媒排熱回収器
の出口側の稀吸収液温度に応じて制御することにより、
高温発生器或いは低温発生器へ熱源排熱回収器、或いは
冷媒排熱回収器を経て流れる稀吸収液の温度をほぼ一定
に保つことができ、この結果、各発生器にて冷媒蒸気を
安定して発生させることができ、吸収冷凍機の成績係数
を向上させることができ、又、第2吸収液ポンプの回転
数を熱源排熱回収器の出口側排熱媒体の温度に応じて制
御し、第3吸収液ポンプの回転数を冷媒排熱回収器の出
口側冷媒温度に応じて制御することにより、熱源排熱回
収器、或いは冷媒排熱回収器を経て高温発生器或いは低
温発生器へ流れる稀吸収液の温度をほぼ一定に保つこと
ができる。又、ボイラー等の熱源へ戻る排熱媒体の温度
をほぼ一定に保ち排熱媒体の温度管理を容易に行うこと
ができ、又、低温発生器から凝縮器へ流れる冷媒の温度
を一定に保ち、凝縮器の運転を安定させることができ
る。さらには第2,第3吸収液ポンプの動力を低減するこ
とができ、吸収冷凍機の運転コストを抑えることが可能
になる。
Further, the number of revolutions of the second absorbent pump is controlled according to the temperature of the diluted absorbent at the outlet side of the heat source exhaust heat recovery unit or the temperature of the exhaust heat medium, and the number of revolutions of the third absorbent pump is changed to the refrigerant exhaust heat recovery. By controlling according to the temperature of the diluted absorbent at the outlet side of the vessel,
The temperature of the diluted absorbent flowing through the heat source waste heat recovery device or the refrigerant waste heat recovery device to the high temperature generator or the low temperature generator can be kept almost constant, and as a result, the refrigerant vapor is stabilized in each generator. Can be generated, the coefficient of performance of the absorption refrigerator can be improved, and the rotation speed of the second absorption liquid pump is controlled according to the temperature of the outlet side heat transfer medium of the heat source heat recovery unit, By controlling the number of revolutions of the third absorbent pump according to the refrigerant temperature on the outlet side of the refrigerant exhaust heat recovery unit, the refrigerant flows through the heat source exhaust heat recovery unit or the refrigerant exhaust heat recovery unit to the high temperature generator or the low temperature generator. The temperature of the rare absorbing solution can be kept almost constant. In addition, the temperature of the exhaust heat medium returning to the heat source such as a boiler can be kept substantially constant, and the temperature of the exhaust heat medium can be easily controlled.Also, the temperature of the refrigerant flowing from the low-temperature generator to the condenser can be kept constant, The operation of the condenser can be stabilized. Further, the power of the second and third absorbent pumps can be reduced, and the operating cost of the absorption refrigerator can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の一実施例を示す吸収冷凍機の回路構成図
である。 (2)……蒸発器、(3),(4)……吸収器、(5)
……第1吸収液ポンプ、(7)……高温発生器、(9)
……低温発生器、(A),(B),(C)……第1,第2,
第3稀吸収液配管、(40)……第2吸収液ポンプ、(4
1)……熱源排熱回収器、(45)……第3吸収液ポン
プ、(46)……冷媒排熱回収器、(50)……回転数制御
装置。
The drawing is a circuit configuration diagram of an absorption refrigerator showing one embodiment of the present invention. (2) ... evaporator, (3), (4) ... absorber, (5)
... First absorbent pump (7) High-temperature generator (9)
... Low temperature generator, (A), (B), (C) ... First, second,
Third diluted absorbent pipe, (40) ... Second absorbent pump, (4
1) Heat source exhaust heat recovery unit, (45) Third absorbent pump, (46) Refrigerant exhaust heat recovery unit, (50) Rotation speed control device.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 15/00 306 F25B 15/00 303──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 15/00 306 F25B 15/00 303

