JPH065681B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH065681B2
JPH065681B2 JP58219817A JP21981783A JPH065681B2 JP H065681 B2 JPH065681 B2 JP H065681B2 JP 58219817 A JP58219817 A JP 58219817A JP 21981783 A JP21981783 A JP 21981783A JP H065681 B2 JPH065681 B2 JP H065681B2
Authority
JP
Japan
Prior art keywords
layer
asi
tft
semiconductor layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58219817A
Other languages
Japanese (ja)
Other versions
JPS60111472A (en
Inventor
清一 永田
定▲吉▼ 堀田
郁典 小林
繁信 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58219817A priority Critical patent/JPH065681B2/en
Publication of JPS60111472A publication Critical patent/JPS60111472A/en
Publication of JPH065681B2 publication Critical patent/JPH065681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に薄膜電界効果トランジスタ
(TFT)の製造方法に関する、本発明はバンド間準位
密度が少なく暗抵抗が高く、且つ光導電性が小さい半導
体を用いておりかつ高いオン電流がとれるとともに、オ
フ電流が小さく、且つ外部入射光に起因する光電導が小
さい特徴をもち、画像表示装置やイメージセンサ等のス
イッチング素子等外光が必然的に入射する環境下に於て
も使用し得るTFTを容易かつ確実に得る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, particularly a thin film field effect transistor (TFT). The present invention has a low interband level density, high dark resistance, and photoconductivity. It has a feature that it uses a small semiconductor and has a high on-current, a small off-current, and a small photoconductivity due to external incident light, so that external light such as switching elements such as image display devices and image sensors is inevitable. A TFT that can be used even in an environment where light is incident is easily and reliably obtained.

従来例の構造とその問題点 第1図に水素非晶質シリコン(a-Si:H)半導体層を用
いた典型的な薄膜電界効果トランジスタ(TFT)の構
造断面図を示す。
Structure of Conventional Example and Its Problems FIG. 1 shows a structural cross-sectional view of a typical thin film field effect transistor (TFT) using a hydrogen amorphous silicon (a-Si: H) semiconductor layer.

本TFTの製造工程を下記に示す。先ずガラス等の基板
1上にCr等の金属を蒸着しゲート電極2となるべき部
分を残してエッチングする。次にプラズマCVD法によ
り窒化シリコン膜3(以下、SiN)を0.1〜0.5μm,
aSi:H膜4を0.1〜0.5μm,n+にドープしたaSi:H膜
5を500Å程度連続堆積する。次にTFTとして残すべ
き部分をレジストで被覆し、残余の部分のn+aSi:H,a
Si:Hをエッチング除去する。
The manufacturing process of this TFT is shown below. First, a metal such as Cr is vapor-deposited on a substrate 1 such as glass, and etching is performed while leaving a portion to be the gate electrode 2. Next, the silicon nitride film 3 (hereinafter referred to as SiN) is deposited by plasma CVD to 0.1 to 0.5 μm,
An aSi: H film 5 having a thickness of 0.1 to 0.5 .mu.m and an n + doped aSi: H film 5 is continuously deposited on the order of 500 Å. Next, the portion to be left as a TFT is covered with a resist, and the remaining portion of n + aSi: H, a
Si: H is removed by etching.

次にAl等の金属を蒸着し、ソース6,ドレイン7電極
をパタニングする。更にAl電極6,7をマスクとし
て、両電極間に存在するn+aSi:Hの部分領域8をエッ
チングすることにより第1図aの構造が完成する。
Next, a metal such as Al is vapor-deposited, and the source 6 and drain 7 electrodes are patterned. Further, by using the Al electrodes 6 and 7 as a mask, the partial region 8 of n + aSi: H existing between both electrodes is etched to complete the structure of FIG. 1a.

