JPH0226337A - Inner-outer cylinder type fluid sealed vibration isolator - Google Patents

Inner-outer cylinder type fluid sealed vibration isolator

Info

Publication number
JPH0226337A
JPH0226337A JP17464588A JP17464588A JPH0226337A JP H0226337 A JPH0226337 A JP H0226337A JP 17464588 A JP17464588 A JP 17464588A JP 17464588 A JP17464588 A JP 17464588A JP H0226337 A JPH0226337 A JP H0226337A
Authority
JP
Japan
Prior art keywords
vibration
fluid chamber
fluid
outer cylinder
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17464588A
Other languages
Japanese (ja)
Other versions
JP2848399B2 (en
Inventor
Toshihiko Aihara
相原 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63174645A priority Critical patent/JP2848399B2/en
Publication of JPH0226337A publication Critical patent/JPH0226337A/en
Application granted granted Critical
Publication of JP2848399B2 publication Critical patent/JP2848399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To make improvements in vibration transmissibility so sharply as well as to perform a displacement regulation between an exciting body and an excited body by installing a fluid chamber in an interval between a compression deforming part and a shear deforming part of a supporting elastic body, and adding it with a function as a fluid sealed type vibration isolator. CONSTITUTION:Capacity in a main fluid chamber 24 is varied according to the deformation of a supporting elastic body 16 due to vibration input. A fluid in this chamber 24 is moved in an interval between respective sub-fluid chambers 26 and 28. At this time, each liquid column resonance of orifice passages 40, 42 being interconnected to these sub-fluid chambers 26, 28 is subjected to tuning in advance in response to frequency of a vibration mainly requiring a displacement regulation, whereby relative displacement between an exciting body and an excited body is effectively regulated. In addition, the liquid column resonance in the orifice passages 40, 42 being interconnected to the sub-fluid chambers 26, 28 is subjected to tuning in response to frequency of a vibration mainly requiring vibration absorption, whereby any vibration transmitted between the exciting body and the excited body at the time of inputting this vibration is effectively absorbed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、内筒と外筒との間に支持弾性体が介在される
タイプの防振体であって、とりわけ、該支持弾性体がそ
れぞれ周方向に分離される圧縮変形部と剪断変形部とに
よって構成され、これら圧縮変形部と剪断変形部との間
の空間部内に流体室を構成するようにした内外筒型流体
封入式防振体に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a vibration isolator of a type in which a supporting elastic body is interposed between an inner cylinder and an outer cylinder, and in particular, the supporting elastic body is An inner and outer cylindrical type fluid-filled vibration damping device composed of a compression deformation part and a shear deformation part separated in the circumferential direction, and a fluid chamber is configured in the space between the compression deformation part and the shear deformation part. Regarding the body.

(従来の技術) 一般に、車両に搭載されるパワーユニット(エンジン、
トランスミ・クション等の結合体)は、エンジンマウン
トと称される防振体を介して車体側に支持され、該防振
体によってパワーユニットと車体との間の振動伝達力が
低減されるようになっている。
(Prior art) Generally, a power unit (engine,
(transmission, etc.) is supported by the vehicle body through a vibration isolator called an engine mount, and the vibration isolator reduces the vibration transmission force between the power unit and the vehicle body. ing.

上記防振体はゴム等の支持弾性体が設けられ、該支持弾
性体の振動吸収機能によって振動伝達力の低減が行われ
るが、近年では該支持弾性体内に非圧縮性の流体を封入
して、該流体の共振効果により特定の周波数領域の振動
伝達力を効果的に低減することができる、謂わゆる流体
封入式防振体が存在する。
The above-mentioned vibration isolator is provided with a support elastic body such as rubber, and the vibration transmission force is reduced by the vibration absorption function of the support elastic body, but in recent years, incompressible fluid is sealed in the support elastic body. There is a so-called fluid-filled vibration isolator that can effectively reduce the vibration transmission force in a specific frequency range due to the resonance effect of the fluid.

一方、上記防振体としては、支持弾性体がなんらかの理
由で切断された場合に、該支持弾性体を保持するための
それぞれの取り付は部材が互いに離脱されてしまうのを
防止し、かつ、全体の小型化を図ることができる内外筒
型の防振体が従来存在する。
On the other hand, as for the vibration isolator, when the supporting elastic body is cut for some reason, the respective attachments for holding the supporting elastic body prevent the members from being separated from each other, and Conventionally, there are inner and outer cylindrical vibration isolators that can reduce the overall size.