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸発器と吸収器と高温発生器と低温発生器
と凝縮器とをそれぞれ配管接続して冷媒と吸収液との循
環サイクルを形成するとともに、吸収器と高温発生器と
の間に接続された第1稀吸収液配管に第1吸収液ポンプ
を設けた吸収冷凍機において、吸収器と高温発生器との
間に第2稀吸収液配管を接続し、この第2稀吸収液配管
に吸収器からの稀吸収液と高温発生器からの排熱媒体と
を熱交換する熱源排熱回収器と第2吸収液ポンプとを設
け、かつ、吸収器と低温発生器との間に第3稀吸収液配
管を接続し、この第3稀吸収液配管に吸収器からの稀吸
収液と低温発生器からの冷媒とを熱交換する冷媒排熱回
収器と第3吸収液ポンプとを設けたことを特徴とする吸
収冷凍機。
An evaporator, an absorber, a high-temperature generator, a low-temperature generator, and a condenser are connected to each other by pipes to form a circulation cycle of a refrigerant and an absorbing liquid, and between the absorber and the high-temperature generator. In the absorption refrigerator in which the first absorption liquid pump is provided in the first dilution absorption liquid pipe connected to the second dilution absorption liquid pipe, the second dilution absorption liquid pipe is connected between the absorber and the high-temperature generator. The pipe is provided with a heat source exhaust heat recovery unit for exchanging heat between the rare absorbing liquid from the absorber and the waste heat medium from the high temperature generator and the second absorbing liquid pump, and between the absorber and the low temperature generator. A third rare absorbing liquid pipe is connected, and a refrigerant exhaust heat recovery unit for exchanging heat between the rare absorbing liquid from the absorber and the refrigerant from the low temperature generator and the third absorbing liquid pump are connected to the third rare absorbing liquid pipe. An absorption refrigerator characterized by being provided.
【請求項2】蒸発器と吸収器と高温発生器と低温発生器
と凝縮器とをそれぞれ配管接続して冷媒と吸収液との循
環サイクルを形成した吸収冷凍機において、吸収器と高
温発生器との間に稀吸収液配管を並列に接続し、一方の
稀吸収液配管に第1吸収液ポンプを設けるとともに他方
の稀吸収液配管に吸収器からの稀吸収液と高温発生器か
らの排熱媒体とを熱交換する熱源排熱回収器と第2吸収
液ポンプとを設け、かつ、吸収器と低温発生器との間に
稀吸収液配管を接続し、この稀吸収液配管に吸収器から
の稀吸収液と低温発生器からの冷媒とを熱交換する冷媒
排熱回収器と第3吸収液ポンプとを設けたことを特徴と
する吸収冷凍機。
2. An absorption refrigerator in which an evaporator, an absorber, a high-temperature generator, a low-temperature generator, and a condenser are connected by pipes to form a circulation cycle of a refrigerant and an absorption liquid. Are connected in parallel with each other, a first absorbent pump is provided in one of the diluted absorbent pipes, and the diluted absorbent and the drain from the high-temperature generator are provided in the other diluted absorbent pipe. A heat source exhaust heat recovery unit for exchanging heat with a heat medium and a second absorbent pump are provided, and a rare absorbent pipe is connected between the absorber and the low-temperature generator. An absorption refrigerator comprising a refrigerant exhaust heat recovery unit for exchanging heat between a rare absorbing liquid from a refrigerant and a refrigerant from a low-temperature generator, and a third absorbing liquid pump.
【請求項3】蒸発器と吸収器と高温発生器と低温発生器
と凝縮器とをそれぞれ配管接続して冷媒と吸収液との循
環サイクルを形成するとともに、吸収器と高温発生器と
の間に接続された第1稀吸収液配管に第1吸収液ポンプ
を設けた吸収冷凍機において、吸収器と高温発生器との
間に第2稀吸収液配管を接続し、この第2稀吸収液配管
に吸収器からの稀吸収液と高温発生器からの排熱媒体と
を熱交換する熱源排熱回収器と第2吸収液ポンプとを設
け、かつ、吸収器と低温発生器との間に第3稀吸収液配
管を接続し、この第3稀吸収液配管に吸収器からの稀吸
収液と低温発生器からの冷媒とを熱交換する冷媒排熱回
収器と第3吸収液ポンプとを設け、さらに、第2吸収液
ポンプの回転数を熱源排熱回収器の排熱媒体出口側の温
度、或いは稀吸収液出口側の温度に応じて制御し、か
つ、第3吸収液ポンプの回転数を冷媒排熱回収器の冷媒
液出口側の温度、或いは稀吸収液出口側の温度に応じて
制御する回転数制御装置を備えたことを特徴とする吸収
冷凍機。
3. An evaporator, an absorber, a high-temperature generator, a low-temperature generator, and a condenser are connected to each other by pipes to form a circulation cycle of the refrigerant and the absorbing liquid, and between the absorber and the high-temperature generator. In the absorption refrigerator in which the first absorption liquid pump is provided in the first dilution absorption liquid pipe connected to the second dilution absorption liquid pipe, the second dilution absorption liquid pipe is connected between the absorber and the high-temperature generator. The pipe is provided with a heat source exhaust heat recovery unit for exchanging heat between the rare absorbing liquid from the absorber and the waste heat medium from the high temperature generator and the second absorbing liquid pump, and between the absorber and the low temperature generator. The third rare absorbing liquid pipe is connected, and a refrigerant exhaust heat recovery unit that exchanges heat between the rare absorbing liquid from the absorber and the refrigerant from the low temperature generator and the third absorbing liquid pump are connected to the third rare absorbing liquid pipe. In addition, the rotation speed of the second absorbent pump is set to the temperature at the exhaust heat medium outlet side of the heat source exhaust heat recovery unit, or rare absorption. Rotational speed control that controls according to the temperature at the outlet side and controls the rotational speed of the third absorbent pump according to the temperature at the refrigerant liquid outlet side of the refrigerant exhaust heat recovery unit or the temperature at the rare absorbent outlet side An absorption refrigerator comprising a device.
JP6039590A 1990-03-12 1990-03-12 Absorption refrigerator Expired - Fee Related JP2777452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039590A JP2777452B2 (en) 1990-03-12 1990-03-12 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039590A JP2777452B2 (en) 1990-03-12 1990-03-12 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH03263560A JPH03263560A (en) 1991-11-25
JP2777452B2 true JP2777452B2 (en) 1998-07-16