しかしながら上述の従来例では以下の問題がある。先ず
製造上では前述のn+aSi:H層5の部分領域8の完全な
選択除去が困難である。aSi:Hは弗酸・硝酸系液でエ
ッチングが可能であるが、n+ドープ領域8と非ドープ領
域とのエッチングの選択性にとぼしい。更に金属・半導
体の接合部付近ではエッチング液を介して電池作用等の
為か、異常な高速エッチングが起る。従って部分拡大図
(第2図b)に示すようにTFTのチャンネルとして保
存されねばならぬaSi:H層4の部分領域9が消失しが
ちである。又エッチングをひかえ目にすると完全除去さ
れねばならぬn+層の部分8が一部残存しOFF抵抗が十
分大きくならない。部分領域8のみの完全除去制御は上
述のように極めて困難である。エッチングがやや過少で
あればTFTのオフ抵抗が十分大きくならず、過大であ
ればTFT動作そのものを消失する。
However, the above-mentioned conventional example has the following problems. First, in manufacturing, it is difficult to completely remove the partial region 8 of the n + aSi: H layer 5 described above. Although aSi: H can be etched with a hydrofluoric acid / nitric acid-based solution, it has poor etching selectivity between the n + doped region 8 and the undoped region. Further, near the metal / semiconductor junction, abnormal high-speed etching occurs probably due to the action of the battery or the like through the etching solution. Therefore, as shown in the partially enlarged view (Fig. 2b), the partial region 9 of the aSi: H layer 4 which must be stored as the channel of the TFT tends to disappear. Further, when the etching is turned over, part of the n + layer 8 which must be completely removed remains and the OFF resistance does not become sufficiently large. Complete removal control of only the partial region 8 is extremely difficult as described above. If the etching is a little too small, the off resistance of the TFT is not sufficiently large, and if the etching is too large, the TFT operation itself disappears.

次にaSi:Hが良好な光導電性半導体であることに起因
する問題がある。第1図aの構造暗時に良好なON/O
FF電流比(通常5桁以上)を示しても、外部から半導
体部に光が入射すると光励起電荷が発生し、OFF抵抗
を減少させる。この為半導体部への入射光を阻止する
為、第2図のように、更に絶縁膜10を介して金属遮光
膜11を付設しなければならなくなる。これは製造工程
を複雑にし、かつ歩留り低下の主原因ともなっている。
Next, there is a problem caused by the fact that aSi: H is a good photoconductive semiconductor. Good ON / O when the structure of Fig. 1a is dark
Even when the FF current ratio (normally 5 digits or more) is shown, photo-excited charges are generated when light is incident on the semiconductor portion from the outside, and the OFF resistance is reduced. Therefore, in order to block the incident light to the semiconductor portion, it is necessary to additionally provide the metal light shielding film 11 via the insulating film 10 as shown in FIG. This complicates the manufacturing process and is also the main cause of the yield reduction.

発明の目的 したがって、本発明はチャンネル部分のエッチングを確
実に防止するとともに、外部光入射時のOFF電流の増
加を小さくし、かつ良好なTFT特性を有するTFTを
容易かつ確実に製造できる方法を提供することを目的と
するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a method for reliably preventing etching of a channel portion, reducing an increase in OFF current when external light is incident, and easily and reliably manufacturing a TFT having good TFT characteristics. The purpose is to do.

発明の構成 本発明は、基板上にゲート電極とゲート絶縁膜を形成
し、前記ゲート絶縁膜上に、水素又はハロゲン族元素を
含有する炭化硅素の層を有する第1の半導体層を形成
し、前記第1の半導体層上に不純物がドープされた水素
又はハロゲン族元素を含有する硅素層よりなるオーミッ
ク接触用の第2の半導体層を形成し、前記第1,第2の
半導体層を選択的に除去し、前記第2の半導体層上にソ
ース,ドレイン電極を選択的に形成し、前記ソース,ド
レイン電極をマスクとして前記第1の半導体層上の前記
第2の半導体層を選択的に除去するとともに、前記ソー
ス,ドレイン電極間に前記第1の半導体層を残すことに
よりTFTを製造するものである。
According to the present invention, a gate electrode and a gate insulating film are formed on a substrate, and a first semiconductor layer having a silicon carbide layer containing hydrogen or a halogen group element is formed on the gate insulating film. A second semiconductor layer for ohmic contact comprising a silicon layer containing hydrogen or a halogen group element doped with impurities is formed on the first semiconductor layer, and the first and second semiconductor layers are selectively formed. And selectively forming source and drain electrodes on the second semiconductor layer, and selectively removing the second semiconductor layer on the first semiconductor layer using the source and drain electrodes as a mask. In addition, the TFT is manufactured by leaving the first semiconductor layer between the source and drain electrodes.

実施例の説明 以下実施例を用いて図面とともに本発明を詳細に説明す
る。
Description of Embodiments The present invention will be described in detail below with reference to the drawings using embodiments.

〔実施例1〕 第3図に第1の実施例を示す。本実施例の装置は以下の
ようにして製作された。先ずガラス等の基板1の1主面
上にCrを1000Åスパッタ蒸着し、ゲート2として残す
べき所望の部分を除いてエッチング除去する。次に本基
板をプラズマCVD装置中に設置し、これを所望の温度
に加熱後SiH4とNHを含むガスを導入してグロ放電分
解を行ない窒化シリコン膜3を0.2μm堆積し、一担プラ
ズマCVD装置中のガスを置換後、改めてSiH4とCH
を所望の混合比で導入しこのガス中でのグロー放電分解
により、aSi1-xCx:H膜21を0.2μm堆積する。次い
でガス置換後改めてSiH4を導入しaSi:H膜22を50
0Å堆積後、SiH4とPHを導入して燐が0.5%ドープさ
れたn+aSi:H層23を500Å堆積した。次に上記工
程で堆積した半導体層の所望の領域を残し、他の部分を
プラズマエッチにより除去する。(この段階では層2
2,23の部分領域22′,23′は残っている。) 次にAlを蒸着し、これをパターン出しして、ソース電
極6,ドレイン電極7を形成する。その後形成されたA
l電極パターンを用いて、n+aSi:H及びaSi:Hの部分
領域23′,22′を弗硝酸混合液により除去すれば第
3図の構造が完成する。
[Embodiment 1] FIG. 3 shows a first embodiment. The device of this example was manufactured as follows. First, 1000 Å of Cr is sputter-deposited on one main surface of the substrate 1 made of glass or the like, and is removed by etching except a desired portion to be left as the gate 2. Next, this substrate is placed in a plasma CVD apparatus, heated to a desired temperature, and then gas containing SiH 4 and NH 3 is introduced to carry out glow discharge decomposition to deposit a silicon nitride film 3 of 0.2 μm. After replacing the gas in the plasma CVD device, SiH 4 and CH 4 were replaced.
Is introduced at a desired mixing ratio, and the aSi 1-x C x : H film 21 is deposited by 0.2 μm by glow discharge decomposition in this gas. Then, after gas replacement, SiH 4 is introduced again to form aSi: H film 22 with 50
After 0 Å deposition, SiH 4 and PH 3 were introduced to deposit an n + aSi: H layer 23 doped with 0.5% phosphorus at 500 Å. Next, a desired region of the semiconductor layer deposited in the above step is left, and the other part is removed by plasma etching. (Layer 2 at this stage
2, 23 partial regions 22 'and 23' remain. ) Next, Al is vapor-deposited and patterned to form the source electrode 6 and the drain electrode 7. A formed after that
The structure of FIG. 3 is completed by removing the n + aSi: H and aSi: H partial regions 23 ′ and 22 ′ with a mixed solution of fluorinated nitric acid using the l electrode pattern.

上記工程に於て特長的なことは、aSi1-xCx膜21が弗硝
酸液に対し強い耐性をもつ故に、aSi:H膜23′,2
2′とのエッチングの選択性が大きい点にある。従って
第1図bで例示したように半導体層が除去されてしまう
ような不都合はなくなり、極めて選択性良くオーミック
接触を確保する為の層22′,23′を除去できる。
The feature of the above process is that the aSi 1-x C x film 21 has a strong resistance to the fluorinated nitric acid solution, and therefore the aSi: H film 23 ′, 2
The point is that the etching selectivity with 2'is large. Therefore, the disadvantage that the semiconductor layer is removed as illustrated in FIG. 1B is eliminated, and the layers 22 'and 23' for ensuring ohmic contact can be removed with extremely high selectivity.