即ち、かかる内外筒型防振体は特開昭59−65632
号公報に開示されるように、内筒と外筒との間に支持弾
性体が介在され、これをエンジンマウントとして用いた
場合は、内筒または外筒の一方が車体側、他方がパワー
ユニット側に取り付けられる。
That is, such an inner and outer cylinder type vibration isolator is disclosed in Japanese Patent Application Laid-Open No. 59-65632.
As disclosed in the publication, when a support elastic body is interposed between the inner cylinder and the outer cylinder and this is used as an engine mount, one of the inner cylinder and the outer cylinder is on the vehicle body side, and the other side is on the power unit side. can be attached to.

ところで、上記公開公報に開示された防振体の支持弾性
体は、パワーユニットの静荷重が作用した際に主に圧縮
変形される圧縮変形部と、主に剪断変形される剪断変形
部とによって構成され、入力振動を効果的に吸収するた
めのばね定数のチューニングを容易に行うことができる
ようになっている。
By the way, the support elastic body of the vibration isolator disclosed in the above-mentioned publication is composed of a compression deformation part that is mainly compressively deformed when the static load of the power unit is applied, and a shear deformation part that is mainly shear deformed. This makes it easy to tune the spring constant to effectively absorb input vibrations.

(発明が解決しようとする課題) しかしながら、かかる従来の内外筒型防振体にあっては
、これをエンジンマウントとして用いた場合、車体とパ
ワーユニットとの間には、低周波領域でエンジンシェイ
クとアイドル振動の代表的な2つの振動ピークが発生さ
れるが、これら2つの振動を効果的に低減する必要があ
る。
(Problem to be Solved by the Invention) However, when using such a conventional inner and outer cylindrical vibration isolator as an engine mount, engine shake occurs in the low frequency range between the vehicle body and the power unit. Two typical vibration peaks of idle vibration are generated, and it is necessary to effectively reduce these two vibrations.

ところが、上記2つの振動のうち比較的低周波領域に存
在するエンジンシェイクはその振幅が大きく、パワーユ
ニットの変位規制を主に行う必要があり、一方、比較的
高周波領域に存在するアイドル振動は、この振動を車体
側に伝達するのを主に吸収する必要があり、これら2つ
の合い反する要素を、予めチューニングされて一定のば
ね定数となった支持弾性体のみで満足することは著しく
困難になり、十分な変位規制効果または十分な振動吸収
効果が得られなくなってしまうという課題があった。
However, of the two vibrations mentioned above, engine shake, which exists in a relatively low frequency range, has a large amplitude, and it is necessary to mainly control the displacement of the power unit.On the other hand, idle vibration, which exists in a relatively high frequency range, has a large amplitude. It is necessary to mainly absorb the transmission of vibrations to the vehicle body, and it is extremely difficult to satisfy these two conflicting elements only with a supporting elastic body that has been tuned in advance to have a constant spring constant. There was a problem in that a sufficient displacement regulation effect or a sufficient vibration absorption effect could not be obtained.

そこで、本発明はかかる従来の実状に鑑みて、内外筒型
防振体の支持弾性体の圧縮変形部および剪断変形部の特
徴を生かしつつ、これら圧縮変形部、剪断変形部間に流
体室を設け、流体封入式防振体としての機能を付加する
ことにより、構造の大幅な変更を伴う事なく変位規制効
果と振動吸収効果の合い反する要素を共に満足すること
ができる内外筒型流体封入式防振体を提供することを目
的とする。
Therefore, in view of the conventional situation, the present invention takes advantage of the characteristics of the compression deformation part and the shear deformation part of the supporting elastic body of the inner and outer cylindrical vibration isolators, and creates a fluid chamber between the compression deformation part and the shear deformation part. By adding the function of a fluid-filled vibration isolator, the internal and external cylindrical fluid-filled type can satisfy both the conflicting elements of displacement regulation effect and vibration absorption effect without requiring major changes to the structure. The purpose is to provide a vibration isolator.

(課題を解決するための手段) かかる目的を達成するために本発明は、加振体または被
加振体の一方に取り付けられる内筒と、該内筒を適宜間
隔をもって囲繞し、加振体または被加振体の他方に取り
付けられる外筒と、これら内、外筒間に介在され、静荷
重に対して主に圧縮変形される少なくとも1つの圧縮変
形部および主に剪断変形される少なくとも2つの剪断変
形部とが周方向に分離される支持弾性体とを備え、 上記支持弾性体の圧縮変形部、剪断変形部によって画成
される空間部の内筒中心軸方向両側を弾性薄膜で閉止し
、それぞれの閉空間内に液体を封入して、内、外筒間の
振動入力方向に存在する少なくとも1つの閉空間を主流
体室とし、かつ、残りの閉空間を副流体室とする一方、
該主流体室と該副流体室とを外筒の周方向に沿って設け
られるオリフィス通路を介してそれぞれ連通することに
より構成する。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes an inner cylinder attached to either the vibrating body or the vibrated body, surrounding the inner cylinder with appropriate intervals, and connecting the vibrating body to the vibrating body. or an outer cylinder attached to the other side of the vibrating body, at least one compression deformation part interposed between the inner and outer cylinders, which is mainly compressively deformed in response to a static load, and at least two parts which are mainly shear deformed. and a support elastic body separated in the circumferential direction from two shear deformation parts, and a space defined by the compression deformation part and shear deformation part of the support elastic body is closed on both sides in the direction of the center axis of the inner cylinder with an elastic thin film. and a liquid is sealed in each of the closed spaces, so that at least one closed space existing in the direction of vibration input between the inner and outer cylinders is used as a main fluid chamber, and the remaining closed spaces are used as auxiliary fluid chambers. ,
The main fluid chamber and the auxiliary fluid chamber are configured to communicate with each other via orifice passages provided along the circumferential direction of the outer cylinder.

(作用) 以上の構成により本発明の内外筒型流体封入式防振体に
あっては、振動入力による支持弾性体の変形に伴って主
流体室内容積が変化され、該主流体室内の液体はオリフ
ィス通路を介してそれぞれの副流体室との間で移動され
る。
(Function) With the above-described structure, in the inner/outer cylinder type fluid-filled vibration isolator of the present invention, the internal volume of the main body chamber changes as the supporting elastic body deforms due to vibration input, and the liquid in the main body chamber changes. It is moved to and from each sub-fluid chamber via an orifice passage.

このとき、少なくとも1つの副流体室に連通されるオリ
フィス通路内の液柱共振を、変位規制を主に必要とする
振動の周波数に対応してチューニングしておくことによ
って、該振動の入力時には加振体と被加振体との間の相
対変位を効果的に規制することができ、かつ、残りの副
流体室に連通されるオリフィス通路内の液柱共振を振動
吸収を主に必要とする振動の周波数に対応してチューニ
ングしておくことによって、該振動の入力時には加振体
と被加振体との開に伝達される振動が効果的に吸収され
る。
At this time, by tuning the liquid column resonance in the orifice passage communicating with at least one sub-fluid chamber in accordance with the frequency of the vibration that mainly requires displacement regulation, the vibration is applied when the vibration is input. It can effectively regulate the relative displacement between the vibrating body and the vibrated body, and mainly requires vibration absorption of liquid column resonance in the orifice passage that communicates with the remaining sub-fluid chamber. By tuning in accordance with the vibration frequency, the vibration transmitted between the vibrating body and the vibrated body can be effectively absorbed when the vibration is input.

また、本発明にあっては主、副流体室が、圧縮変形部と
剪断変形部との間の空間部の軸方向両側が弾性薄膜によ
って個別に閉止されることによって構成されているため
、各流体室を画成する該弾性薄膜のばね定数を独立して
チューニングすることが簡単にできるため、上記オリフ
ィス通路の液柱共振点を減衰しようとする振動周波数に
対応してチューニングし易くなる。
In addition, in the present invention, the main and auxiliary fluid chambers are configured by individually closing both sides of the space between the compression deformation section and the shear deformation section in the axial direction with elastic thin films. Since the spring constant of the elastic thin film defining the fluid chamber can be easily tuned independently, the liquid column resonance point of the orifice passage can be easily tuned in accordance with the vibration frequency to be damped.

(実施例) 以下、本発明の実施例を図に基づいて詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

即ち、第1図から第7図は本発明の一実施例を示す内外
筒型流体封入式防振体で、該防振体は目動車のエンジン
マウント10として用いられた場合に例をとって述べる
That is, FIGS. 1 to 7 show an inner and outer cylindrical type fluid-filled vibration isolator showing an embodiment of the present invention. state

上記エンジンマウント10は図示を省略した車体とパワ
ーユニットとの間に設けられ、これら車体またはパワー
ユニットの一方に取り付けられる内筒12と、該車体ま
たはパワーユニットの他方に取り付けられる外筒14と
を備えている。
The engine mount 10 is provided between a vehicle body and a power unit (not shown), and includes an inner cylinder 12 that is attached to one of the vehicle body or the power unit, and an outer cylinder 14 that is attached to the other of the vehicle body or the power unit. .

そして、上記内筒12と外筒14との間にはゴムで形成
された支持弾性体16が加硫接着され、該支持弾性体I
6によってパワーユニットの荷重が緩衝機能をもって支
持される。また、上記支持弾性体16は、内筒12から
図中下方に延びてパワーユニットの静荷重に対して主に
圧縮変形される圧縮変形部16aと、内筒12から第1
図中左右方向に延びて該静荷重に対して主に剪断変形さ
れる剪断変形部16b、16Cとから構成され、これら
圧縮変形部16aと剪断変形部16b、  16Cは周
方向に分離されて略丁字形を構成している。従って、上
記外筒14内は互いに分離された圧縮変形部16aと剪
断変形部16b、16cとによって、空間部S、、S、
、S、が形成される。
A supporting elastic body 16 made of rubber is vulcanized and bonded between the inner cylinder 12 and the outer cylinder 14, and the supporting elastic body I
6 supports the load of the power unit with a buffering function. The support elastic body 16 also includes a compression deformation portion 16a that extends downward in the figure from the inner cylinder 12 and is mainly compressively deformed in response to the static load of the power unit, and a first
It is composed of shear deformation parts 16b and 16C that extend in the left-right direction in the figure and are mainly shear deformed in response to the static load, and these compressive deformation parts 16a and shear deformation parts 16b and 16C are separated in the circumferential direction and are approximately It forms a T-shape. Therefore, the inside of the outer cylinder 14 is formed by the compression deformation part 16a and the shear deformation parts 16b and 16c, which are separated from each other.
,S, are formed.

ここで、本実施例にあっては上記空間部S l+S、、
S3の内筒12中心軸方向の両側を、第2図。
Here, in this embodiment, the space portion S l+S,
FIG. 2 shows both sides of the inner cylinder 12 of S3 in the central axis direction.

第3図、第4図に示したようにそれぞれ弾性薄膜18.
20.22によって閉止し、この閉止された閉空間内に
それぞれ液体を封入することによって、上記空間部SI
に対応する室を主流体室24とし、上記空間部S、に対
応する室を第1副流体室26とし、また、上記空間部S
、に対応する室を第2副流体室28としである。尚、上
記主流体室24は、エンジンマウント10に入力される
変位力または振動の作用方向に位置する上記空間部S1
に設けたことにより、これら入力に対して主流体室24
内の容積変化を最も効果的に生ずることができる。
As shown in FIGS. 3 and 4, the elastic thin film 18.
20 and 22, and by sealing a liquid in each of the closed spaces, the space SI is closed.
The chamber corresponding to the space S is defined as the main fluid chamber 24, the chamber corresponding to the space S is defined as the first sub-fluid chamber 26, and the space S is defined as the first sub-fluid chamber 26.
The chamber corresponding to , is defined as the second sub-fluid chamber 28. The main fluid chamber 24 is located in the space S1 located in the acting direction of the displacement force or vibration input to the engine mount 10.
By providing the main fluid chamber 24 for these inputs,
This can most effectively cause a change in the volume within.

また、上記外筒14は中心軸方向の中央部が内径方向に
凹設されて環状溝部30が形成され、該環状溝部30に
は上下方向に2分割されたオリフィス構成体32が嵌着
される。
Further, the outer cylinder 14 is recessed in the inner radial direction at the center in the central axis direction to form an annular groove 30, into which an orifice structure 32 divided into two in the vertical direction is fitted. .

尚、上記外筒14は上記主流体室24.第1゜第2副流
体室26.28に対応される部分が切除され、これら各
流体室24.26.28の外周部分は上記オリフィス構
成体32によって直接に閉止される。
Note that the outer cylinder 14 is connected to the main fluid chamber 24. The portions corresponding to the first and second sub-fluid chambers 26.28 are cut out, and the outer peripheral portions of each of these fluid chambers 24.26.28 are directly closed by the orifice structure 32.

上記オリフィス構成体32は第5図に示すように、上記
主流体室24に連通される2つの開口部34a、34b
が形成されると共に、第6図に示すように上記第1副流
体室26に連通される開口部36aおよび上記第2副流
体室28に連通される開口部36bが形成される。そし
て、上記開口部34aと上記開口部36aとは、オリフ
ィス構成体32を略2周と174される第1溝32aを
、介して接続されると共に、上記開口部34bと上記開
口部36bとは、該オリフィス構成体32を略1/4周
される第2溝32bを介して接続される。
As shown in FIG. 5, the orifice structure 32 has two openings 34a and 34b communicating with the main fluid chamber 24.
At the same time, as shown in FIG. 6, an opening 36a communicating with the first sub-fluid chamber 26 and an opening 36b communicating with the second sub-fluid chamber 28 are formed. The opening 34a and the opening 36a are connected via a first groove 32a that extends 174 times around the orifice structure 32, and the opening 34b and the opening 36b are , are connected via a second groove 32b extending approximately 1/4 of the way around the orifice structure 32.

上記オリフィス構成体32は第7図に示すように、上記
外筒14と共に環状、のブラケット38内に嵌合され、
該ブラケット38によって上記第1゜第2溝32a、3
2bの外形方向開放部が閉止されることによって閉鎖断
面が構成され、第1溝32aが第1オリフイス通路40
.第2溝32bが第2オリフィス通路42として構成さ
れる。
As shown in FIG. 7, the orifice structure 32 is fitted into an annular bracket 38 together with the outer cylinder 14,
The bracket 38 allows the first and second grooves 32a, 3
A closed cross section is formed by closing the open portion in the external direction of 2b, and the first groove 32a is connected to the first orifice passage 40.
.. The second groove 32b is configured as the second orifice passage 42.

従って、上記主流体室24と第1副流体室26とは第1
オリフィス通路40を介して互いに連通されると共に、
該主流体室24と第2副流体室28とは第2オリアイス
通路42を介して互いに°連通される。
Therefore, the main fluid chamber 24 and the first sub-fluid chamber 26 are
are communicated with each other via the orifice passage 40, and
The main fluid chamber 24 and the second auxiliary fluid chamber 28 communicate with each other via a second orifice passage 42 .

以上の構成により本実施例のエンジンマウント10にあ
っては、車体とパワーユニットとの間に相対変位力また
は振動が該パワーユニットの静荷重作用方向に発生され
ると、内筒12と外筒14とは相対変位して支持弾性体
16の圧縮変形部16aは圧縮、引っ張り変形されると
共に、剪断変形部16bは剪断変形され、主流体室24
内容積が変化される。
With the above configuration, in the engine mount 10 of this embodiment, when a relative displacement force or vibration is generated between the vehicle body and the power unit in the direction in which the static load is applied to the power unit, the inner cylinder 12 and the outer cylinder 14 are relatively displaced, and the compression deformation portion 16a of the support elastic body 16 is compressed and tensile deformed, and the shear deformation portion 16b is shear deformed, and the main fluid chamber 24
The internal volume is changed.

すると、該主流体室24内の液体は、第1オリフィス通
路40および第2オリフィス通路42を介して第1副流
体室26および第2副流体室28との間で移動される。
Then, the liquid in the main fluid chamber 24 is transferred between the first sub-fluid chamber 26 and the second sub-fluid chamber 28 via the first orifice passage 40 and the second orifice passage 42 .

このとき、第1オリフィス通路40内の液体は、可動液
体を質量とし、主流体室24および第1副流体室26の
拡張弾性をばねとして振動されると共に、第2オリフィ
ス通路42内の液体は同様に、可動液体を質量とし、主
流体室24および第2副流体室28の拡張弾性をばねと
して振動される。
At this time, the liquid in the first orifice passage 40 is vibrated using the movable liquid as a mass and the expansion elasticity of the main fluid chamber 24 and the first sub-fluid chamber 26 as a spring, and the liquid in the second orifice passage 42 is vibrated. Similarly, the movable liquid is used as a mass and the expansion elasticity of the main fluid chamber 24 and the second sub-fluid chamber 28 is used as a spring to vibrate.

従って、上記第1オリフィス通路40内および第2オリ
フィス通路42内のそれぞれの液体は、入力振動の周波
数によって共振現象が発生され、この共振現象が発生さ
れることによりエンジンマウント10の動ばね定数を著
しく低減させることができる。また、この共振周波数よ
り若干高い周波数領域にロスファクタの大きなピーク点
が発生されることが実験により確かめられている。
Therefore, the liquids in the first orifice passage 40 and the second orifice passage 42 experience a resonance phenomenon depending on the frequency of the input vibration, and this resonance phenomenon causes the dynamic spring constant of the engine mount 10 to be changed. can be significantly reduced. Furthermore, it has been confirmed through experiments that a peak point with a large loss factor occurs in a frequency range slightly higher than this resonant frequency.

ところで、本実施例にあっては上記第1オリフィス通路
40内の液体共振周波数を、エンジンシェイクの発生周
波数より若干低めにチューニングして、エンジンシェイ
クの周波数領域でロスファクタが最大となるように設定
され、かつ、上記第2オリフィス通路42内の液体共振
周波数を、アイドル振動の周波数領域にチューニングし
て、該アイドル振動時に動ばね定数が最低となるように
設定される。
By the way, in this embodiment, the liquid resonance frequency in the first orifice passage 40 is tuned to be slightly lower than the frequency at which engine shake occurs, and is set so that the loss factor is maximized in the engine shake frequency region. In addition, the resonance frequency of the liquid in the second orifice passage 42 is tuned to the frequency region of idle vibration, and the dynamic spring constant is set to be the lowest during the idle vibration.

尚、本実施例にあっては主流体室24および第1、第2
副流体室26.28を画成する弾性薄膜18.20.2
2がそれぞれ個別に設けられるため、それぞれの拡張弾
性を決定す′るためのばね定数を独立して設定すること
ができる。
In this embodiment, the main fluid chamber 24 and the first and second
Elastic membrane 18.20.2 defining secondary fluid chamber 26.28
2 are provided individually, so that the spring constants for determining the expansion elasticity of each can be set independently.

たとえば、それぞれのばね定数は各弾性薄膜18.20
.22の厚さを変化させることにより容易にチューニン
グすることができる。
For example, the spring constant of each elastic membrane is 18.20
.. It can be easily tuned by changing the thickness of 22.

この場合、主流体室24の弾性薄膜18の厚さを最も厚
くして、振動入力時に該主流体室24内に十分な圧力変
化を発生させて、第1.第2オリフイス通路40.42
内に液体移動を行わせる一方、各副流体室26.28の
弾性薄膜20.22は上記主流体室24のものより薄く
し、このように薄くしたなかにあっても、第1副流体室
26の弾性薄膜20を第2副流体室28より薄(形成し
、共振周波数がエンジンシェイクに対応してより低く設
定され易いようにチューニングされる。
In this case, the elastic thin film 18 of the main fluid chamber 24 is made thickest to generate a sufficient pressure change within the main fluid chamber 24 when vibration is input. 2nd orifice passage 40.42
The elastic thin membrane 20.22 of each sub-fluid chamber 26.28 is made thinner than that of the main fluid chamber 24, so that even in this thinner state, the first sub-fluid chamber The elastic thin film 20 of 26 is formed to be thinner than the second auxiliary fluid chamber 28, and tuned so that the resonance frequency is easily set lower in response to engine shake.

また、本実施例にあってはエンジンシェイクにチューニ
ングされる第1オリフィス通路40が、アイドル振動に
チューニングされる第2オリフィス通路42より長く形
成されていることにより、第1オリフィス通路40内の
液柱共振は第2オリフィス通路42内の液柱共振に比較
して低い周波数に設定するのが容易になり、上記弾性薄
膜20゜22の厚さ変化と相俟って、エンジンシェイク
およびアイドル振動の低減領域を確実に設定することが
できる。
Further, in this embodiment, the first orifice passage 40 tuned to engine shake is formed longer than the second orifice passage 42 tuned to idle vibration, so that the liquid in the first orifice passage 40 is The column resonance can be easily set to a lower frequency than the liquid column resonance in the second orifice passage 42, and together with the thickness change of the elastic thin film 20°22, engine shake and idle vibration are reduced. It is possible to reliably set the reduction area.

尚、上記第1オリフィス通路40の長さは上記第2オリ
フィス通路42の長さに対して4〜16倍に設定される
ことが望ましい。
Note that the length of the first orifice passage 40 is desirably set to be 4 to 16 times the length of the second orifice passage 42.

ところで、本実施例のエンジンマウント10は、支持弾
性体16に圧縮変形部16aと剪断変形部16b、16
Gとが設けられているので、流体封入式防振体としての
機能以外にこれら圧縮変形部16a、剪断変形部16b
、16cを分離して設けたときの機能をも備えており、
エンジンマウント10の上下方向に対する前後および左
右方向の剛性バランスをチューニングし易くなる。
By the way, the engine mount 10 of this embodiment has a compression deformation portion 16a and shear deformation portions 16b, 16 on the support elastic body 16.
G is provided, so in addition to functioning as a fluid-filled vibration isolator, these compression deformation portions 16a and shear deformation portions 16b
, 16c is also equipped with the functions when installed separately.
It becomes easier to tune the rigidity balance of the engine mount 10 in the vertical direction, longitudinal direction, and horizontal direction.

尚、本実施例のエンジンマウント10は支持弾性体16
が1つの圧縮変形部16aと2つの剪断変形部16b、
16Cとによって構成された場合を開示したが、これら
各変形部16a、16b。
Note that the engine mount 10 of this embodiment has a support elastic body 16.
has one compressive deformation section 16a and two shear deformation sections 16b,
16C, each of these modified portions 16a, 16b.

16Cの数は必要とする流体室の数に応じて設定すれば
良く、少なくとも圧縮変形部を1つ、剪断変形部を2つ
設ければ足りる。
The number of 16C may be set according to the number of fluid chambers required, and it is sufficient to provide at least one compressive deformation section and two shear deformation sections.

(発明の効果) 以上説明したように本発明の内外筒型流体封入式防振体
にあっては、内、外筒間に介在される支持弾性体め圧縮
変形部、剪断変形部によって画成される空間部両側をそ
れぞれ弾性薄膜で閉止すると共に、該閉空間内に液体を
封入して少なくとも1つの主流体室と、少なくとも2つ
の副流体室とを構成し、該主流体室と各副流体室とを外
筒周方向に沿って設けられるオリフィス通路を介してそ
れぞれ連通したので、圧縮変形部と剪断変形部とを分離
して設けたことによる機能を発揮しつつ、流体封入式防
振体としての機能を発揮することができるため、両者の
相乗効果によって振動伝達率の大幅な同上を図ることが
できると共に、加振体と被加振体との間の変位規制をも
確実に行うことができる。
(Effects of the Invention) As explained above, in the inner/outer cylinder type fluid-filled vibration isolator of the present invention, the support elastic body interposed between the inner and outer cylinders is defined by the compressive deformation part and the shear deformation part. Both sides of the space are closed with elastic thin films, and a liquid is sealed in the closed space to form at least one main fluid chamber and at least two sub-fluid chambers, and the main fluid chamber and each sub-fluid chamber are Since the fluid chambers are communicated with each other through orifice passages provided along the circumferential direction of the outer cylinder, the compressive deformation part and the shear deformation part are provided separately, and the function achieved by separating them is achieved, while the fluid-filled vibration isolation Because it can function as a body, the synergistic effect of both can significantly increase the vibration transmission rate, and also ensures displacement regulation between the vibrating body and the vibrated body. be able to.

また、上記主、副流体室はそれぞれ個別に弾性薄膜によ
って画成されるので、該弾性薄膜の拡張弾性が個々に調
整し易くなり、従って、各オリフィス通路内の液柱共振
を目的の周波数にチューニングするのが著しく容易にな
るという優れた効果を奏する。
In addition, since the main and sub-fluid chambers are each defined by an elastic thin film, the expansion elasticity of the elastic thin film can be easily adjusted individually, so that the liquid column resonance in each orifice passage can be adjusted to a desired frequency. This has the excellent effect of making tuning significantly easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面正面図、第2図は
第1図中の■−■線断面図、第3図は第1図中のI[I
−I[1線断面図、第4図は第1図中の■−IV線断面
図、第5図は本発明の一実施例を示す平面図、第6図は
本発明の一実施例を示す底面図、第7図は本発明の組み
付は状態を示す斜視図である。 10・・・エンジンマウント(内外筒型流体封入式防振
体)、12・・・内筒、14・・・外筒、16・・・支
持弾性体、16a・・・圧縮変形部、16b、16C・
・・剪断変形部、18.20.22・・・弾性薄膜、2
4・・・主流体室、26.28・・・副流体室、40.
42・・・オリフィス通路。 第 図 第 図 第 図
FIG. 1 is a sectional front view showing one embodiment of the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG.
-I[1 line sectional view, Figure 4 is a sectional view taken along the ■-IV line in Figure 1, Figure 5 is a plan view showing an embodiment of the present invention, and Figure 6 is a plan view showing an embodiment of the present invention. The bottom view shown in FIG. 7 is a perspective view showing the assembled state of the present invention. DESCRIPTION OF SYMBOLS 10... Engine mount (internal and external cylinder type fluid-filled vibration isolator), 12... Inner cylinder, 14... Outer cylinder, 16... Support elastic body, 16a... Compression deformation part, 16b, 16C・
... Shear deformation part, 18.20.22 ... Elastic thin film, 2
4...Main fluid chamber, 26.28...Subfluid chamber, 40.
42... Orifice passage. Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] (1)加振体または被加振体の一方に取り付けられる内
筒と、 該内筒を適宜間隔をもって囲繞し、加振体または被加振
体の他方に取り付けられる外筒と、これら内、外筒間に
介在され、静荷重に対して主に圧縮変形される少なくと
も1つの圧縮変形部および主に剪断変形される少なくと
も2つの剪断変形部とが周方向に分離される支持弾性体
とを備え、 上記支持弾性体の圧縮変形部、剪断変形部によって画成
される空間部の内筒中心軸方向両側を弾性薄膜で閉止し
、それぞれの閉空間内に液体を封入して、内、外筒間の
振動入力方向に存在する少なくとも1つの閉空間を主流
体室とし、かつ、残りの閉空間を副流体室とする一方、
該主流体室と該副流体室とを外筒の周方向に沿って設け
られるオリフィス通路を介してそれぞれ連通したことを
特徴とする内外筒型流体封入式防振体。
(1) An inner cylinder attached to one of the vibrating body or the vibrated body; an outer cylinder surrounding the inner cylinder at an appropriate interval and attached to the other of the vibrating body or the vibrated body; a support elastic body which is interposed between the outer cylinders and is separated in the circumferential direction from at least one compression deformation part that is mainly compressively deformed in response to a static load and at least two shear deformation parts that are mainly shear deformed; The space defined by the compressive deformation part and the shear deformation part of the support elastic body is closed on both sides in the direction of the inner cylinder's central axis with an elastic thin film, and a liquid is sealed in each closed space to form an inner and outer part. At least one closed space existing in the vibration input direction between the cylinders is used as a main fluid chamber, and the remaining closed spaces are used as auxiliary fluid chambers,
An inner/outer cylinder type fluid-filled vibration isolator characterized in that the main fluid chamber and the auxiliary fluid chamber are communicated with each other via an orifice passage provided along the circumferential direction of the outer cylinder.
JP63174645A 1988-07-13 1988-07-13 Inner / outer cylinder type fluid-filled vibration isolator Expired - Lifetime JP2848399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174645A JP2848399B2 (en) 1988-07-13 1988-07-13 Inner / outer cylinder type fluid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174645A JP2848399B2 (en) 1988-07-13 1988-07-13 Inner / outer cylinder type fluid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JPH0226337A true JPH0226337A (en) 1990-01-29
JP2848399B2 JP2848399B2 (en) 1999-01-20

Family

ID=15982216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174645A Expired - Lifetime JP2848399B2 (en) 1988-07-13 1988-07-13 Inner / outer cylinder type fluid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP2848399B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116706A1 (en) * 1990-05-22 1991-11-28 Marugo Rubber Ind FLUID DAMPED ELASTOMERIC BEARING
US6352246B2 (en) * 1998-07-29 2002-03-05 Tokai Rubber Industries, Ltd. Liquid filled vibration isolator
US7845624B2 (en) * 2006-03-30 2010-12-07 Tokai Rubber Industries, Ltd. Cylindrical fluid-filled elastic mount

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645504B2 (en) 2006-03-30 2011-03-09 東海ゴム工業株式会社 Vibration isolator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124739A (en) * 1980-02-29 1981-09-30 Toyoda Gosei Co Ltd Vibration proof device with encosed fluid
JPS5937349A (en) * 1982-08-23 1984-02-29 Tokai Rubber Ind Ltd Vibration preventing support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124739A (en) * 1980-02-29 1981-09-30 Toyoda Gosei Co Ltd Vibration proof device with encosed fluid
JPS5937349A (en) * 1982-08-23 1984-02-29 Tokai Rubber Ind Ltd Vibration preventing support

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116706A1 (en) * 1990-05-22 1991-11-28 Marugo Rubber Ind FLUID DAMPED ELASTOMERIC BEARING
US5184803A (en) * 1990-05-22 1993-02-09 Marugo Rubber Industries, Ltd. Fluid damped elastomeric bushing
US6352246B2 (en) * 1998-07-29 2002-03-05 Tokai Rubber Industries, Ltd. Liquid filled vibration isolator
US7845624B2 (en) * 2006-03-30 2010-12-07 Tokai Rubber Industries, Ltd. Cylindrical fluid-filled elastic mount

Also Published As

Publication number Publication date
JP2848399B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP5642241B1 (en) Vibration isolator
JP2598969B2 (en) Fluid-filled cylindrical mounting device
US5887844A (en) Fluid-sealed vibration isolating device
JPH11264436A (en) Fluid-filled vibration isolator
JPH0193640A (en) Liquid enclosed cylindrical mount device
JPS6196229A (en) Liquid enclosing type vibro-isolating body
JPH0429636A (en) Fluid-filled-type vibration isolator
JPH01176827A (en) Inner and outer cylinder type fluid charged power unit mount
JPH01320343A (en) Inner-outer cylinder type fluid sealed power unit mount
JP2009002478A (en) Liquid sealed type vibration-control support device
JPH01238730A (en) Fluid seal type mount device
JPH05584Y2 (en)
JPH0226337A (en) Inner-outer cylinder type fluid sealed vibration isolator
JP2004069005A (en) Fluid-sealed type vibration damper
JP5363363B2 (en) Fluid filled vibration isolator
JPH01164831A (en) Fluid-filled type cylinder type mount
JPH02240430A (en) Fluid sealed type tubular mount device
JPH07190135A (en) Fluid-filled vibration control supporting device
JP2004218753A (en) Fluid sealing type vibration control device
JP3586810B2 (en) Liquid filled type vibration damping device
JPH10339350A (en) Air pressure control type fluid-sealed vibration damping device
JP3474249B2 (en) Liquid-filled engine mount
JPH0349317Y2 (en)
JPH06129476A (en) Liquid seal type vibro-isolating mount
JPH1130268A (en) Fluid-filled vibration control device