JPH065852A - Mosfet and manufacture thereof - Google Patents

Mosfet and manufacture thereof

Info

Publication number
JPH065852A
JPH065852A JP16500092A JP16500092A JPH065852A JP H065852 A JPH065852 A JP H065852A JP 16500092 A JP16500092 A JP 16500092A JP 16500092 A JP16500092 A JP 16500092A JP H065852 A JPH065852 A JP H065852A
Authority
JP
Japan
Prior art keywords
film
refractory metal
metal film
gate
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16500092A
Other languages
Japanese (ja)
Inventor
Yasutaka Kobayashi
康孝 小林
Fumio Ichikawa
文雄 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16500092A priority Critical patent/JPH065852A/en
Publication of JPH065852A publication Critical patent/JPH065852A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28088Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being a composite, e.g. TiN

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To implement a surface channel type device and reduce a wiring resistance of an electrode and stabilize MOS characteristics capable of controlling a deterioration of a gate breakdown strength or the like. CONSTITUTION:In a manufacture of a MOSFET, a gate oxide film 103 is formed on a conductive type semiconductor substrate or a gate forming region of a semiconductor layer, and a titanium nitride film 104 made of a first high- melting metal film is formed on the gate oxide film 103, and a tungsten film 105 made of a second high-melting metal film having a stress opposed to the titanium nitride film 104 is formed on the titanium nitride film 104, and a patterning is performed by a photolithography technique, and a gate electrode is formed with the titanium nitride film 104 and the tungsten film 105.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゲート電極に高融点金
属を有するMOSFET及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a MOSFET having a gate electrode containing a refractory metal and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、以下に示すようなものがあった。図2はかかる
従来のMOSFETの製造工程断面図である。なお、こ
のようなMOSFETの製造方法は、現在ではLDD構
造などに広く応用され、その一例として、詳しくはIE
DM’83 P.392〜395に示されている。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, there were the following. FIG. 2 is a cross-sectional view of manufacturing steps of such a conventional MOSFET. It should be noted that such a method of manufacturing a MOSFET is now widely applied to LDD structures and the like.
DM'83 P.M. 392-395.

【0003】まず、図2(a)に示すように、通常の選
択酸化法(LOCOS法)により、シリコン単結晶半導
体基板(以下、基板という)1にフィールド酸化膜2を
形成し、アクティブ領域11とフィールド領域12を分
離する。次に、図2(b)に示すように、トランジスタ
のゲート酸化膜3、及びゲート電極4を全面に形成した
後、ホトリソグラフィ技術によりパターニングを行い、
ゲート電極4を形成する。
First, as shown in FIG. 2A, a field oxide film 2 is formed on a silicon single crystal semiconductor substrate (hereinafter referred to as a substrate) 1 by an ordinary selective oxidation method (LOCOS method), and an active region 11 is formed. And the field area 12 are separated. Next, as shown in FIG. 2B, after forming the gate oxide film 3 and the gate electrode 4 of the transistor on the entire surface, patterning is performed by the photolithography technique,
The gate electrode 4 is formed.

【0004】次に、図2(c)に示すように、ゲート電
極4をマスクとして、例えば、Nチャンネルトランジス
タの場合では、ヒ素の不純物をイオン注入することによ
り、基板1のソース/ドレイン形成領域の全体に自己整
合的に高濃度の不純物拡散層5を形成するようにしてい
る。
Next, as shown in FIG. 2C, using the gate electrode 4 as a mask, for example, in the case of an N-channel transistor, arsenic impurities are ion-implanted to form source / drain formation regions of the substrate 1. The high-concentration impurity diffusion layer 5 is formed in a self-aligning manner over the entire area.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記し
た従来のMOSFETでは、ゲート電極として使用する
材料によって以下のような問題点があった。まず、電極
材料として多結晶シリコン膜を使用した場合は、金属材
料に比べて比抵抗が高く、信号遅延が顕在化してくる。
また、低抵抗化のために多結晶シリコン膜上にタングス
テンやモリブデンのような高融点金属を形成するポリサ
イド構造を使用した場合でも、金属材料単体の場合に比
べて、数ケタも比抵抗が大きく、かつ表面チャネル型デ
バイスを実現する異極性ゲート電極方式をとろうとする
とプロセスが複雑になる。
However, the above-mentioned conventional MOSFET has the following problems depending on the material used as the gate electrode. First, when a polycrystalline silicon film is used as the electrode material, the specific resistance is higher than that of the metal material, and the signal delay becomes apparent.
Even when a polycide structure in which a refractory metal such as tungsten or molybdenum is formed on the polycrystalline silicon film to reduce the resistance, the specific resistance is several orders of magnitude higher than that of the metal material alone. In addition, the process becomes complicated if a different polarity gate electrode method for realizing a surface channel device is adopted.