さらに、上記工程は、ゲート絶縁膜である窒化シリコン
膜3上に、膜21,22,23をガス置換のみで連続的
に堆積形成できるとともに、膜21,22,23を同時
に選択的にエッチングして膜21,22,23の積層パ
ターンを形成することができ、TFT製造工程が複雑化
することはない。そして、ソース,ドレイン電極6,7
をマスクとして確実に部分領域22′,23′を除去す
るとともに、膜21をソース,ドレイン電極6,7間に
残すことができ、このときの工程も何ら複雑化しない。
このように、本発明によれば、膜の積層堆積を有効に用
い、容易かつ確実に第3図のTFTを製造することがで
き、工業的にも極めて好都合となる。
Further, in the above step, the films 21, 22, and 23 can be continuously deposited and formed on the silicon nitride film 3 as the gate insulating film only by gas replacement, and the films 21, 22, and 23 are selectively etched simultaneously. Thus, a laminated pattern of the films 21, 22, and 23 can be formed, and the TFT manufacturing process is not complicated. And the source and drain electrodes 6 and 7
With the mask as a mask, the partial regions 22 'and 23' can be reliably removed, and the film 21 can be left between the source and drain electrodes 6 and 7, and the process at this time is not complicated at all.
As described above, according to the present invention, it is possible to manufacture the TFT of FIG. 3 easily and surely by effectively using the laminated deposition of the films, which is industrially very convenient.

上記本実施例で導入したn+aSi:H層23は、ソース
6,ドレイン7電極と半導体層21〜23とのオーミッ
ク接触を確保するためのものであり、真性層22は、n+
aSi:Hの部分層23′を除去した後、層21の表面に
n形不純物としてのPが残存しない様十分に除去する為
に導入されている。
The n + aSi: H layer 23 introduced in the present embodiment is for ensuring ohmic contact between the source 6 and drain 7 electrodes and the semiconductor layers 21 to 23, and the intrinsic layer 22 is n +
After removing the partial layer 23 'of aSi: H, it is introduced to sufficiently remove P as an n-type impurity on the surface of the layer 21.

本実施例により製作したTFTのドレイン電流I対ゲ
ート電圧V特性を第4図曲線a,bに示す。曲線aは
外部光が入射しない暗時の特性であり、曲線bは3000Lx
の外光を照射した場合の特性である。
The drain current I D vs. gate voltage V D characteristics of the TFT manufactured according to this example are shown in the curves a and b in FIG. Curve a is the characteristic in the dark when no external light is incident, and curve b is 3000L x
It is a characteristic when the outside light of is irradiated.

又同図の曲線c,dは前述の従来例の方法により製作し
たTFTの暗時及び3000Lx照射時の特性であり比較の示
したものである。
Curves c and d in the same figure are characteristics of the TFT manufactured by the method of the above-mentioned conventional example at dark and at 3000 L x irradiation, and are shown for comparison.

本実施性により製作されたTFTは、従来例のものに比
べ外部光が入射しない場合(曲線a,c)に於ても、O
FF時(VG=0)の電流が小さく、ON/OFF電流比がより大き
くとれる。更に外光3000Lxの照射時に於て従来例ではO
FF電流が100nA程度に増加するのに比べ、本実施例で
はpAのオーダーである。外光入射時のOFF電流を小
さく保持する為に、従来例では第1図aの構造に加え遮
光手段を施す必要があるが、本実施例のTFTでは第3
図の構造のままで外光入射時に於ても使用可能である。
The TFT manufactured according to the present embodiment has an O level compared to the conventional example even when external light does not enter (curves a and c).
The current at FF (V G = 0) is small and the ON / OFF current ratio can be made larger. Furthermore, when irradiating with 3000 L x of outside light, O
In contrast to the FF current increasing to about 100 nA, this embodiment is on the order of pA. In order to keep the OFF current at the time of incidence of external light small, it is necessary to provide a light shielding means in addition to the structure of FIG.
The structure shown in the figure can be used even when external light is incident.

〔実施例2〕 第3図に示す前実施例と同様の方法により、前実施例の
層22を省略したTFTを製作した。光照射時のOFF
電流の増加を含め、電流,電圧特性の概略は前実施例と
実質上同程度であった。但し暗時のOFF電流のバラツ
キは前実施例に比べやや大きく、ON電流は前実施例よ
りやや小さかった。
Example 2 A TFT having the layer 22 of the previous example omitted was manufactured by the same method as that of the previous example shown in FIG. OFF during light irradiation
The outline of the current and voltage characteristics including the increase of the current was substantially the same as that of the previous example. However, the variation in the OFF current in the dark was slightly larger than that in the previous example, and the ON current was slightly smaller than that in the previous example.

〔実施例3〕 実施例1と同様の製法により、第3図の非晶質炭化硅素
層21の組成xを変化させたTFTを製作した。
[Example 3] By the same manufacturing method as in Example 1, TFTs in which the composition x of the amorphous silicon carbide layer 21 in Fig. 3 was changed were manufactured.

従来例(組成x=0)に比べ組成xが1%で部分層2
3′,22′の選択エッチングに明らかな優位性が認め
られると共に、OFF時の光電流の低下も認められた。
Compared to the conventional example (composition x = 0), the composition x is 1% and the partial layer 2
A clear advantage was found in the selective etching of 3'and 22 ', and a decrease in the photocurrent at the time of OFF was also recognized.

一方xが70%を越えると、TFTをオンするに要する
ゲート電圧が高くなり実用性が低下する。
On the other hand, when x exceeds 70%, the gate voltage required to turn on the TFT becomes high and the practicality is lowered.

〔実施例4〕 第5図に第4の実施例の装置の断面図を示す。第1の実
施例と異る点は、窒化シリコン膜3を0.4μm堆積後、S
iH4のプラズマ分解によりa-Si:H層24を0.3μm堆積
し、次いでSiH4とCHの分解により炭化硅素層25を
500Å堆積した。その後の工程は実施例1と同様であ
る。本実施例は、チャンネルとして良好なTFT特性を
得ることができるa-SiH:層24を用いているととも
に、炭化硅素層25の存在のため、部分層23′,2
2′の完全選択除去が非常に容易であり、第1図bに例
示するソース・ドレイン間の半導体層が消失するような
問題はなくなった。更に炭化硅素層25は光吸収性であ
るが、光導電性が小さいため、光照射時のOFF電流は
従来例に比べ減少した。
[Embodiment 4] FIG. 5 shows a sectional view of an apparatus according to a fourth embodiment. The difference from the first embodiment is that after the silicon nitride film 3 is deposited to a thickness of 0.4 μm, S
An a-Si: H layer 24 was deposited by 0.3 μm by plasma decomposition of iH 4 , and then a silicon carbide layer 25 was deposited by 500 μm by decomposition of SiH 4 and CH 4 . The subsequent steps are the same as in Example 1. In the present embodiment, the a-SiH: layer 24 that can obtain good TFT characteristics is used as a channel, and the presence of the silicon carbide layer 25 causes the partial layers 23 'and 2 to be formed.
The complete selective removal of 2'is very easy, and the problem of disappearing the semiconductor layer between the source and drain illustrated in FIG. 1b has disappeared. Further, although the silicon carbide layer 25 is light-absorbing, since the photoconductivity is small, the OFF current at the time of light irradiation is reduced as compared with the conventional example.

以上の実施例で説明したTFTの非晶質半導体aSi1-xCx
中の炭素組成xの分布を、絶縁体半導体界面からの距離
dの関数として第6図に示す。同図aは実施例1の組成
分布を示したものであり、0≦d≦d1間は一定組成xの
炭化硅素層,d1dd2間はx=0のaSi:H,d2
d3間はn+ドープしたaSi:H層である。実施例2のT
FTではd1dd2間のaSi:H層が省かれている。
Amorphous semiconductor aSi 1-x C x of the TFT described in the above embodiment
The distribution of carbon composition x therein is shown in FIG. 6 as a function of distance d from the insulator-semiconductor interface. FIG. 10A shows the composition distribution of Example 1. A silicon carbide layer having a constant composition x is provided for 0 ≦ d ≦ d 1 and aSi: H, d 2 d is provided for x = 0 between d 1 and dd 2.
Between d 3 is an n + -doped aSi: H layer. T of Example 2
In FT, the aSi: H layer between d 1 and dd 2 is omitted.

第6図bは実施例4のTFTの組成分布を示す。0d
d1間はaSi:H,d1dd2間はaSi1-xCx層,d2
d3間はaSi:H層,d3dd4間はn+ドープしたaSi:
H層である。
FIG. 6b shows the composition distribution of the TFT of Example 4. 0d
aSi: H between d 1 and aSi 1-x C x layer between d 1 dd 2 and d 2 d
d 3 between the aSi: H layer, aSi between d 3 dd 4 is that n + doped:
It is the H layer.

特に実施例として説明はしなかったが、第6図と同様の
座標系を用いて第7図に例示する濃度分布及びその他の
分布も本発明の思想の1実施態様として考えられる。
Although not specifically described as an example, the concentration distribution and other distributions illustrated in FIG. 7 using the same coordinate system as in FIG. 6 are also considered as one embodiment of the idea of the present invention.

なお、以上説明した半導体層のうち、炭素を含有しない
非晶質シリコン層として、結晶化シリコンを用いても良
く、更に半導体中に含有される水素に代えハロゲン族が
用いられても良い。
In the semiconductor layer described above, crystallized silicon may be used as the amorphous silicon layer containing no carbon, and a halogen group may be used instead of hydrogen contained in the semiconductor.

発明の効果 以上のように、本発明は、ゲート電極上のゲート絶縁膜
上に、水素又はハロゲン族元素を含有する炭化硅素層を
形成し、さらにこの上にオーミック接触用の不純物がド
ープされた水素又はハロゲン族元素を含む硅素層を形成
し、これらの層を選択エッチングしたのち、硅素層上に
形成したソース,ドレイン電極をマスクとして両電極間
の不要な硅素層のみを選択的に除去するという方法であ
り、炭化硅素層と硅素層を容易に連続的に容易に堆積形
成でき、かつ電極マスクで容易かつ確実に硅素層を選択
的に完全除去することができる。そして、本発明によれ
ば、オーミック接触用のドープ層の選択的除去における
TFTのチャンネル部のエッチングを完全に防止できる
とともに、特別にしゃ光手段を構ずることなく、外部入
射光の光伝導によるOFF電流の増加の少ないTFTを、
製造工程を複雑化することなく容易に製造することが可
能となる。したがって、本発明は、画像表示装置や画像
読取装置用スイッチング素子として十分なON/OFF
電流比を有するTFT多数(104)を集積したTFT
アレーを、容易かつ歩留り良く得る上で工業的に大きく
寄与するものである。
Effects of the Invention As described above, according to the present invention, a silicon carbide layer containing hydrogen or a halogen group element is formed on a gate insulating film on a gate electrode, and an impurity for ohmic contact is further doped on the silicon carbide layer. After forming a silicon layer containing hydrogen or a halogen group element and selectively etching these layers, the source and drain electrodes formed on the silicon layer are used as a mask to selectively remove only the unnecessary silicon layer between both electrodes. That is, the silicon carbide layer and the silicon layer can be easily and continuously deposited and formed, and the silicon layer can be selectively and completely removed using an electrode mask. Further, according to the present invention, it is possible to completely prevent the etching of the channel portion of the TFT in the selective removal of the doped layer for ohmic contact, and to use the photoconduction of the external incident light without special light shielding means. A TFT with a small increase in OFF current
It is possible to easily manufacture without complicating the manufacturing process. Therefore, the present invention provides sufficient ON / OFF as a switching element for an image display device or an image reading device.
A TFT in which a large number of TFTs (10 4 ) having a current ratio are integrated
This is a major industrial contribution to obtaining an array easily and with high yield.

【図面の簡単な説明】[Brief description of drawings]

第1図aは従来例のTFT断面を示す図、第1図bは同
TFTのチャンネル部の部分拡大図で半導体の消失の模
様を模式的に示す図、第2図は外部光入射を防ぐための
遮光を施した従来例のTFT断面図、第3図は本発明の
第1の実施例のTFT断面図、第4図は本発明の一実施
例および遮光を施さない従来のTFTの暗時及び3000Lx
照射時の静特性を示す図、第5図は本発明の他の実施例
のTFTを示す断面図、第6図a,b、第7図a,bは
ゲート絶縁膜・半導体界面(d=0)より非晶質aSi1-x
Cxの組成の分布の例を示す図である。 1……基板、2……ゲート電極、3……ゲート絶縁膜、
6,7……ソース・ドレイン電極、21……非晶質炭化
硅素膜、22……ノンドープaSi:H層、23……n+
ープaSi:H層、22′,23′……aSi:Hの選択除去
領域、24……aSi:H層、25……非晶質炭化硅素
層。
1a is a view showing a cross section of a TFT of a conventional example, FIG. 1b is a partially enlarged view of a channel portion of the TFT, which schematically shows a pattern of disappearance of a semiconductor, and FIG. 2 is a view for preventing incidence of external light. FIG. 3 is a sectional view of a conventional TFT in which light is shielded, FIG. 3 is a sectional view of a TFT in the first embodiment of the present invention, and FIG. Hour and 3000L x
FIG. 5 is a diagram showing static characteristics during irradiation, FIG. 5 is a cross-sectional view showing a TFT of another embodiment of the present invention, and FIGS. 6a, 6b and 7a, b are gate insulating film / semiconductor interfaces (d = 0) amorphous aSi 1-x
Is a diagram illustrating an example of distribution of the composition of C x. 1 ... Substrate, 2 ... Gate electrode, 3 ... Gate insulating film,
6, 7 ... Source / drain electrodes, 21 ... Amorphous silicon carbide film, 22 ... Non-doped aSi: H layer, 23 ... N + -doped aSi: H layer, 22 ', 23' ... aSi: H Selective removal area, 24 ... aSi: H layer, 25 ... amorphous silicon carbide layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 郁典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 白井 繁信 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭58−112365(JP,A) 特開 昭58−33872(JP,A) 特開 昭58−18966(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ikunori Kobayashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Shigenobu Shirai, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 56) References JP-A-58-112365 (JP, A) JP-A-58-33872 (JP, A) JP-A-58-18966 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上にゲート電極とゲート絶縁膜を形成
し、前記ゲート絶縁膜上に、水素又はハロゲン族元素を
含有する炭化硅素の層を有する第1の半導体層を形成
し、前記第1の半導体層上に不純物がドープされた水素
又はハロゲン族元素を含有する硅素層よりなるオーミッ
ク接触用の第2の半導体層を形成し、前記第1,第2の
半導体層を選択的に除去し、前記第2の半導体層上にソ
ース,ドレイン電極を選択的に形成し、前記ソース,ド
レイン電極をマスクとして前記第1の半導体層上の前記
第2の半導体層を選択的に除去するとともに、前記ソー
ス,ドレイン電極間に前記第1の半導体層を残すことを
特徴とする半導体装置の製造方法。
1. A gate electrode and a gate insulating film are formed on a substrate, and a first semiconductor layer having a layer of silicon carbide containing hydrogen or a halogen group element is formed on the gate insulating film. A second semiconductor layer for ohmic contact comprising a hydrogen-containing or halogen-group-containing silicon layer doped with impurities is formed on one semiconductor layer, and the first and second semiconductor layers are selectively removed. Source and drain electrodes are selectively formed on the second semiconductor layer, and the second semiconductor layer on the first semiconductor layer is selectively removed using the source and drain electrodes as a mask. A method for manufacturing a semiconductor device, characterized in that the first semiconductor layer is left between the source and drain electrodes.
JP58219817A 1983-11-22 1983-11-22 Method for manufacturing semiconductor device Expired - Lifetime JPH065681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58219817A JPH065681B2 (en) 1983-11-22 1983-11-22 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58219817A JPH065681B2 (en) 1983-11-22 1983-11-22 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60111472A JPS60111472A (en) 1985-06-17
JPH065681B2 true JPH065681B2 (en) 1994-01-19