Family

ID=13140925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039590A Expired - Fee Related JP2777452B2 (en) 1990-03-12 1990-03-12 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2777452B2 (en)

Also Published As

Publication number Publication date
JPH03263560A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
JPS61110852A (en) Absorption heat pump/refrigeration system
JP2011089722A (en) Method and device for refrigeration/air conditioning
JPS61110853A (en) Absorption heat pump/refrigeration system
JP2777452B2 (en) Absorption refrigerator
US3550394A (en) Condensate heating of intermediate strength solution in two-stage absorption machine
JP3851764B2 (en) Absorption refrigerator
CN210751315U (en) Air source multiple-effect vacuum evaporation system applied to cutting fluid concentration
JP2777450B2 (en) Absorption refrigerator
JP2708900B2 (en) Absorption refrigerator
JP3281228B2 (en) Absorption type cold / hot water unit
RU2784256C1 (en) Air-conditioning system based on an absorption refrigerator with connecting a heat pump unit and solar collectors
JP2858921B2 (en) Control device for absorption refrigerator
JP3429905B2 (en) Absorption refrigerator
JP3138164B2 (en) Absorption refrigerator
JPS6138787B2 (en)
KR20100019422A (en) A method and system for extending a turndown ratio of an absorption chiller
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JP3084650B2 (en) Absorption chiller / heater and its control method
JP3241498B2 (en) Absorption refrigerator
JP3434284B2 (en) Absorption refrigerator
JP3202157B2 (en) Air conditioner
JPS6113888Y2 (en)
JP2899645B2 (en) Absorption refrigerator
CN112402995A (en) Air source multiple-effect vacuum evaporation system applied to cutting fluid concentration
JPS59176550A (en) Single and double effect combination abroption type refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees