JPH0655942A - Liquid sealed radiator support device - Google Patents

Liquid sealed radiator support device

Info

Publication number
JPH0655942A
JPH0655942A JP20896292A JP20896292A JPH0655942A JP H0655942 A JPH0655942 A JP H0655942A JP 20896292 A JP20896292 A JP 20896292A JP 20896292 A JP20896292 A JP 20896292A JP H0655942 A JPH0655942 A JP H0655942A
Authority
JP
Japan
Prior art keywords
radiator
liquid
vibration
elastic body
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20896292A
Other languages
Japanese (ja)
Inventor
Takamasa Kozai
貴正 香西
Kazuyoshi Mitsunari
和敬 光成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Kako Co Ltd
Original Assignee
Kurashiki Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Kako Co Ltd filed Critical Kurashiki Kako Co Ltd
Priority to JP20896292A priority Critical patent/JPH0655942A/en
Publication of JPH0655942A publication Critical patent/JPH0655942A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain vehicle body damping operation more effectively by supporting a radiator elastically while preventing deterioration of durability in a support mount. CONSTITUTION:A mount means 3 is interposed between a projecting shaft body 4 projecting from a side end surface of a radiator 1 and a support cylinder part of a vehicle body side support base. The mount means 3 is composed basically of an inner cylinder body 6 in which the projecting shaft body is embedded internally, an outer cylinder body 7 embedded internally in the support cylinder part and an elastic body 8 to connect both to each other, and the inner cylinder body 6 is made eccentric upward by a prescribed quantity to the outer cylinder body 7 in a no-load condition before being installed. Through-spaces 9 and 10 are formed in the elastic body in both upper and lower positions sandwiching the inner cylinder body 6 between them, and the inner cylinder body is supported with a main elastic body part 8a between both the through-spaces. Liquid chambers 11 and 12 are formed respectively between both upper and lower side edges of the elastic body and the outer cylinder body 7, and the respective liquid chambers 11 and 12 and the respective through-spaces are partitioned respectively by means of partition wall parts 8b and 8c. Flap parts 16 projecting in both the through-spaces and the liquid chambers 11 and 12 are arranged in the second partition wall part 8c, and the inner cylinder body 6 is arranged in a concentrical form in the outer cylinder body 7 in an installed condition, and a stopper part fixed to the inner cylinder body 6 is brought into contact with the second partition wall part 8c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体封入式マウントを
介してラジエータを支持する液封ラジエータ支持装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-sealed radiator supporting device for supporting a radiator via a liquid-filled mount.

【0002】[0002]

【従来の技術】従来より、ラジエータ支持装置として、
ラジエータの左右側部と車体フレームとの間にブッシュ
タイプなどの弾性マウントを介在させて上記ラジエータ
を支持するものが知られている(例えば、実開昭63−
54515号公報および特開昭58−161616号公
報参照)。この種のものは、特に、エンジンがアイドル
回転時などの低回転状態における車体前部の共振の抑制
を図るために、上記ラジエータを車体に弾性支持するこ
とにより、上記ラジエータを慣性質量とするダイナミッ
クダンパを構成するようになっており、上記弾性マウン
トはゴム弾性体でのみ構成されている。
2. Description of the Related Art Conventionally, as a radiator supporting device,
It is known that an elastic mount such as a bush type is interposed between the left and right side portions of the radiator and the vehicle body frame to support the radiator (for example, the actual opening 63-
54515 and JP-A-58-161616). This type of engine is a dynamic system that uses the radiator as an inertial mass by elastically supporting the radiator on the vehicle body in order to suppress resonance of the front portion of the vehicle body especially in a low rotation state such as when the engine is idling. It constitutes a damper, and the elastic mount is composed only of a rubber elastic body.

【0003】[0003]

【発明が解決しようとする課題】ところが、ゴム弾性体
でのみ構成された弾性マウントは、その共振周波数領域
が比較的狭く、その狭い周波数領域でピーク的に制振作
用が発揮されるものであるため、上記アイドル回転時に
車体に作用する振動のすべての領域に対して十分な制振
作用を発揮することができないという問題がある。しか
も、上記弾性マウントの組付け時などにおいて、その取
付け位置にずれが生じた場合、上記共振周波数領域にず
れが生じて所期の制振作用を得ることができないという
事態の発生するおそれがある。加えて、中実なゴム弾性
体により構成された弾性マウントでは、ラジエータの自
重が載荷された装着状態において弾性体がその自重分圧
縮されて内筒体が偏心するため、初期の制振機能を発揮
することができない場合がある。
However, the elastic mount constituted only by the rubber elastic body has a relatively narrow resonance frequency region and exhibits a peak damping effect in the narrow frequency region. Therefore, there is a problem that it is not possible to exert a sufficient damping effect on all the regions of the vibration acting on the vehicle body during the idle rotation. Moreover, when the mounting position of the elastic mount is deviated at the time of assembling, the resonance frequency region may be deviated and the desired vibration damping effect may not be obtained. . In addition, in the elastic mount composed of a solid rubber elastic body, the elastic body is compressed by its own weight in the mounted state where the radiator's own weight is loaded, and the inner cylindrical body is eccentric. It may not be possible to exert it.

【0004】また、上記振動による共振振幅を抑制する
ために弾性マウントの減衰機能の増大調節、すなわち、
減衰係数もしくは損失係数などの増大調節を行う必要が
あるが、ゴム弾性体でのみ構成された弾性マウントでは
その増大調節の幅に限界があり、ラジエータ支持装置の
設計の自由度の幅が比較的小さくて、必ずしも最適な弾
性支持を行うことができないという問題がある。しか
も、上記ゴム弾性体を減衰機能のより高い材質、すなわ
ち、損失係数(tanδ)のより高い材質のもの(例え
ば、イソブチレンイソプレンラバー;IIR)に変更し
た場合、上記損失係数が高い程、ゴム弾性体の内部発熱
量が大きくなる上、ラジエータ側からの熱影響との相乗
作用により熱劣化やヘタリなどをより受け易くなり、耐
久性の悪化を招く。
Further, in order to suppress the resonance amplitude due to the above-mentioned vibration, the damping function of the elastic mount is adjusted to be increased, that is,
Although it is necessary to increase and adjust the damping coefficient or loss coefficient, the elastic mount composed only of rubber elastic bodies has a limit to the increase adjustment range, and the degree of freedom in designing the radiator support device is relatively small. There is a problem that it is small and it is not always possible to perform optimum elastic support. Moreover, when the rubber elastic body is changed to a material having a higher damping function, that is, a material having a higher loss coefficient (tan δ) (for example, isobutylene isoprene rubber; IIR), the higher the loss coefficient, the higher the rubber elasticity. In addition to increasing the amount of heat generated inside the body, a synergistic effect with the heat effect from the radiator side makes it more susceptible to heat deterioration and settling, resulting in deterioration of durability.

【0005】本発明は、このような事情に鑑みてなされ
たものであり、その目的とするところは、支持用マウン
トの耐久性悪化の防止を図りつつ、ラジエータの弾性支
持による車体の制振作用をより効果的に得ることにあ
る。
The present invention has been made in view of the above circumstances. An object of the present invention is to prevent the deterioration of the durability of the supporting mount while suppressing the vibration of the vehicle body by elastically supporting the radiator. To get more effectively.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、ラジエータの両側部がそれ
ぞれマウント手段を介して車体に支持されるものにおい
て、上記ラジエータに両側端部位置から外側方に突出す
る第1支持部を設ける一方、上記車体に上記第1支持部
に相対向する第2支持部を設ける。上記マウント手段
を、上記第1支持部もしくは第2支持部の一方に連結さ
れる内筒体と、この内筒体に外挿されて上記第1支持部
もしくは第2支持部の他方に連結される外筒体と、この
外筒体と内筒体とを連結する弾性体と、この弾性体の内
部に画成された複数の液室と、この液室に封入された液
体と、上記複数の液室を互いに連通する絞り通路とを備
えるようにする。そして、上記複数の液室を、上記車体
側から上記弾性体に作用する入力振動により一の液室か
ら他の液室へ上記絞り通路を通して液体の流動が生じる
ように配置する構成とするものである。
In order to achieve the above object, the invention according to claim 1 is one in which both sides of a radiator are supported by a vehicle body through mounting means, and both ends of the radiator are supported. While the first support portion protruding outward from the position is provided, the vehicle body is provided with the second support portion facing the first support portion. The mount means is connected to one of the first support portion and the second support portion and an inner cylinder body that is externally inserted into the inner cylinder body and is connected to the other of the first support portion and the second support portion. An outer cylinder body, an elastic body connecting the outer cylinder body and the inner cylinder body, a plurality of liquid chambers defined inside the elastic body, a liquid enclosed in the liquid chamber, And a throttling passage that communicates the liquid chambers with each other. Then, the plurality of liquid chambers are arranged such that liquid is generated from one liquid chamber to another liquid chamber through the throttle passage by input vibration acting on the elastic body from the vehicle body side. is there.

【0007】また、請求項2記載の発明は、上記請求項
1記載の発明おいて、マウント手段を、内筒体を挟みか
つ内筒体の筒軸に直交する方向である振動入力方向両側
位置の弾性体に上記筒軸に平行に貫通された第1および
第2貫通空所と、上記内筒体から上記第2貫通空所に向
けて上記振動入力方向一側に突出するストッパー部と、
上記弾性体の上記振動入力方向両側端部と外筒体との間
に形成された第1および第2液室とを備えるものとす
る。加えて、上記弾性体を、上記第1および第2貫通空
所に区画されて上記内筒体を弾性支持する主弾性体部
と、上記第1貫通空所と第1液室とを区画する第1隔壁
部と、上記第2貫通空所と第2液室とを区画する第2隔
壁部とを備える一方、上記第2隔壁部に、上記筒軸に直
交しかつ上記振動入力方向に直交する方向の両側位置か
ら上記第2貫通空所側および第2液室側にそれぞれ突出
してなる一対のフラップ部を形成するようにする。そし
て、上記内筒体を、ラジエータに装着前の無負荷状態で
上記外筒体に対して所定量偏心した位置に上記主弾性体
部により支持させる一方、上記ラジエータの自重が作用
した装着状態で上記外筒体に対して同心位置に支持さ
せ、上記装着状態で上記ストッパー部の先端を相対向す
る第2隔壁部に振動伝達可能に配置する構成とするもの
である。
According to a second aspect of the present invention, in the invention according to the first aspect, the mounting means has both side positions in a vibration input direction which is a direction which sandwiches the inner cylinder and is orthogonal to a cylinder axis of the inner cylinder. First and second through-holes penetrating the elastic body in parallel with the cylinder axis, and a stopper portion protruding from the inner cylinder toward the second through-hole toward one side in the vibration input direction,
The elastic body includes first and second liquid chambers formed between both ends of the elastic body in the vibration input direction and the outer cylindrical body. In addition, the elastic body divides the main elastic body portion that is partitioned into the first and second through spaces to elastically support the inner cylindrical body, the first through space and the first liquid chamber. While being provided with a first partition wall and a second partition wall partitioning the second through space and the second liquid chamber, the second partition wall is orthogonal to the cylinder axis and orthogonal to the vibration input direction. A pair of flaps is formed so as to project from both sides in the direction of the arrow to the second through space side and the second liquid chamber side, respectively. Then, while the inner cylindrical body is supported by the main elastic body portion at a position eccentric with respect to the outer cylindrical body in a non-loaded state before being mounted on the radiator, the mounted state in which the weight of the radiator acts on the inner cylindrical body. The outer cylinder is supported at a concentric position, and in the mounted state, the tip of the stopper is arranged so as to be able to transmit vibration to the opposing second partition.

【0008】[0008]

【作用】上記の構成により、請求項1記載の発明では、
例えばエンジンのアイドル回転時などの振動が車体側の
第2支持部からマウント手段の内筒体もしくは外筒体を
介して弾性体に伝達されて弾性体が撓まされる。その結
果、液室内の液体が絞り通路を通して流動するため、上
記入力振動が弾性マウントの弾性体のばね作用による振
動吸収と、複数の液室間で絞り通路を通しての液体の流
動抵抗に基づく減衰作用による振動吸収とによって制振
される。このため、共振周波数領域が弾性体のみで構成
されたマウント手段の場合よりも拡がり上記アイドル回
転時の振動の周波数領域の全域にわたる制振が図られ
る。また、上記液体の流動抵抗に基づく減衰作用によ
り、大衝撃力入力時のラジエータをマスとする振動系の
振動加速度の低減化が図られて上記ラジエータに作用す
る加振力の低減化が図られる。これにより、ラジエータ
自体およびラジエータホースとの接続部などの耐久性の
向上が図られる。
With the above construction, in the invention according to claim 1,
For example, vibrations during idle rotation of the engine are transmitted from the second support portion on the vehicle body side to the elastic body via the inner cylinder body or the outer cylinder body of the mount means, and the elastic body is bent. As a result, the liquid in the liquid chamber flows through the throttle passage, so that the input vibration absorbs the vibration due to the spring action of the elastic body of the elastic mount and the damping action based on the flow resistance of the liquid through the throttle passage between the plurality of liquid chambers. Vibration is absorbed by and damped by. For this reason, the resonance frequency range is wider than in the case of the mounting means constituted only by the elastic body, and vibration can be suppressed over the entire frequency range of the vibration during the idle rotation. Further, due to the damping action based on the flow resistance of the liquid, the vibration acceleration of the vibration system having the radiator as a mass at the time of input of a large impact force is reduced, and the excitation force acting on the radiator is reduced. . As a result, the durability of the radiator itself and the connection with the radiator hose can be improved.

【0009】また、請求項2記載の発明では、上記請求
項1記載の発明による作用に加えて、第1支持部と第2
支持部との間にマウント手段を介在させてラジエータの
自重を車体側に支持させることにより、上記マウント手
段の内筒体が外筒体と同心位置に位置付けられるため、
組付けた状態で所定の弾性支持特性を確実に発揮するた
めの初期設定状態にされる。そして、マスとしてのラジ
エータが振動入力方向に加振された場合、内筒体が上下
方向に相対移動してストッパー部の先端が第2隔壁部を
第2液室側に押圧する結果、この第2液室内の液体が絞
り通路を通して第1液室側に流動し、この流動の際に流
動抵抗が生じる。このため、上記入力振動が、上記内筒
体を支持する主弾性体部のばね作用により吸収されるほ
か、上記液体の絞り通路を通る際の流動抵抗によっても
減衰される。しかも、この場合、上記ストッパー部が第
2隔壁部の両フラップ部間の部位を押圧する結果、上記
両フラップ部が上記内筒体の筒軸と平行な軸回りに揺動
されて第2液室側に突出した部分が第2液室内を移動
し、その液室内で液体が強制的に流動される。この液体
の強制流動によって上記入力振動の減衰作用がより促進
される。
According to the second aspect of the invention, in addition to the operation of the first aspect of the invention, the first support portion and the second support portion are provided.
By supporting the own weight of the radiator on the vehicle body side by interposing the mounting means between the mounting portion and the support portion, the inner cylinder of the mounting means is positioned at the concentric position with the outer cylinder.
It is set to the initial setting state for surely exhibiting a predetermined elastic support characteristic in the assembled state. When the radiator as a mass is vibrated in the vibration input direction, the inner cylinder moves relatively in the vertical direction, and the tip of the stopper portion presses the second partition wall portion toward the second liquid chamber side. The liquid in the two liquid chamber flows to the first liquid chamber side through the throttle passage, and a flow resistance is generated during this flow. Therefore, the input vibration is absorbed by the spring action of the main elastic body portion that supports the inner cylindrical body, and is also damped by the flow resistance of the liquid when passing through the throttle passage. Moreover, in this case, as a result of the stopper portion pressing the portion between the two flap portions of the second partition wall portion, the both flap portions are swung about the axis parallel to the cylinder axis of the inner cylindrical body to cause the second liquid. The portion protruding toward the chamber moves in the second liquid chamber, and the liquid is forced to flow in the liquid chamber. The forced flow of the liquid further promotes the damping action of the input vibration.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1および図2は、本発明の実施例に係る
液封ラジエータ装置を示し、1は車体の前面側に配置さ
れたラジエータ、2,2はこのラジエータ1の車幅方向
(図1の左右方向)両側位置の車体側に固定された車体
の一部であるラジエータ支持用のサポート基板、3,
3,…は上記ラジエータ1とのサポート基板2との間に
介装されたブッシュタイプのマウント手段である。
1 and 2 show a liquid ring radiator apparatus according to an embodiment of the present invention, in which 1 is a radiator arranged on the front side of a vehicle body, and 2 and 2 are the width direction of the radiator 1 (see FIG. 1). (A left-right direction of) a support board for supporting a radiator, which is a part of the vehicle body fixed to both sides of the vehicle body,
Denoted by 3 are bush type mounting means interposed between the radiator 1 and the support substrate 2.

【0012】上記ラジエータ1の車幅方向両側端面1
a,1aには上下部の各位置から車幅方向外方に突出す
る第1支持部としての凸軸体4,4,…が設けられてお
り、この各凸軸体4が上記マウント手段3の後述の内筒
体6に内嵌されてマウント手段3と連結されている。
Both end surfaces 1 of the radiator 1 in the vehicle width direction
The a and 1a are provided with convex shaft bodies 4, 4, ... As a first support portion projecting outward from the respective positions of the upper and lower portions, and the respective convex shaft bodies 4 are mounted on the mounting means 3 described above. Is fitted in an inner cylinder body 6 described later and is connected to the mount means 3.

【0013】上記各サポート基板2の上記ラジエータ1
の側端面1aと相対向する基板面2aには、上記各凸軸
体4と相対向する位置に上記マウント手段3の後述の外
筒体7を内嵌することによりマウント手段3を連結する
第2支持部としての支持筒部5がそれぞれ形成されてい
る。
The radiator 1 of each of the support substrates 2
The outer surface 7a of the base plate 2a opposite to the side end surface 1a of the mounting means 3 is connected to the mounting means 3 by fitting the outer cylindrical body 7 of the mounting means 3 which will be described later in a position facing the respective convex shaft bodies 4. The support cylinder part 5 as 2 support parts is each formed.