【0006】更に進んで、高融点金属そのものをゲート
電極として用いる試みもなされているが、タングステン
などでは膜応力の大きいことによるゲート耐圧やホット
キャリア劣化現象が発生するなど、技術的に満足できる
ものは得られなかった。本発明は、以上述べたような問
題点を解決するために、表面チャネル型デバイスを実現
し、かつ、電極の配線抵抗が低く、しかも、ゲート耐圧
劣化等が抑制されるMOS特性を安定化することができ
るMOSFET及びその製造方法を提供することを目的
とする。
Further attempts have been made to use a refractory metal itself as a gate electrode, but it is technically satisfactory that, for example, tungsten causes a gate breakdown voltage and a hot carrier deterioration phenomenon due to a large film stress. Was not obtained. In order to solve the above-mentioned problems, the present invention realizes a surface channel type device and stabilizes MOS characteristics in which the wiring resistance of electrodes is low and gate breakdown voltage deterioration is suppressed. It is an object of the present invention to provide a MOSFET that can be manufactured and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、MOSFETにおいて、半導体基板と、
この半導体基板の表層に形成されたソース及びドレイン
領域と、このソース及びドレイン領域間の前記半導体基
板上に形成されたゲート酸化膜と、このゲート酸化膜上
に形成された第1の高融点金属膜と、この第1の高融点
金属膜上に形成され、かつ該第1の高融点金属膜とは相
反する応力をもつ第2の高融点金属膜とを設けるように
したものである。
In order to achieve the above object, the present invention provides a MOSFET, a semiconductor substrate, and
Source and drain regions formed on the surface layer of the semiconductor substrate, a gate oxide film formed on the semiconductor substrate between the source and drain regions, and a first refractory metal formed on the gate oxide film. A film and a second refractory metal film formed on the first refractory metal film and having a stress opposite to that of the first refractory metal film are provided.

【0008】また、MOSFETの製造方法において、
第1導電型の半導体基板あるいは半導体層のゲート形成
領域上にゲート酸化膜を形成し、このゲート酸化膜上に
第1の高融点金属膜を形成し、この第1の高融点金属膜
上に該第1の高融点金属膜とは相反する応力をもつ第2
の高融点金属膜を形成し、ホトリソグラフィ技術により
パターニングを行い、前記第1の高融点金属膜と前記第
2の高融点金属膜によりゲート電極を形成するようにし
たものである。
In the method of manufacturing the MOSFET,
A gate oxide film is formed on a gate formation region of a semiconductor substrate of the first conductivity type or a semiconductor layer, a first refractory metal film is formed on the gate oxide film, and a first refractory metal film is formed on the first refractory metal film. The second refractory metal film having a stress opposite to that of the first refractory metal film
Of the high melting point metal film, and patterning is performed by photolithography technique to form a gate electrode by the first high melting point metal film and the second high melting point metal film.

【0009】更に、第1導電型の半導体基板あるいは半
導体層のゲート形成領域上にゲート酸化膜を形成し、こ
のゲート酸化膜上に第1の高融点金属膜を形成し、この
第1の高融点金属膜上に該第1の高融点金属膜とは相反
する応力をもつ第2の高融点金属膜を形成し、この第2
の高融点金属膜上に反射防止膜を形成し、ホトリソグラ
フィ技術によりパターニングを行い、前記第1の高融点
金属膜、前記第2の高融点金属膜及び反射防止膜により
ゲート電極を形成するようにしたものである。
Further, a gate oxide film is formed on the gate formation region of the semiconductor substrate of the first conductivity type or the semiconductor layer, and a first refractory metal film is formed on the gate oxide film. A second refractory metal film having a stress opposite to that of the first refractory metal film is formed on the melting point metal film.
An antireflection film is formed on the refractory metal film, and patterned by photolithography to form a gate electrode by the first refractory metal film, the second refractory metal film and the antireflection film. It is the one.

【0010】[0010]

【作用】本発明によれば、ゲート電極材料として、高融
点金属を使用するとともに、その下部にパッド・メタル
として、更にもう一種類の別な相反する応力をもつ高融
点金属を併用する。したがって、ゲート酸化膜にかかる
応力が緩和され、ゲート耐圧やホットキャリアの劣化を
抑制することができる。
According to the present invention, a refractory metal is used as the gate electrode material, and another kind of refractory metal having different stresses is also used as a pad metal thereunder. Therefore, the stress applied to the gate oxide film is relieved, and the gate breakdown voltage and hot carrier deterioration can be suppressed.

【0011】しかも、ポリサイド構造ではなく、金属材
料のみでゲート電極を構成できるため、配線抵抗を低く
することができるだけでなく、表面チャネル型デバイス
の製造に対してもプロセスが簡単になる。
Moreover, since the gate electrode can be formed only of a metal material instead of the polycide structure, not only the wiring resistance can be lowered, but also the process for manufacturing the surface channel type device is simplified.

【0012】[0012]

【実施例】以下、本発明の実施例について図を参照しで
がら詳細に説明する。図1は本発明の実施例を示す半導
体装置の製造工程断面図である。まず、図1(a)に示
すように、シリコン単結晶半導体基板(以下、基板とい
う)101上に、図示しないがシリコン窒化膜を耐酸化
マスクとして用いる通常の選択酸化法(LOCOS法)
により、フィールド酸化膜102(例えば、5000
Å)を形成し、アクティブ領域71とフィールド領域7
0を分離する。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device manufacturing process showing an embodiment of the present invention. First, as shown in FIG. 1A, a normal selective oxidation method (LOCOS method) using a silicon nitride film (not shown) as an oxidation-resistant mask on a silicon single crystal semiconductor substrate (hereinafter referred to as a substrate) 101 is used.
Causes the field oxide film 102 (for example, 5000
Å) forming the active area 71 and the field area 7
Separate 0.

【0013】次いで、アクティブ領域71の基板101
上の表面に、熱酸化によってゲート酸化膜103(例え
ば、100〜200Å)を形成し、更にその上を含む全
面に、例えば圧縮応力をもつ窒化チタン膜104(50
0〜1000Å)をスパッタ法により形成する。次い
で、その上を含む全面に、例えば引張り応力をもつタン
グステン膜105(1000〜2000Å)をスパッタ
法あるいはCVD(化学的気相成長)法を用いて形成し
た後、更にその上を含む全面にCVD法により、酸化膜
106(例えば、500Å)を形成する。
Next, the substrate 101 in the active area 71
A gate oxide film 103 (for example, 100 to 200Å) is formed on the upper surface by thermal oxidation, and a titanium nitride film 104 (50 having a compressive stress) is formed on the entire surface including the gate oxide film 103.
0 to 1000Å) is formed by the sputtering method. Then, a tungsten film 105 (1000 to 2000 Å) having a tensile stress is formed on the entire surface including the upper portion by a sputtering method or a CVD (chemical vapor deposition) method, and then the entire surface including the upper portion is subjected to CVD. The oxide film 106 (for example, 500 Å) is formed by the method.

【0014】次に、図1(b)に示すように、ホトリソ
グラフィ技術により、図示しないがホトレジストをマス
クとして酸化膜106、タングステン膜105、窒化チ
タン膜104、ゲート酸化膜103をエッチングし、ゲ
ート電極107を形成する。レジスト除去後、図1
(c)に示すように、酸化膜106をマスクとして、例
えばNチャンネルトランジスタの場合、ヒ素などの不純
物をイオン注入法を用いて基板101に注入することに
より、基板101のソース/ドレイン形成領域中、ゲー
ト電極107に隣接する部分に自己整合的に高濃度不純
物拡散層108を形成する。ここで、酸化膜106はイ
オン注入時のマスクとなっているとともに、タングステ
ン膜105の反射率を低減する働きをしている。
Next, as shown in FIG. 1B, the oxide film 106, the tungsten film 105, the titanium nitride film 104, and the gate oxide film 103 are etched by a photolithography technique using a photoresist (not shown) as a mask to etch the gate. The electrode 107 is formed. Figure 1 after removing the resist
As shown in (c), in the case of an N-channel transistor using the oxide film 106 as a mask, impurities such as arsenic are implanted into the substrate 101 by an ion implantation method, so that the source / drain formation region of the substrate 101 is formed. The high-concentration impurity diffusion layer 108 is formed in a self-aligned manner in a portion adjacent to the gate electrode 107. Here, the oxide film 106 serves as a mask during ion implantation and also serves to reduce the reflectance of the tungsten film 105.

【0015】その後は、図示はしていないが、中間絶縁
膜、配線用金属パターン及び保護用絶縁膜を公知の技術
により形成し、各種構造のMOSFETを完成させる。
図3は本発明の他の実施例を示す半導体装置の製造工程
断面図である。なお、前記した実施例と同様の部分につ
いては、同じ番号を付してその説明を省略する。
Thereafter, although not shown, an intermediate insulating film, a wiring metal pattern and a protective insulating film are formed by a known technique to complete MOSFETs of various structures.
3A to 3D are cross-sectional views of manufacturing steps of a semiconductor device showing another embodiment of the present invention. The same parts as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.

【0016】まず、図3(a)に示すように、前記実施
例と同様に、基板101上にフィールド酸化膜102を
形成し、アクティブ領域71とフィールド領域70を分
離する。次に、アクティブ領域71の基板101上の表
面に、熱酸化によってゲート酸化膜103を形成し、更
にその上を含む全面に、例えば圧縮応力をもつ窒化チタ
ン膜104をスパッタ法により形成する。
First, as shown in FIG. 3A, a field oxide film 102 is formed on a substrate 101 to separate an active region 71 and a field region 70, as in the above-described embodiment. Next, a gate oxide film 103 is formed on the surface of the substrate 101 in the active region 71 by thermal oxidation, and a titanium nitride film 104 having, for example, compressive stress is formed by sputtering on the entire surface including the gate oxide film 103.

【0017】次いで、更にその上を含む全面に、例えば
引張り応力をもつタングステン膜105をスパッタ法、
あるいはCVD(化学的気相成長)法を用いて形成す
る。更に、そのタングステン膜105上には全面にCV
D法により、反射防止金属(ARM:アンチ・リフレク
ト・メタル)膜201(例えば、窒化チタン膜)を形成
する。
Then, a tungsten film 105 having a tensile stress, for example, is sputtered on the entire surface including the above,
Alternatively, it is formed by using a CVD (chemical vapor deposition) method. Further, CV is entirely formed on the tungsten film 105.
An antireflection metal (ARM: anti-reflect metal) film 201 (for example, a titanium nitride film) is formed by the D method.

【0018】次に、図3(b)に示すように、ホトリソ
グラフィ技術により、図示しないがホトレジストをマス
クとして反射防止金属膜201、タングステン膜10
5、窒化チタン膜104、ゲート酸化膜103をエッチ
ングし、ゲート電極202を形成する。レジスト除去
後、図3(c)に示すように、反射防止金属膜201を
マスクとして、例えばNチャンネルトランジスタの場
合、ヒ素などの不純物をイオン注入法を用いて基板10
1に注入することにより、基板101のソース/ドレイ
ン形成領域中、ゲート電極202に隣接する部分に自己
整合的に高濃度不純物拡散層108を形成する。ここ
で、反射防止金属膜201はイオン注入時のマスクとな
っているとともに、タングステン膜105の反射率を低
減する働きをしている。
Next, as shown in FIG. 3B, the anti-reflection metal film 201 and the tungsten film 10 are formed by a photolithography technique using a photoresist (not shown) as a mask.
5, the titanium nitride film 104 and the gate oxide film 103 are etched to form a gate electrode 202. After removing the resist, as shown in FIG. 3C, using the antireflection metal film 201 as a mask, for example, in the case of an N-channel transistor, an impurity such as arsenic is used by ion implantation to form the substrate 10.
1 to form a high-concentration impurity diffusion layer 108 in a self-aligned manner in a region adjacent to the gate electrode 202 in the source / drain formation region of the substrate 101. Here, the antireflection metal film 201 serves as a mask during ion implantation and also serves to reduce the reflectance of the tungsten film 105.

【0019】その後は、図示はしていないが、中間絶縁
膜、配線用金属パターン及び保護用絶縁膜を公知の技術
により形成し、各種構造のMOSFETを完成させる。
なお、この実施例では、基板101に素子を形成するよ
うにしたが、この基板101上に半導体層を成長させ
て、その半導体層上に同様に素子を形成させるようにし
ても良いし、上記材料、寸法、形状、配置関係、数値的
条件またはその他の条件は、本発明の目的の範囲内で任
意に適宜な設計の変更及び変形を行うことができること
は言うまでもない。
After that, although not shown, an intermediate insulating film, a metal pattern for wiring and a protective insulating film are formed by known techniques to complete MOSFETs of various structures.
Although the element is formed on the substrate 101 in this embodiment, a semiconductor layer may be grown on the substrate 101 and the element may be similarly formed on the semiconductor layer. It goes without saying that materials, dimensions, shapes, arrangement relationships, numerical conditions and other conditions can be arbitrarily modified and modified within the scope of the object of the present invention.

【0020】[0020]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、ゲート電極材料として、引張り応力をもつタン
グステンと、圧縮応力をもつ窒化チタンを併用している
ため、ゲート酸化膜にかかる応力が緩和され、ゲート耐
圧やホットキャリアの劣化を抑制することができる。
As described in detail above, according to the present invention, since tungsten having tensile stress and titanium nitride having compressive stress are used together as the gate electrode material, the gate oxide film is affected. Stress is relieved, and gate breakdown voltage and hot carrier deterioration can be suppressed.

【0021】しかも、ポリサイド構造ではなく、金属材
料のみでゲート電極を構成できるため、配線抵抗を低く
することができるだけでなく、表面チャネル型デバイス
の製造に対してもプロセスが簡単になる。
Moreover, since the gate electrode can be formed only of a metal material instead of the polycide structure, not only the wiring resistance can be lowered, but also the process for manufacturing the surface channel type device is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す半導体装置の製造工程断
面図である。
FIG. 1 is a cross-sectional view of a manufacturing process of a semiconductor device showing an embodiment of the present invention.

【図2】従来の半導体装置の製造工程断面図である。FIG. 2 is a sectional view of a conventional semiconductor device manufacturing process.

【図3】本発明の他の実施例を示す半導体装置の製造工
程断面図である。
FIG. 3 is a cross-sectional view of a manufacturing process of a semiconductor device showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

70 アクティブ領域 71 フィールド領域 101 シリコン単結晶半導体基板 102 フィールド酸化膜 103 ゲート酸化膜 104 窒化チタン膜 105 タングステン膜 106 酸化膜 107,202 ゲート電極 108 高濃度不純物拡散層 201 反射防止(ARM:アンチ・リフレクト・メ
タル)膜
70 Active Region 71 Field Region 101 Silicon Single Crystal Semiconductor Substrate 102 Field Oxide Film 103 Gate Oxide Film 104 Titanium Nitride Film 105 Tungsten Film 106 Oxide Film 107, 202 Gate Electrode 108 High Concentration Impurity Diffusion Layer 201 Antireflection (ARM: Anti Reflect・ Metal) film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)半導体基板と、 (b)該半導体基板の表層に形成されたソース及びドレ
イン領域と、 (c)該ソース及びドレイン領域間の前記半導体基板上
に形成されたゲート酸化膜と、 (d)該ゲート酸化膜上に形成された第1の高融点金属
膜と、 (e)該第1の高融点金属膜上に形成され、かつ該第1
の高融点金属膜とは相反する応力をもつ第2の高融点金
属膜とを具備することを特徴とするMOSFET。
1. A semiconductor substrate comprising: (a) a semiconductor substrate; (b) a source and drain region formed on a surface layer of the semiconductor substrate; and (c) a gate oxide formed on the semiconductor substrate between the source and drain regions. A film, (d) a first refractory metal film formed on the gate oxide film, (e) a first refractory metal film formed on the first refractory metal film, and
MOSFET having a second refractory metal film having a stress opposite to that of the refractory metal film of FIG.
【請求項2】(a)第1導電型の半導体基板あるいは半
導体層のゲート形成領域上にゲート酸化膜を形成する工
程と、 (b)該ゲート酸化膜上に第1の高融点金属膜を形成す
る工程と、 (c)該第1の高融点金属膜上に該第1の高融点金属膜
とは相反する応力をもつ第2の高融点金属膜を形成する
工程と、 (d)ホトリソグラフィ技術によりパターニングを行
い、前記第1の高融点金属膜と前記第2の高融点金属膜
によりゲート電極を形成する工程を施すことを特徴とす
るMOSFETの製造方法。
2. A step of: (a) forming a gate oxide film on a gate formation region of a first conductivity type semiconductor substrate or semiconductor layer; and (b) forming a first refractory metal film on the gate oxide film. Forming step, (c) forming a second refractory metal film having stress opposite to that of the first refractory metal film on the first refractory metal film, and (d) photo A method for manufacturing a MOSFET, which comprises performing patterning by a lithography technique and performing a step of forming a gate electrode with the first refractory metal film and the second refractory metal film.
【請求項3】(a)第1導電型の半導体基板あるいは半
導体層のゲート形成領域上にゲート酸化膜を形成する工
程と、 (b)該ゲート酸化膜上に第1の高融点金属膜を形成す
る工程と、 (c)該第1の高融点金属膜上に該第1の高融点金属膜
とは相反する応力をもつ第2の高融点金属膜を形成する
工程と、 (d)該第2の高融点金属膜上に反射防止膜を形成する
工程と、 (e)ホトリソグラフィ技術によりパターニングを行
い、前記第1の高融点金属膜、前記第2の高融点金属膜
及び反射防止膜によりゲート電極を形成する工程を施す
ことを特徴とするMOSFETの製造方法。
3. A step of forming a gate oxide film on a gate formation region of a first conductivity type semiconductor substrate or a semiconductor layer, and (b) a first refractory metal film on the gate oxide film. And (c) forming a second refractory metal film having a stress opposite to that of the first refractory metal film on the first refractory metal film, and (d) A step of forming an antireflection film on the second refractory metal film, and (e) patterning by a photolithography technique to form the first refractory metal film, the second refractory metal film and the antireflection film. A method of manufacturing a MOSFET, characterized in that the step of forming a gate electrode is carried out.
JP16500092A 1992-06-23 1992-06-23 Mosfet and manufacture thereof Withdrawn JPH065852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16500092A JPH065852A (en) 1992-06-23 1992-06-23 Mosfet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16500092A JPH065852A (en) 1992-06-23 1992-06-23 Mosfet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH065852A true JPH065852A (en) 1994-01-14

Family

ID=15803945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16500092A Withdrawn JPH065852A (en) 1992-06-23 1992-06-23 Mosfet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH065852A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757312A1 (en) * 1996-12-16 1998-06-19 Commissariat Energie Atomique SELF-ALIGNED METAL GRID TRANSISTOR AND MANUFACTURING METHOD THEREOF
KR19980060616A (en) * 1996-12-31 1998-10-07 김영환 Gate electrode of semiconductor device
EP0973189A2 (en) * 1998-07-15 2000-01-19 Texas Instruments Incorporated A method for gate-stack formation including a high-K dielectric
US6483151B2 (en) 2000-01-21 2002-11-19 Nec Corporation Semiconductor device and method of manufacturing the same
KR100589865B1 (en) * 1997-03-31 2006-09-20 프리스케일 세미컨덕터, 인크. Semiconductor device and a process for forming the device
US7157359B2 (en) 2000-12-29 2007-01-02 Hynix Semiconductor Inc. Method of forming a metal gate in a semiconductor device using atomic layer deposition process
EP1786037A2 (en) * 1999-04-12 2007-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001506807A (en) * 1996-12-16 2001-05-22 コミツサリア タ レネルジー アトミーク MIS transistor with self-aligned metal grid and manufacturing process thereof
WO1998027582A1 (en) * 1996-12-16 1998-06-25 Commissariat A L'energie Atomique Mis transistor with self-aligned metal grid and method for making it
FR2757312A1 (en) * 1996-12-16 1998-06-19 Commissariat Energie Atomique SELF-ALIGNED METAL GRID TRANSISTOR AND MANUFACTURING METHOD THEREOF
KR19980060616A (en) * 1996-12-31 1998-10-07 김영환 Gate electrode of semiconductor device
KR100589865B1 (en) * 1997-03-31 2006-09-20 프리스케일 세미컨덕터, 인크. Semiconductor device and a process for forming the device
EP0973189A2 (en) * 1998-07-15 2000-01-19 Texas Instruments Incorporated A method for gate-stack formation including a high-K dielectric
EP0973189A3 (en) * 1998-07-15 2000-12-20 Texas Instruments Incorporated A method for gate-stack formation including a high-K dielectric
EP1786037A2 (en) * 1999-04-12 2007-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
EP1786037A3 (en) * 1999-04-12 2012-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US6483151B2 (en) 2000-01-21 2002-11-19 Nec Corporation Semiconductor device and method of manufacturing the same
KR100443475B1 (en) * 2000-01-21 2004-08-09 닛뽄덴끼 가부시끼가이샤 Semiconductor device and method of manufacturing the same
US6916695B2 (en) 2000-01-21 2005-07-12 Nec Corporation Semiconductor device and method of manufacturing the same
US7157359B2 (en) 2000-12-29 2007-01-02 Hynix Semiconductor Inc. Method of forming a metal gate in a semiconductor device using atomic layer deposition process

Similar Documents

Publication Publication Date Title
US6261915B1 (en) Process of making polysilicon resistor
US5466638A (en) Method of manufacturing a metal interconnect with high resistance to electromigration
KR930011800B1 (en) Mos type semiconductor device
JP2675713B2 (en) Semiconductor device and manufacturing method thereof
JPH03151645A (en) Manufacture of compound semiconductor device
JPH065852A (en) Mosfet and manufacture thereof
US7094694B2 (en) Semiconductor device having MOS varactor and methods for fabricating the same
JPH05251694A (en) Mos type semiconductor device and its manufacture
JPH11251527A (en) Semiconductor device and its manufacture
JPH06163572A (en) Manufacture of mos field effect transistor
JPH05347410A (en) Semiconductor device and its manufacture
JPS62154784A (en) Semiconductor device
JP3196241B2 (en) Method for manufacturing semiconductor device
JP2695812B2 (en) Semiconductor device
JPS63275181A (en) Manufacture of semiconductor device
JPS6043863A (en) Semiconductor device
JP3352792B2 (en) Manufacturing method of electrostatic induction transistor
JPS6235569A (en) Mis type transistor and manufacture thereof
JPH06151742A (en) Semiconductor device and manufacture thereof
JP2796655B2 (en) Semiconductor device and manufacturing method thereof
JPH03171671A (en) Semiconductor device and manufacture thereof
JP3147374B2 (en) Semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH056345B2 (en)
JPH065854A (en) Semiconductor device and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831