Family

ID=16741496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58219817A Expired - Lifetime JPH065681B2 (en) 1983-11-22 1983-11-22 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH065681B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615578A (en) * 1984-06-19 1986-01-11 Nec Corp Thin film transistor
JPH0683335B2 (en) * 1985-04-11 1994-10-19 キヤノン株式会社 Photoelectric conversion device
JPS61281555A (en) * 1985-06-07 1986-12-11 Alps Electric Co Ltd Thin-film transistor and manufacture thereof
FR2593327B1 (en) * 1986-01-23 1988-10-28 Commissariat Energie Atomique METHOD FOR MANUFACTURING A THIN FILM TRANSISTOR USING TWO OR THREE LEVELS OF MASKING
US4849797A (en) * 1987-01-23 1989-07-18 Hosiden Electronics Co., Ltd. Thin film transistor
JPS6412577A (en) * 1987-07-06 1989-01-17 Canon Kk Thin film transistor
JPH0363930U (en) * 1989-10-25 1991-06-21
JP5752446B2 (en) * 2010-03-15 2015-07-22 株式会社半導体エネルギー研究所 Semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818966A (en) * 1981-07-27 1983-02-03 Toshiba Corp Manufacture of thin film field-effect transistor
JPS5833872A (en) * 1981-08-24 1983-02-28 Toshiba Corp Manufacture of thin film field effect transistor
JPS58112365A (en) * 1981-12-26 1983-07-04 Fujitsu Ltd Manufacture of thin film transistor

Also Published As

Publication number Publication date
JPS60111472A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US5811325A (en) Method of making a polysilicon carbon source/drain heterojunction thin-film transistor
US6146927A (en) Semiconductor device, manufacturing method therefor and liquid crystal driving apparatus comprising the semiconductor device
US6504175B1 (en) Hybrid polycrystalline and amorphous silicon structures on a shared substrate
US7064364B2 (en) Thin film transistor and method for manufacturing the same
US6746905B1 (en) Thin film transistor and manufacturing process therefor
US6140668A (en) Silicon structures having an absorption layer
US5231297A (en) Thin film transistor
JPH05190568A (en) Manufacture of insulated-gate thin-film transistor
JPH0542833B2 (en)
JPH065681B2 (en) Method for manufacturing semiconductor device
JPH1012882A (en) Thin film transistor and manufacture thereof
JP3348531B2 (en) Method for hydrogenating thin film transistor and method for forming thin film transistor
JP3514891B2 (en) Semiconductor device and manufacturing method thereof
US4704784A (en) Method of making thin film field effect transistors for a liquid crystal display device
JPH0563172A (en) Semiconductor device and its manufacture
JP2572379B2 (en) Method for manufacturing thin film transistor
JP2523019B2 (en) Field effect type semiconductor device
JPH07120806B2 (en) Method of manufacturing thin film field effect transistor
JP3331642B2 (en) Method for manufacturing thin film transistor
JPH0691103B2 (en) Method for manufacturing insulating gate type transistor
JPH0562899A (en) Formation of semiconductor thin film
US6733584B1 (en) Method of forming crystalline silicon film
JPH0346374A (en) Thin film transistor
JP3492710B2 (en) Thin film transistor and method for manufacturing the same
EP0955674B1 (en) Fabrication of hybrid polycrystalline and amorphous silicon structures