【0014】上記各マウント手段3は、図3〜図5に詳
細を示すように、内筒体6と、この内筒体6の外方に所
定距離隔てて配置された外筒体7と、この外筒体7の内
周面と上記内筒体6の外周面とを互いに連結する弾性体
8と、上記内筒体6の筒軸Xを挟んで振動入力方向(図
3〜図5の上下方向:以下、単に上下方向という)両側
位置に上記弾性体8を貫通する第1貫通空所9および第
2貫通空所10と、これら各貫通空所9,10の上下方
向両側位置の弾性体8と上記外筒体7の内周面との間に
形成されて液体Lが封入された第1液室11および第2
液室12と、上記弾性体8の上記振動入力方向に直交し
かつ筒軸Xに直交する方向(図1および図2の左右方
向:以下、単に左右方向という)両側の外周側の各位置
に形成された絞り通路としてのオリフィス13,13と
から基本構成されている。
As shown in detail in FIGS. 3 to 5, each of the mounting means 3 has an inner cylindrical body 6 and an outer cylindrical body 7 arranged outside the inner cylindrical body 6 at a predetermined distance. An elastic body 8 that connects the inner peripheral surface of the outer cylindrical body 7 and the outer peripheral surface of the inner cylindrical body 6 to each other and the cylinder axis X of the inner cylindrical body 6 are sandwiched between the vibration input directions (see FIGS. 3 to 5). Vertical direction: hereinafter, simply referred to as vertical direction) First through void 9 and second through void 10 penetrating the elastic body 8 at both side positions, and elasticity at both vertical positions of each of these through voids 9, 10. A first liquid chamber 11 and a second liquid chamber 11 formed between the body 8 and the inner peripheral surface of the outer cylinder body 7 and in which the liquid L is sealed.
The liquid chamber 12 and the elastic body 8 are provided at respective positions on the outer peripheral side on both sides in a direction orthogonal to the vibration input direction and orthogonal to the cylinder axis X (left and right direction in FIGS. 1 and 2; hereinafter simply referred to as left and right direction). It is basically composed of the formed orifices 13 and 13 as throttle passages.

【0015】上記内筒体6は上記凸軸体4の外径とほぼ
同じ内径を有しており、また、上記内筒体6には内筒体
6の下面から上記第2貫通空所10内に下方に突出する
ストッパー部14が内筒体6に沿って固着されている。
The inner cylindrical body 6 has an inner diameter substantially the same as the outer diameter of the convex shaft body 4, and the inner cylindrical body 6 has a second through space 10 extending from the lower surface of the inner cylindrical body 6. A stopper portion 14 protruding downward is fixed along the inner cylindrical body 6.

【0016】上記弾性体8は、上記第1貫通空所9と第
2貫通空所10とによって区画されて上記内筒体6を挟
んで左右方向両側に延びる主弾性体部8aと、上記第1
貫通空所9と第1液室11とを区画する比較的薄肉の第
1隔壁部8bと、上記第2貫通空所10と第2液室12
とを区画する比較的厚肉の第2隔壁部8cとからなる。
上記第2隔壁部8cの左右方向両側位置には心材として
合成樹脂製のプレート15がそれぞれ埋め込まれてお
り、この各プレート15の周囲を覆う弾性体部分ととと
もにほぼ上下方向の両側に突出する一対のフラップ部1
6,16が形成されている。この各フラップ部16によ
って第2貫通空所10側に所定量突出する空所側凸部1
6aと、第2液室12側に所定量突出する液室側凸部1
6bとが形成されるようになっている。そして、上記両
フラップ部16,16と、両者を連結する上記第2隔壁
部8cの中央壁部8dとは、上記両液室側凸部16b,
16bの間隔よりも上記両空所側凸部16a,16aの
間隔の方が拡がった略W字状になるように配置されてい
る。
The elastic body 8 is divided by the first through space 9 and the second through space 10 and extends on both sides in the left and right direction with the inner cylindrical body 6 interposed therebetween, and the first elastic space 8a. 1
A relatively thin first partition wall portion 8b for partitioning the through space 9 and the first liquid chamber 11, the second through space 10 and the second liquid chamber 12 described above.
And a relatively thick second partition wall portion 8c for partitioning the and.
Synthetic resin plates 15 are embedded as core materials at both left and right sides of the second partition 8c, and a pair of elastic plates covering the periphery of each plate 15 are provided on both sides in a substantially vertical direction. Flap part 1
6, 16 are formed. The space-side convex portion 1 protruding by a predetermined amount toward the second penetrating space 10 side by each flap 16
6a and a liquid chamber side convex portion 1 protruding by a predetermined amount toward the second liquid chamber 12 side
6b is formed. The flap portions 16 and 16 and the central wall portion 8d of the second partition wall portion 8c that connects the flap portions 16 and 16 to each other are the liquid chamber side convex portions 16b and
The space-side convex portions 16a, 16a are arranged such that the space therebetween is wider than the space 16b, and is substantially W-shaped.

【0017】上記主弾性体部8aは上記内筒体6を弾性
支持するようになっており、その内筒体6はマウント手
段3が上記ラジエータ1への装着前の無負荷状態(図3
に示す状態)で上記外筒体7に対して上方に所定量偏心
した位置に位置付けられて、上記第1貫通空所9の上下
間隔が比較的小さくかつ上記第2貫通空所10の上下間
隔が比較的大きくなるようになっている。そして、上記
マウント手段3が上記ラジエータ1に装着されてラジエ
ータ1の自重が負荷された装着状態(図4に示す状態)
で、上記自重により主弾性体部8aが撓んで上記内筒体
6が上記外筒体7と同心位置に位置付けられるようにな
っている。この内筒体6が上記同心位置に位置付けられ
ることにより、上記ストッパー部14の先端部14aが
上記第2隔壁部8cの中央壁部8dに当接して押圧しか
つ上記両フラップ部16,16が筒軸Xと平行な軸回り
に首振りして上記無負荷状態とは逆に上記両空所側凸部
16a,16aがそれぞれ内筒体6側に接近してストッ
パー部14を左右両側から挟み込むようになっている。
この際、上記各フラップ部16の各空所側凸部16aは
上記主弾性体部8aとわずかな隙間を隔てて離れた状態
となるようになっている(図6参照)。
The main elastic body portion 8a elastically supports the inner cylindrical body 6, and the inner cylindrical body 6 is in an unloaded state before the mounting means 3 is mounted on the radiator 1 (see FIG. 3).
In the state shown in FIG. 2), the first through space 9 is located at a position eccentric to the upper cylinder 7 by a predetermined amount, and the vertical space between the first through space 9 and the second through space 10 is relatively small. Is becoming relatively large. Then, the mounting means 3 is mounted on the radiator 1 and the mounted state in which the weight of the radiator 1 is loaded (the state shown in FIG. 4).
Then, the main elastic body portion 8a is bent by the self-weight and the inner cylindrical body 6 is positioned at the concentric position with the outer cylindrical body 7. By positioning the inner cylinder body 6 at the concentric position, the tip end portion 14a of the stopper portion 14 abuts and presses against the central wall portion 8d of the second partition wall portion 8c, and the both flap portions 16, 16 are brought into contact with each other. By swinging about an axis parallel to the cylinder axis X, opposite to the above-mentioned unloaded state, the both-cavity-side convex portions 16a, 16a approach the inner cylinder body 6 side, respectively, and sandwich the stopper portion 14 from both left and right sides. It is like this.
At this time, the void-side convex portions 16a of the flap portions 16 are separated from the main elastic body portion 8a with a slight gap (see FIG. 6).

【0018】また、上記内筒体6と弾性体8とは、その
弾性体8の外周側に埋め込んだ中間筒体17と予め一体
的に加硫成形され、その中間筒体17の外周面を覆う薄
膜8eを介して上記外筒体7の内周面に圧嵌合されて一
体的に連結されている。そして、上記中間筒体17の上
記第1および第2液室11,12に相当する範囲の筒壁
面が切欠き窓部17a,17bとされて、第1および第
2隔壁部8b,8cと外筒体7の内周面7aとの間に第
1および第2液室11,12が形成されている。また、
上記両窓部17a,17b間の上記薄膜8eの一部が周
方向に切り欠かれており(図7参照)、この切り欠かれ
た部分の中間筒体17の外周面と外筒体7の内周面との
間に第1液室11と第2液室12とを互いに連通する絞
り通路としてのオリフィス13が形成されている。
The inner cylindrical body 6 and the elastic body 8 are pre-vulcanized integrally with the intermediate cylindrical body 17 embedded in the outer peripheral side of the elastic body 8, and the outer peripheral surface of the intermediate cylindrical body 17 is It is press-fitted and integrally connected to the inner peripheral surface of the outer cylindrical body 7 through the covering thin film 8e. Then, the cylindrical wall surfaces of the intermediate cylindrical body 17 in the range corresponding to the first and second liquid chambers 11 and 12 serve as cutout window portions 17a and 17b, and are formed outside the first and second partition wall portions 8b and 8c. First and second liquid chambers 11 and 12 are formed between the inner peripheral surface 7 a of the cylindrical body 7 and the inner peripheral surface 7 a. Also,
A part of the thin film 8e between the windows 17a and 17b is cut out in the circumferential direction (see FIG. 7), and the outer peripheral surface of the intermediate cylindrical body 17 and the outer cylindrical body 7 in the cutout portion are formed. An orifice 13 is formed between the inner peripheral surface and the first liquid chamber 11 and the second liquid chamber 12 as a throttle passage that communicates with each other.

【0019】具体的な仕様設定の一例として、ラジエー
タ1の重量が例えば8〜15Kgfで、このラジエータ1
の質量に対する車体の質量の比κが0.05〜0.2で
あり、このラジエータ1を2〜4のマウント手段3で支
持するとした場合、上記主弾性体部8aのばね定数k2
を2.0〜7.5Kgf/mmの値に設定し、かつ、オリ
フィス13,13に基づく液体Lの流動抵抗による減衰
係数cを0.02〜0.09の値に設定して、減衰係数
比μが0.26〜0.42の範囲の値で、損失係数ta
nδが0.52〜0.84の範囲の値を好ましいものと
して設定すればよい。
As an example of a specific specification setting, the weight of the radiator 1 is, for example, 8 to 15 Kgf, and the radiator 1
When the radiator 1 is supported by the mounting means 3 of 2 to 4, the ratio k of the mass of the vehicle body to the mass of the main body 8a of the main elastic body 8a is k2.
Is set to a value of 2.0 to 7.5 Kgf / mm, and the damping coefficient c due to the flow resistance of the liquid L based on the orifices 13 and 13 is set to a value of 0.02 to 0.09. When the ratio μ is a value in the range of 0.26 to 0.42, the loss coefficient ta
A value in the range of nδ of 0.52 to 0.84 may be set as a preferable value.

【0020】次に、上記構成の第1実施例の基本的な作
用、効果を図8の振動系モデルに基づいて説明する。
Next, the basic operation and effect of the first embodiment having the above construction will be described based on the vibration system model of FIG.

【0021】同図において、m1 は車体Bの質量、k1
は車体Bを支持するばね定数、x1は加振力F cosωt
が作用した時の車体Bの振幅、m2 はラジエータ1の質
量、x2 は上記加振力が車体Bに作用した時のラジエー
タ1の振幅である。そして、上記質量m2 のラジエータ
1がばね定数k2 のばねと、減衰係数cのダッシュポッ
トとからなる各マウント手段3により上記車体Bに支持
されており、上記ばねが上記各マウント手段3における
主弾性体部8aに相当し、上記ダッシュポットがマウン
ト手段3における両オリフィス13,13を通る液体L
の流動抵抗に相当する。すなわち、車体B側のばね定数
k1 による主振動系に、上記ラジエータ1をマスとした
上記ばね定数k2 および減衰係数cによる副振動系が付
加されているものである。
In the figure, m1 is the mass of the vehicle body B, k1
Is a spring constant for supporting the vehicle body B, x1 is an exciting force F cosωt
Is the amplitude of the vehicle body B when m is applied, m2 is the mass of the radiator 1, and x2 is the amplitude of the radiator 1 when the above-mentioned exciting force acts on the vehicle body B. The radiator 1 having the mass m2 is supported on the vehicle body B by each mounting means 3 including a spring having a spring constant k2 and a dashpot having a damping coefficient c, and the spring is the main elastic member of each mounting means 3. The liquid L, which corresponds to the body portion 8a and has the dashpot passing through both orifices 13 and 13 of the mounting means 3,
Equivalent to the flow resistance of. That is, to the main vibration system with the spring constant k1 on the vehicle body B side, a sub-vibration system with the spring constant k2 with the radiator 1 as a mass and the damping coefficient c is added.

【0022】この振動系モデルにおいて、車体B側から
振動が入力した場合、質量m2 からなる上記ラジエータ
1には上記主弾性体部8aによるばね作用に加えて、上
記両オリフィス13,13での液体Lの流動抵抗に基づ
く減衰力が作用した状態での振動が生じるため、上記ラ
ジエータ1をマスとするダイナミックダンパによる車体
Bの制振を上記ばね作用と減衰作用との双方に基づいて
行うことができる。この場合、弾性体のばね作用でのみ
制振を行う従来のラジエータ支持装置の場合よりも、共
振周波数領域が拡がりアイドル回転時の振動の周波数領
域の全域にわたる制振作用を得ることができる。
In this vibration system model, when vibration is input from the vehicle body B side, the radiator 1 having a mass m2 has a spring action due to the main elastic body portion 8a, and the liquid at both orifices 13 and 13 is Since vibration occurs in the state where the damping force based on the flow resistance of L acts, the vibration damping of the vehicle body B by the dynamic damper having the radiator 1 as a mass can be performed based on both the spring action and the damping action. it can. In this case, as compared with the conventional radiator supporting device that suppresses vibration only by the spring action of the elastic body, the resonance frequency range is expanded, and the vibration suppressing action can be obtained over the entire frequency range of vibration during idle rotation.

【0023】また、上記液体Lの流動抵抗に基づく減衰
作用により、大衝撃力入力時のラジエータ1をマスとす
る副振動系の振動加速度の低減化を図ることができ、上
記ラジエータ1に作用する加振力の低減化を図ることが
できる。これにより、ラジエータ1自体およびラジエー
タホースとの接続部などの耐久性の向上を図ることがで
きる。さらに、上記共振周波数領域の拡大によりラジエ
ータ1に対する各マウント手段3の組付け位置にずれが
生じて共振ピークの位置が多少ずれても、上記従来のラ
ジエータ支持装置の場合よりも制振機能の悪化度合いを
小さくすることができる。
Further, the damping action based on the flow resistance of the liquid L can reduce the vibration acceleration of the sub-vibration system having the radiator 1 as a mass when a large impact force is input, and acts on the radiator 1. The excitation force can be reduced. As a result, the durability of the radiator 1 itself and the connecting portion with the radiator hose can be improved. Further, even if the mounting position of each mounting means 3 with respect to the radiator 1 is displaced due to the expansion of the resonance frequency region and the position of the resonance peak is slightly displaced, the damping function is deteriorated as compared with the case of the conventional radiator supporting device. The degree can be reduced.

【0024】さらに、上記各マウント手段3の減衰機能
を増大調節する際、すなわち、損失係数を増大させる
際、オリフィス13,13の流路長さ、流路断面積など
を調節することにより、上記損失係数の調節を容易に行
うことができ、従来のラジエータ支持装置におけるゴム
の材質変更による調節のみでは困難な範囲にまで増大調
節することができる。このため、上記減衰機能の増大調
節の自由度、すなわち、ラジエータ支持装置の設計の自
由度を拡大させることができ、ラジエータを装着する車
体側の条件に応じて最適な制振機能を有するラジエータ
支持装置を形成することができる。また、これにより、
従来のラジエータ支持装置における上記ゴムの材質変更
に起因する耐久性の悪化を容易に防止することができ
る。
Further, when the damping function of each of the mount means 3 is increased and adjusted, that is, when the loss coefficient is increased, the flow passage lengths and flow passage cross-sectional areas of the orifices 13 and 13 are adjusted to adjust the above. It is possible to easily adjust the loss coefficient, and it is possible to increase the adjustment to a range that is difficult only by adjusting the material of the rubber in the conventional radiator supporting device. Therefore, the degree of freedom of increasing the damping function, that is, the degree of freedom in designing the radiator support device can be increased, and the radiator support having the optimum vibration damping function according to the conditions of the vehicle body side on which the radiator is mounted is provided. A device can be formed. This also allows
It is possible to easily prevent deterioration of durability due to the change of the material of the rubber in the conventional radiator supporting device.

【0025】特に、上記ばね定数k2 および減衰係数c
をラジエータ1の質量m2 に対する車体Bの質量m1 の
比などに基づいて所定の最適値とすることにより、より
効果的な制振を行うことができる。すなわち、上記ばね
定数k2 および減衰係数cを上記の好ましい一例として
示した値を採用することにより、共振曲線を図9に実線
で示す共振曲線P2 のようにS点およびP点の2つの定
点の近傍でそれぞれ極値を有してそれらの両定点間でほ
ぼ等しい応答倍率を有するものとすることができる。同
図に一点鎖線で示す共振曲線P1 は減衰係数比μが0の
場合のものであり、2つの共振点としての2つの極大値
(ピーク)を有している。そして、上記減衰係数比μを
増大させる程、上記極大値の値が小さくなり、所定値を
越えると両ピークが重なり始め、上記減衰係数比μが∞
に至ると同図に破線で示すように共振曲線P3 は両ピー
クが1つに重なって共振点が1つとなり上記応答倍率は
無限大となる。すなわち、ラジエータ1の共振点(η=
1.0)近傍の極めて狭い領域でピーク的な共振が生じ
る。これらに対して上記減衰係数比μとして0.26〜
0.42の範囲の内の値を採用した場合の共振曲線P2
は、上記S点およびP点の2つの定点の近傍間でほぼ等
しい応答倍率を有して、上記ラジエータ1の共振点を挟
んで共振周波数領域を拡大させることができる。なお、
上記S点およびP点は減衰係数比のいかんに拘らず、す
べての共振曲線が必ず通過する定点である。
In particular, the above spring constant k2 and damping coefficient c
Is set to a predetermined optimum value based on the ratio of the mass m1 of the vehicle body B to the mass m2 of the radiator 1 and the like, so that more effective vibration damping can be performed. That is, by adopting the spring constant k2 and the damping coefficient c as the values shown as the above-mentioned preferable example, the resonance curve has two fixed points of S point and P point like the resonance curve P2 shown by the solid line in FIG. It can be assumed that each has an extreme value in the vicinity and has substantially the same response magnification between the two fixed points. A resonance curve P1 shown by a one-dot chain line in the figure is for a case where the damping coefficient ratio μ is 0, and has two maximum values (peaks) as two resonance points. Then, as the damping coefficient ratio μ is increased, the value of the maximum value becomes smaller, and when the value exceeds a predetermined value, both peaks start to overlap with each other, and the damping coefficient ratio μ becomes ∞.
As shown by the broken line in the figure, both peaks of the resonance curve P3 overlap and one resonance point is obtained, and the response magnification becomes infinite. That is, the resonance point of the radiator 1 (η =
Peak resonance occurs in an extremely narrow region near 1.0). On the other hand, the damping coefficient ratio μ is 0.26 to
Resonance curve P2 when a value within the range of 0.42 is adopted
Has substantially equal response magnifications in the vicinity of the two fixed points of the point S and the point P, and can expand the resonance frequency region across the resonance point of the radiator 1. In addition,
The points S and P are fixed points through which all resonance curves must pass regardless of the damping coefficient ratio.

【0026】次に、上記第1実施例の具体的な作用、効
果を図4に基づいて説明する。なお、以下、説明の便宜
上、1つのマウント手段3について説明する。
Next, the specific operation and effect of the first embodiment will be described with reference to FIG. For convenience of explanation, one mount means 3 will be described below.

【0027】車体側から支持筒部5を介して、高周波で
微小振幅の振動が上記マウント手段3に対して上下方向
に入力した場合、その入力振動が外筒体7を介して弾性
体8の主弾性体部8aに伝達されて、この主弾性体部8
aが上下方向に撓まされる。この際、上記主弾性体部8
aは空所側凸部16aと主弾性体部8aとの隙間の上下
間隔の範囲内での撓み量となり、上記主弾性体8aはそ
の上下の第1および第2貫通空所9,10に区画されて
独立して変形可能であるため、上記高周波微小振幅の振
動を確実に吸収して振動絶縁をすることができる。
When vibrations of high amplitude and small amplitude are input to the mount means 3 in the vertical direction from the vehicle body side through the support cylinder portion 5, the input vibrations are transmitted to the elastic body 8 via the outer cylinder body 7. The main elastic body 8 is transmitted to the main elastic body 8a.
a is bent in the vertical direction. At this time, the main elastic body portion 8
a is the amount of bending within the range of the vertical gap of the gap between the space-side convex portion 16a and the main elastic body portion 8a, and the main elastic body 8a is located in the upper and lower first and second penetrating voids 9 and 10. Since it is partitioned and can be deformed independently, it is possible to reliably absorb the vibration of the above-mentioned high-frequency minute amplitude and perform vibration isolation.

【0028】また、エンジンのアイドル回転時振動など
の上記振動より振幅が大きく低周波(例えば20〜40
Hz)の振動が入力した場合、上記主弾性体部8aが撓
む結果、内筒体6が上下方向に相対移動する。この相対
移動が例えば下方に押し下げられる方向である場合、ス
トッパー部14の先端部14aが第2隔壁部8cの中央
壁部8dを押し下げて第2液室12を縮小化させる。こ
のため、第2液室12内の液体Lが両オリフィス13,
13を通して第1液室11側へ強制的に流動し、この流
入液体Lにより第1隔壁部8bが押し下げられて第1液
室11が拡大化する。この液体Lの各オリフィス13を
通る際の流動抵抗により、上記入力振動が減衰される。
従って、上記入力振動の制振を、上記主弾性体部8aの
ばね作用と、上記各オリフィス13での液体Lの流動抵
抗との双方に基づいて行うことができる。
Further, the amplitude is larger than the above-mentioned vibration such as the vibration at the time of idle rotation of the engine and the low frequency (for example, 20 to 40).
When the vibration of (Hz) is inputted, the main elastic body portion 8a bends, so that the inner cylindrical body 6 relatively moves in the vertical direction. When this relative movement is, for example, in the direction in which it is pushed downward, the tip portion 14a of the stopper portion 14 pushes down the central wall portion 8d of the second partition wall portion 8c to reduce the size of the second liquid chamber 12. Therefore, the liquid L in the second liquid chamber 12 is
The first liquid chamber 11 is forcibly flowed through 13 to the first liquid chamber 11 side, and the inflowing liquid L pushes down the first partition wall portion 8b to enlarge the first liquid chamber 11. The input vibration is damped by the flow resistance of the liquid L when passing through each orifice 13.
Therefore, the damping of the input vibration can be performed based on both the spring action of the main elastic body portion 8a and the flow resistance of the liquid L in each of the orifices 13.

【0029】しかも、この場合、上記中央壁部8dが押
し下げられることにより、両フラップ部16,16が筒
軸Xと平行な軸回りに揺動し、各液室側凸部16bが第
2液室12内で左右方向に首振り移動を繰り返すため、
上記第2液室12内の液体Lの強制流動が生じる。この
ため、この両フラップ部16,16の揺動を引き起こす
第2隔壁部8cのばね作用と、この揺動に伴う液体Lの
強制流動に基づく減衰作用とによって上記入力振動に対
する制振を図ることができる。
Further, in this case, when the central wall portion 8d is pushed down, both flap portions 16 and 16 swing about the axis parallel to the cylinder axis X, and the respective liquid chamber side convex portions 16b are brought into contact with the second liquid. Because the swinging movement in the left and right direction is repeated in the chamber 12,
The forced flow of the liquid L in the second liquid chamber 12 occurs. Therefore, it is possible to suppress the input vibration by the spring action of the second partition wall portion 8c that causes the swinging of the flap portions 16 and 16 and the damping action based on the forced flow of the liquid L accompanying the swing. You can

【0030】さらに、上記アイドル回転時の振動よりも
大きい大衝撃力が入力した場合、上記内筒体6の相対移
動により上記中央壁部8dがさらに強く押し下げられ
て、第2液室12のより大きい縮小化、上記両フラップ
部16,16のより大きい揺動が生じる。このため、上
記アイドル回転時の振動の場合よりもさらに大きな減衰
作用が生じて上記大衝撃力の吸収を行うことができる。
加えて、主弾性体部8aと各空所側凸部16aとの当
接、および、各液室側凸部16bと外筒体7の内周面と
の当接が生じ、上記内筒体6のそれ以上の下方への変位
が規制される。この場合、1つのストッパー部が外筒体
7の内周面と当接することによる変位規制ではなく、内
筒体6およびストッパー部14が両フラップ部16,1
6の空所側凸部16a,16aおよび中央壁部8dによ
って挟み込まれ、かつ、上記両フラップ部16,16の
液室側凸部16b,16bの2つの部分で外筒体7の内
周面7aに当接して上記大衝撃力が分散された状態で変
位規制されるため、大衝撃力入力時の上記内筒体6の所
定量以上の変位を確実に防止することができる上に、局
部的な過大な応力の集中を防止することができる。
Furthermore, when a large impact force larger than the vibration at the time of idle rotation is input, the relative movement of the inner cylindrical body 6 further pushes down the central wall portion 8d, so that the second liquid chamber 12 is pushed further. Greater downsizing and greater swinging of the flaps 16, 16 results. For this reason, a greater damping effect is produced than in the case of the vibration during idle rotation, and the large impact force can be absorbed.
In addition, contact between the main elastic body portion 8a and each cavity-side convex portion 16a and contact between each liquid chamber-side convex portion 16b and the inner peripheral surface of the outer cylindrical body 7 occur, so that the inner cylindrical body Further downward displacement of 6 is restricted. In this case, the displacement is not restricted by one stopper portion coming into contact with the inner peripheral surface of the outer tubular body 7, but the inner tubular body 6 and the stopper portion 14 are provided with both flap portions 16, 1.
6 is sandwiched between the space side convex portions 16a, 16a and the central wall portion 8d, and the inner peripheral surface of the outer cylindrical body 7 is formed by the two portions of the liquid chamber side convex portions 16b, 16b of the both flap portions 16, 16. Since the displacement is regulated in a state where the large impact force is dispersed by contacting with 7a, it is possible to reliably prevent the inner cylinder body 6 from being displaced by a predetermined amount or more when the large impact force is input, and at the It is possible to prevent the excessive concentration of stress.

【0031】図10および図11は本発明の第2実施例
を示す。同図において、18は弾性体であり、この弾性
体18は内筒体6を弾性支持する主弾性体部18aと、
第1貫通空所9と第1液室11とを区画する薄肉の第1
隔壁部18bと、外筒体7の内周面7aとの間で第2液
室12を画成する厚肉の第2隔壁部18cと、この第2
隔壁部18cの中央壁部18dと上記主弾性体部18a
の内筒体6の近傍部分とを連結する連結部18eとから
構成されている。
10 and 11 show a second embodiment of the present invention. In the figure, reference numeral 18 denotes an elastic body, and this elastic body 18 has a main elastic body portion 18a for elastically supporting the inner cylindrical body 6,
The first thin wall that divides the first through space 9 and the first liquid chamber 11
A thick second partition wall portion 18c that defines the second liquid chamber 12 between the partition wall portion 18b and the inner peripheral surface 7a of the outer cylindrical body 7;
The central wall portion 18d of the partition wall portion 18c and the main elastic body portion 18a
And a connecting portion 18e for connecting the vicinity of the inner cylindrical body 6 of FIG.

【0032】また、19は上記内筒体6に固着されて上
記連結部18e内に埋め込まれたストッパー部であり、
20a,20bは上記主弾性体部18aと第2隔壁部1
8cとの間に形成された第2貫通空所であって、上記連
結部18eによって左右方向に2つに区画されている。
Numeral 19 is a stopper portion fixed to the inner cylindrical body 6 and embedded in the connecting portion 18e,
20a and 20b are the main elastic body portion 18a and the second partition wall portion 1
8c is a second through-hole formed between the two and 8c, and is divided into two in the left-right direction by the connecting portion 18e.

【0033】さらに、21,21は上記第2隔壁部18
cの中央壁部18dを挟んだ左右両側位置に形成された
フラップ部であり、内部にほぼ上下方向に向けたプレー
ト15が埋め込まれている。この左右両側のフラップ部
21,21と中央壁部18dとによって横断面形状が略
W字状になるように形成されている。
Further, 21 and 21 are the second partition 18
It is a flap portion formed at both left and right positions with the central wall portion 18d of c interposed therebetween, and a plate 15 oriented substantially vertically is embedded inside. The left and right flap portions 21 and 21 and the central wall portion 18d are formed to have a substantially W-shaped cross section.

【0034】上記内筒体6は、ラジエータ1への装着前
の無負荷状態で第1実施例と同様に外筒体7に対して所
定量上方の偏心位置に上記主弾性体部18aなどによっ
て支持された状態(図10に示す状態)になっており、
この状態では主弾性体部18aと上記各フラップ部21
の空所側凸部21aとが互いに離れた状態になってい
る。そして、上記ラジエータ1の自重が作用した装着状
態で上記第1実施例と同様に上記外筒体7と同心位置に
支持された状態(図11に示す状態)になるようになっ
ており、この状態では上記主弾性体部18aが撓みかつ
中央壁部18dが押し下げられて両フラップ部21,2
1の両液室側凸部21b,21bが左右方向外方に拡開
しかつ両空所側凸部21a,21aがストッパー部19
側に接近した状態で上記主弾性体部18aに当接するよ
うになっている。
The inner cylindrical body 6 is eccentric to the outer cylindrical body 7 by a predetermined amount in an eccentric position with respect to the outer cylindrical body 7 in the unloaded state before being mounted on the radiator 1 by the main elastic body portion 18a or the like. It is in a supported state (state shown in FIG. 10),
In this state, the main elastic body portion 18a and each of the flap portions 21 are
The vacant space-side convex portions 21a are separated from each other. Then, in the mounted state in which the weight of the radiator 1 acts, the radiator 1 is supported at the concentric position with the outer cylinder body 7 (the state shown in FIG. 11) as in the first embodiment. In the state, the main elastic body portion 18a is bent and the central wall portion 18d is pushed down, so that the flap portions 21, 2 are
Both the liquid chamber side convex portions 21b, 21b of the No. 1 widen outward in the left-right direction, and the both space side convex portions 21a, 21a are stopper portions 19
The main elastic portion 18a is brought into contact with the main elastic body portion 18a in a state of being close to the side.

【0035】この第2実施例おいても、ばね作用と、液
体Lの流動抵抗に基づく減衰作用とによる車体の制振と
いう基本的な作用効果を、第1実施例と同様に得ること
ができる。
Also in the second embodiment, the basic effect of damping the vehicle body by the spring action and the damping action based on the flow resistance of the liquid L can be obtained as in the first embodiment. .

【0036】そして、この第2実施例において、車体側
から支持筒部5を介して、高周波で微小振幅の振動が上
記マウント手段3に対して上下方向に入力した場合、そ
の入力振動が外筒体7を介して弾性体18の主弾性体部
18aに伝達されて、この主弾性体部18aが各空所側
凸部21aと第1隔壁部18bとの間で上下方向に撓ま
せられる。この主弾性体部18aのばね作用により、上
記高周波微小振幅の振動を確実に吸収して振動絶縁をす
ることができる。
Further, in the second embodiment, when a vibration of a high frequency and a small amplitude is vertically input to the mount means 3 from the vehicle body side through the support cylinder portion 5, the input vibration is the outer cylinder. It is transmitted to the main elastic body portion 18a of the elastic body 18 via the body 7, and the main elastic body portion 18a is deflected in the vertical direction between each space-side convex portion 21a and the first partition wall portion 18b. Due to the spring action of the main elastic body portion 18a, it is possible to surely absorb the vibration of the above-mentioned high-frequency minute amplitude and perform vibration isolation.

【0037】また、上記振動より振幅が大きく低周波の
エンジンのアイドル回転時の振動が入力した場合、上記
主弾性体部18aが撓む結果、内筒体6が上下方向に相
対移動する。この相対移動が例えば下方に押し下げられ
る方向である場合、連結部18eを介して第2隔壁部1
8cの中央壁部18dが押し下げられて第2液室12を
縮小化させる。このため、第2液室12側から両オリフ
ィス13,13を通して第1液室11側へ液体Lが強制
的に流動されて、この液体Lの各オリフィス13を通る
際の流動抵抗により、上記入力振動が減衰される。従っ
て、上記入力振動の制振を、上記主弾性体部18aおよ
び連結部18eを介して連結された第2隔壁部18cの
各ばね作用と、上記各オリフィス13での液体Lの流動
抵抗との双方に基づいて行うことができる。
Further, when the vibration at the time of idle rotation of the engine, which has a larger amplitude and a lower frequency than the above-mentioned vibration, is input, the main elastic body portion 18a is bent, and as a result, the inner cylindrical body 6 relatively moves in the vertical direction. When this relative movement is, for example, in the direction of being pushed downward, the second partition wall portion 1 is connected via the connecting portion 18e.
The central wall portion 18d of 8c is pushed down to reduce the size of the second liquid chamber 12. Therefore, the liquid L is forcibly flowed from the second liquid chamber 12 side to the first liquid chamber 11 side through both orifices 13 and 13, and due to the flow resistance of the liquid L when passing through each orifice 13, the input Vibration is dampened. Therefore, the damping of the input vibration is achieved by the spring action of the second partition wall portion 18c connected via the main elastic body portion 18a and the connecting portion 18e and the flow resistance of the liquid L in each orifice 13. It can be done based on both.

【0038】しかも、この場合、上記中央壁部18dが
押し下げられることにより、両フラップ部21,21が
筒軸Xと平行な軸回りに揺動し、各液室側凸部21bが
第2液室12内で左右方向に首振り移動を繰り返すた
め、上記第2液室12内の液体Lの強制流動を生じさせ
て、上記第1実施例と同様に、上記入力振動に対する制
振の促進を図ることができる。
Further, in this case, when the central wall portion 18d is pushed down, both flap portions 21 and 21 swing about the axis parallel to the cylinder axis X, and the respective liquid chamber side convex portions 21b move to the second liquid. Since the swinging movement in the left-right direction is repeated in the chamber 12, the forced flow of the liquid L in the second liquid chamber 12 is caused to promote the damping of the input vibration as in the first embodiment. Can be planned.

【0039】さらに、上記アイドル回転時の振動よりも
大きい大衝撃力が入力した場合、上記内筒体6の相対移
動により上記中央壁部18dがさらに強く押し下げられ
て、第2液室12のより大きい縮小化、上記両フラップ
部16,16のより大きい揺動が生じる。加えて、主弾
性体部18aと各空所側凸部21aとの当接、および、
各液室側凸部21bと外筒体7の内周面7aとの当接が
生じ、上記内筒体6のそれ以上の下方への変位が規制さ
れる。このため、第1実施例と同様に、大衝撃力入力時
の上記内筒体6の所定量以上の変位を確実に防止するこ
とができる上に、局部的な過大な応力の集中を防止する
ことができる。
Further, when a large impact force larger than the vibration at the time of idle rotation is inputted, the relative movement of the inner cylinder body 6 pushes the central wall portion 18d further strongly, and the central wall portion 18d is further pushed. Greater downsizing and greater swinging of the flaps 16, 16 results. In addition, contact between the main elastic body portion 18a and each void-side convex portion 21a, and
The contact between the liquid chamber side convex portion 21b and the inner peripheral surface 7a of the outer cylindrical body 7 occurs, and further downward displacement of the inner cylindrical body 6 is restricted. Therefore, similarly to the first embodiment, it is possible to reliably prevent the displacement of the inner cylinder body 6 by a predetermined amount or more when a large impact force is input, and also to prevent local concentration of excessive stress. be able to.

【0040】なお、本発明は上記第1および第2実施例
に限定されるものではなく、その他種々の変形例を包含
するものである。すなわち、上記第1および第2実施例
では、第1支持部として凸軸体4、第2支持部として支
持筒部5を示したが、これに限らず、例えば、第1支持
部として支持筒部を形成し、第2支持部として凸軸体を
形成して、ラジエータ側にマウント手段の外筒体を、車
体側に内筒体をそれぞれ連結してもよい。
The present invention is not limited to the first and second embodiments described above, but includes various other modifications. That is, in the above-described first and second embodiments, the convex shaft body 4 is shown as the first support portion and the support tubular portion 5 is shown as the second support portion, but the present invention is not limited to this, and for example, the support tubular portion is provided as the first support portion. May be formed to form a convex shaft body as the second support portion, and the outer cylinder body of the mounting means may be connected to the radiator side and the inner cylinder body may be connected to the vehicle body side.

【0041】また、上記第1実施例では、装着状態でス
トッパー部14の先端部14aと第2隔壁部8cの中央
壁部8dとが互いに当接した状態になるようにしている
が、これに限らず、例えば、両者がわずかな隙間を隔て
て近接している状態となるようにしてもよい。この場合
も、同様の効果を得ることができる。
In the first embodiment, the tip end portion 14a of the stopper portion 14 and the central wall portion 8d of the second partition wall portion 8c are in contact with each other in the mounted state. For example, both may be in a state of being close to each other with a slight gap. Also in this case, the same effect can be obtained.

【0042】[0042]

【発明の効果】以上説明したように、請求項1記載の発
明における液封ラジエータ支持装置によれば、例えばエ
ンジンのアイドル回転時などの振動が車体側からラジエ
ータ側に入力した場合、その振動をマウント手段の弾性
体のばね作用による振動吸収と、複数の液室間で絞り通
路を通しての液体の流動抵抗に基づく減衰作用による振
動吸収とによって制振することができる。この場合、共
振周波数領域が従来装置における弾性体のばね作用での
みの場合よりも拡げることができ、上記アイドル回転時
の振動の周波数領域の全域にわたる制振を効果的に図る
ことができる。しかも、上記共振周波数領域の拡大によ
りラジエータに対するマウント手段の組付け位置にずれ
が生じて共振ピークの位置が多少ずれても従来装置の場
合よりも制振機能の悪化度合いを小さくすることができ
る。
As described above, according to the liquid ring radiator support device of the first aspect of the present invention, when vibration such as during idle rotation of the engine is input from the vehicle body side to the radiator side, the vibration is transmitted. Vibration can be suppressed by the vibration absorption by the spring action of the elastic body of the mounting means and the vibration absorption by the damping action based on the flow resistance of the liquid through the throttle passage between the plurality of liquid chambers. In this case, the resonance frequency range can be expanded as compared with the case where only the spring action of the elastic body is used in the conventional device, and the vibration can be effectively suppressed over the entire frequency range of the vibration during the idle rotation. Moreover, even if the mounting position of the mounting means with respect to the radiator deviates due to the expansion of the resonance frequency region and the position of the resonance peak deviates somewhat, the degree of deterioration of the vibration damping function can be made smaller than in the case of the conventional device.

【0043】また、上記液体の流動抵抗に基づく減衰作
用により、大衝撃力入力時のラジエータをマスとする振
動系の振動加速度の低減化を図ることができ、上記ラジ
エータに作用する加振力の低減化を図ることができる。
これにより、ラジエータ自体およびラジエータホースと
の接続部などの耐久性の向上を図ることができる。
Further, due to the damping action based on the flow resistance of the liquid, it is possible to reduce the vibration acceleration of the vibration system whose mass is the radiator when a large impact force is input, and the vibration force acting on the radiator is reduced. It can be reduced.
As a result, the durability of the radiator itself and the connection with the radiator hose can be improved.

【0044】さらに、マウント手段の減衰機能の増大調
節を液体の流動抵抗度合いの調節により容易に行うこと
ができ、従来装置におけるゴムの材質変更によってのみ
での調節では困難な範囲にまで増大調節することができ
る。このため、上記減衰機能の増大調節の自由度、すな
わち、ラジエータ支持装置の設計の自由度を拡大させる
ことができ、ラジエータを装着する車体側の条件に応じ
て最適な制振機能を有するラジエータ支持装置を形成す
ることができる。また、これにより、従来装置における
上記ゴムの材質変更に起因する耐久性の悪化を容易に防
止することができる。
Furthermore, the damping function of the mounting means can be easily increased by adjusting the degree of flow resistance of the liquid, and the adjustment can be made to a range that is difficult to adjust only by changing the material of the rubber in the conventional device. be able to. Therefore, the degree of freedom of increasing the damping function, that is, the degree of freedom in designing the radiator support device can be increased, and the radiator support having the optimum vibration damping function according to the conditions of the vehicle body side on which the radiator is mounted is provided. A device can be formed. Further, this makes it possible to easily prevent deterioration of durability due to a change in the material of the rubber in the conventional device.

【0045】また、請求項2記載の発明によれば、上記
請求項1記載の発明による効果に加えて、第1支持部と
第2支持部との間にマウント手段を介在させてラジエー
タの自重を車体側に支持させることにより、上記マウン
ト手段の内筒体が外筒体と同心位置に位置付けられるた
め、装着した状態で所定の弾性支持特性を確実に発揮さ
せることができる。そして、マスとしてのラジエータが
振動入力方向に加振された場合、内筒体が上下方向に相
対移動してストッパー部の先端部が、フラップ部の形成
された隔壁部を液室側に押圧する結果、この液室側から
絞り通路を通して他の液室側に液体の流動が生じるた
め、上記入力振動を、上記内筒体を支持する弾性体のば
ね作用により吸収することができるほか、上記液体の絞
り通路を通る際の流動抵抗によっても減衰することがで
きる。従って、上記請求項1記載の発明による効果を容
易かつ確実に達成することができる。
According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the weight of the radiator is reduced by interposing the mounting means between the first support portion and the second support portion. Since the inner cylinder of the mounting means is positioned concentrically with the outer cylinder by supporting the mounting means on the vehicle body side, a predetermined elastic support characteristic can be surely exhibited in the mounted state. Then, when the radiator as the mass is vibrated in the vibration input direction, the inner cylindrical body relatively moves in the vertical direction, and the tip portion of the stopper portion presses the partition wall portion having the flap portion toward the liquid chamber side. As a result, the liquid flows from this liquid chamber side to the other liquid chamber side through the throttle passage, so that the input vibration can be absorbed by the spring action of the elastic body supporting the inner cylindrical body, and the liquid It can also be damped by the flow resistance when passing through the throttle passage. Therefore, the effect of the invention described in claim 1 can be easily and surely achieved.

【0046】しかも、この場合、上記ストッパー部が両
フラップ部間の隔壁部を押圧する結果、上記両フラップ
部が上記内筒体の筒軸と平行な軸回りに揺動されて液室
側に突出した部分が液室内を強制的に移動し、その液室
内で液体が強制的に流動されるため、この液体の強制流
動によって上記入力振動の減衰作用をより促進すること
ができる。
Moreover, in this case, as a result of the stopper portion pressing the partition wall portion between both flap portions, both flap portions are swung around an axis parallel to the cylinder axis of the inner cylinder to the liquid chamber side. The projecting portion is forcibly moved in the liquid chamber, and the liquid is forcibly flown in the liquid chamber, so that the forced flow of the liquid can further accelerate the damping action of the input vibration.

【0047】また、この場合、大衝撃力などの比較的大
きい振動に対しても、ストッパー部により押し下げられ
た両フラップ部が外筒体の内周面と当たるため、上記衝
撃力を分散させた状態でそれ以上の変位規制を確実に行
うことができる。
Further, in this case, even with respect to a relatively large vibration such as a large impact force, the both flap portions pushed down by the stopper portion come into contact with the inner peripheral surface of the outer cylindrical body, so that the impact force is dispersed. In this state, further displacement regulation can be reliably performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す一部切欠き正面図であ
る。
FIG. 1 is a partially cutaway front view showing an embodiment of the present invention.

【図2】ラジエータの一側部の支持部分の分解斜視図で
ある。
FIG. 2 is an exploded perspective view of a supporting portion on one side of a radiator.

【図3】第1実施例のマウント手段の無負荷状態での横
断面図である。
FIG. 3 is a transverse cross-sectional view of the mounting means of the first embodiment in an unloaded state.

【図4】図3のマウント手段の装着状態での横断面図で
ある。
FIG. 4 is a cross-sectional view of the mounting means of FIG. 3 in a mounted state.

【図5】図4のA−A線断面図である。5 is a cross-sectional view taken along the line AA of FIG.

【図6】図4のB−B線断面図である。6 is a cross-sectional view taken along the line BB of FIG.

【図7】図4のC−C線断面図である。7 is a cross-sectional view taken along the line CC of FIG.

【図8】車体側の主振動系にラジエータ側の副振動系を
付加した振動系モデルを示す図である。
FIG. 8 is a diagram showing a vibration system model in which a radiator-side sub-vibration system is added to a vehicle-body-side main vibration system.

【図9】加振振動数をラジエータの固有振動数で除した
η値と応答倍率との関係において減衰係数比を変化させ
た場合の共振曲線を示す図である。
FIG. 9 is a diagram showing a resonance curve when the damping coefficient ratio is changed in the relationship between the η value obtained by dividing the vibration frequency by the natural frequency of the radiator and the response magnification.

【図10】第2実施例のマウント手段の無負荷状態での
横断面図である。
FIG. 10 is a transverse sectional view of the mounting means of the second embodiment in an unloaded state.

【図11】図10のマウント手段の装着状態での横断面
図である。
11 is a cross-sectional view of the mounting means of FIG. 10 in a mounted state.

【符号の説明】[Explanation of symbols]

1 ラジエータ 2 のサポート基板(車体) 3,3a マウント手段 4 凸軸体(第1支持部) 5 支持筒部(第2支持部) 6 内筒体 7 外筒体 8,18 弾性体 8a,18a 主弾性体部 8b,18b 第1隔壁部 8c,18c 第2隔壁部 9 第1貫通空所 10,20a,20b 第2貫通空所 11 第1液室 12 第2液室 14,19 ストッパー部 16,21 フラップ部 16a,21a 空所側凸部 16b,21b 液室側凸部 L 液体 B 車体 X 筒軸 DESCRIPTION OF SYMBOLS 1 Support substrate of radiator 2 (vehicle body) 3, 3a Mounting means 4 Convex shaft body (1st support part) 5 Support cylinder part (2nd support part) 6 Inner cylinder body 7 Outer cylinder body 8, 18 Elastic body 8a, 18a Main elastic body part 8b, 18b First partition wall part 8c, 18c Second partition part 9 First through space 10, 20a, 20b Second through space 11 First liquid chamber 12 Second liquid chamber 14, 19 Stopper part 16 , 21 Flap parts 16a, 21a Cavity side convex parts 16b, 21b Liquid chamber side convex part L Liquid B Vehicle body X Cylinder axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ラジエータの両側部がそれぞれマウント
手段を介して車体に支持される液封ラジエータ支持装置
であって、 上記ラジエータは両側端部位置から外側方に突出する第
1支持部を備える一方、上記車体は上記第1支持部に相
対向する第2支持部を備えており、 上記マウント手段は、上記第1支持部もしくは第2支持
部の一方に連結される内筒体と、この内筒体に外挿され
て上記第1支持部もしくは第2支持部の他方に連結され
る外筒体と、この外筒体と内筒体とを連結する弾性体
と、この弾性体の内部に画成された複数の液室と、この
液室に封入された液体と、上記複数の液室を互いに連通
する絞り通路とを備えており、 上記複数の液室は上記車体側から上記弾性体に作用する
入力振動により一の液室から他の液室へ上記絞り通路を
通して液体の流動が生じるように配置されていることを
特徴とする液封ラジエータ支持装置。
1. A liquid-sealed radiator support device in which both sides of a radiator are supported by a vehicle body through mounting means, wherein the radiator includes a first support portion protruding outward from both side end positions. The vehicle body includes a second support portion facing the first support portion, and the mounting means includes an inner cylindrical body connected to one of the first support portion and the second support portion, and An outer tubular body externally inserted into the tubular body and coupled to the other of the first support portion and the second support portion, an elastic body coupling the outer tubular body and the inner tubular body, and inside the elastic body. A plurality of liquid chambers that are defined, a liquid that is enclosed in the liquid chambers, and a throttle passage that connects the plurality of liquid chambers to each other are provided, and the plurality of liquid chambers include the elastic body from the vehicle body side. From the one liquid chamber to the other liquid chamber due to the input vibration acting on the throttle passage A liquid-sealed radiator supporting device, wherein the liquid-sealed radiator supporting device is arranged so as to cause a liquid to flow therethrough.
【請求項2】 マウント手段は、内筒体を挟みかつ内筒
体の筒軸に直交する方向である振動入力方向両側位置の
弾性体に上記筒軸に平行に貫通された第1および第2貫
通空所と、上記内筒体から上記第2貫通空所に向けて上
記振動入力方向一側に突出するストッパー部と、上記弾
性体の上記振動入力方向両側端部と外筒体との間に形成
された第1および第2液室とを備えており、 上記弾性体は、上記第1および第2貫通空所に区画され
て上記内筒体を弾性支持する主弾性体部と、上記第1貫
通空所と第1液室とを区画する第1隔壁部と、上記第2
貫通空所と第2液室とを区画する第2隔壁部とを備える
一方、上記第2隔壁部には、上記筒軸に直交しかつ上記
振動入力方向に直交する方向の両側位置から上記第2貫
通空所側および第2液室側にそれぞれ突出してなる一対
のフラップ部が形成されており、 上記内筒体は、ラジエータに装着前の無負荷状態で上記
外筒体に対して所定量偏心した位置に上記主弾性体部に
より支持されている一方、上記ラジエータの自重が作用
した装着状態で上記外筒体に対して同心位置に支持さ
れ、上記装着状態で上記ストッパー部の先端が相対向す
る第2隔壁部に振動伝達可能に配置されている請求項1
記載の液封ラジエータ支持装置。
2. The first and second mounting means penetrates in parallel to the cylinder axis by elastic bodies sandwiching the inner cylinder and located on both sides in a vibration input direction which is a direction orthogonal to the cylinder axis of the inner cylinder. Between the through space, the stopper portion projecting from the inner cylindrical body toward the second through space toward the one side in the vibration input direction, and between the both ends of the elastic body in the vibration input direction and the outer cylindrical body. A first elastic chamber formed in the first and second liquid chambers, and the elastic body is divided into the first and second through spaces to elastically support the inner cylindrical body; A first partition wall partitioning the first through space and the first liquid chamber;
A second partition wall portion that partitions the through space and the second liquid chamber is provided, while the second partition wall portion is provided with the second partition wall from a position on both sides in a direction orthogonal to the cylinder axis and orthogonal to the vibration input direction. 2 A pair of flaps are formed so as to project to the through space side and the second liquid chamber side respectively, and the inner cylinder body is a predetermined amount with respect to the outer cylinder body in the unloaded state before being mounted on the radiator. While supported by the main elastic body portion in an eccentric position, the radiator is supported in a concentric position with respect to the outer cylinder body in the mounted state where the weight of the radiator acts, and in the mounted state, the tip of the stopper portion is relatively The second partition wall facing is arranged so as to be capable of transmitting vibration.
The liquid ring radiator supporting device described.
JP20896292A 1992-08-05 1992-08-05 Liquid sealed radiator support device Withdrawn JPH0655942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20896292A JPH0655942A (en) 1992-08-05 1992-08-05 Liquid sealed radiator support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20896292A JPH0655942A (en) 1992-08-05 1992-08-05 Liquid sealed radiator support device

Publications (1)

Publication Number Publication Date
JPH0655942A true JPH0655942A (en) 1994-03-01

Family

ID=16565040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20896292A Withdrawn JPH0655942A (en) 1992-08-05 1992-08-05 Liquid sealed radiator support device

Country Status (1)

Country Link
JP (1) JPH0655942A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630547U (en) * 1992-09-22 1994-04-22 東海ゴム工業株式会社 Liquid-filled mount diaphragm
KR100482784B1 (en) * 2002-06-03 2005-04-14 기아자동차주식회사 Structure for fixing radiator
DE102005002058A1 (en) * 2005-01-14 2006-09-14 Behr Gmbh & Co. Kg Heat exchanger
DE102006061806A1 (en) * 2006-12-21 2008-07-03 Faurecia Kunststoffe Automobilsysteme Gmbh Bearing for cooling component i.e. heat exchanger, of motor vehicle, has two parts connected with one another by two spokes, where parts exhibit common rotational axis and recess along rotational axis for pins of cooling components
DE102008045676A1 (en) * 2008-09-04 2010-03-11 Behr Gmbh & Co. Kg Bearing element for elastic support of at least one heat exchanger in a motor vehicle and heat exchanger for a motor vehicle
DE102009051530A1 (en) * 2009-10-31 2011-05-05 Volkswagen Ag Arrangement for attaching cooler to assembly support of vehicle, particularly motor vehicle, has cooler support and bearing cage which is supported with guiding section of its cover surface at guiding section of assembly support
DE102014002269A1 (en) 2013-03-11 2014-09-11 Mazda Motor Corp. Vehicle radiator support structure
CN107554284A (en) * 2017-09-08 2018-01-09 南洋汽摩集团有限公司 Embedded automobile radiators assembly

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630547U (en) * 1992-09-22 1994-04-22 東海ゴム工業株式会社 Liquid-filled mount diaphragm
KR100482784B1 (en) * 2002-06-03 2005-04-14 기아자동차주식회사 Structure for fixing radiator
DE102005002058A1 (en) * 2005-01-14 2006-09-14 Behr Gmbh & Co. Kg Heat exchanger
DE102006061806B4 (en) * 2006-12-21 2012-01-05 Faurecia Kunststoffe Automobilsysteme Gmbh Bearing for a cooling component of a motor vehicle
DE102006061806A1 (en) * 2006-12-21 2008-07-03 Faurecia Kunststoffe Automobilsysteme Gmbh Bearing for cooling component i.e. heat exchanger, of motor vehicle, has two parts connected with one another by two spokes, where parts exhibit common rotational axis and recess along rotational axis for pins of cooling components
DE102008045676A1 (en) * 2008-09-04 2010-03-11 Behr Gmbh & Co. Kg Bearing element for elastic support of at least one heat exchanger in a motor vehicle and heat exchanger for a motor vehicle
DE102009051530A1 (en) * 2009-10-31 2011-05-05 Volkswagen Ag Arrangement for attaching cooler to assembly support of vehicle, particularly motor vehicle, has cooler support and bearing cage which is supported with guiding section of its cover surface at guiding section of assembly support
DE102009051530B4 (en) * 2009-10-31 2018-01-04 Volkswagen Ag Arrangement for fastening a radiator to a mounting bracket of a vehicle
DE102014002269A1 (en) 2013-03-11 2014-09-11 Mazda Motor Corp. Vehicle radiator support structure
JP2014172524A (en) * 2013-03-11 2014-09-22 Mazda Motor Corp Vehicular radiator support device
US9186980B2 (en) 2013-03-11 2015-11-17 Mazda Motor Corporation Vehicle radiator support structure
DE102014002269B4 (en) * 2013-03-11 2016-08-04 Mazda Motor Corp. Vehicle radiator support structure
CN107554284A (en) * 2017-09-08 2018-01-09 南洋汽摩集团有限公司 Embedded automobile radiators assembly

Similar Documents

Publication Publication Date Title
US4407491A (en) Rubber bearing device having air damping capacity
JPH0655942A (en) Liquid sealed radiator support device
JPH0143851B2 (en)
JPH0543886B2 (en)
JPH0247613B2 (en)
JPH05584Y2 (en)
JPS6155426A (en) Vibration isolator
JP3494752B2 (en) Liquid filled vibration isolator
JPH06346943A (en) Liquid sealed type vibration control device
JPH0237497B2 (en)
JPH0226336A (en) Fluid-sealed type engine mount
JPH11141595A (en) Vibration control device
JP3040848B2 (en) Anti-vibration device
JP2613895B2 (en) Fluid filled type vibration damping device
JPS62132049A (en) Torque stopper of fluid sealed type
JPH10246276A (en) Liquid-sealed vibration isolating mount
JPH0611395Y2 (en) Cylindrical shock absorber
JPH0226337A (en) Inner-outer cylinder type fluid sealed vibration isolator
JP3474249B2 (en) Liquid-filled engine mount
JP2002227910A (en) Mount device of vibration insulation
JP2006162071A (en) Hydraulic vibration-proof device comprising spacer
JP2553356Y2 (en) Liquid filled mount
JP3491777B2 (en) Fluid power unit mounting device
JPH0135959Y2 (en)
JPH0567819B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005