JP2004069005A - Fluid-sealed type vibration damper - Google Patents

Fluid-sealed type vibration damper Download PDF

Info

Publication number
JP2004069005A
JP2004069005A JP2002232357A JP2002232357A JP2004069005A JP 2004069005 A JP2004069005 A JP 2004069005A JP 2002232357 A JP2002232357 A JP 2002232357A JP 2002232357 A JP2002232357 A JP 2002232357A JP 2004069005 A JP2004069005 A JP 2004069005A
Authority
JP
Japan
Prior art keywords
vibration
chamber
orifice passage
movable plate
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002232357A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ichikawa
市川 浩幸
Shoji Akasa
赤佐 彰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2002232357A priority Critical patent/JP2004069005A/en
Publication of JP2004069005A publication Critical patent/JP2004069005A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid-sealed type vibration damper provided with a balance chamber connected to a pressure receiving chamber through a first orifice passage tuned to a low frequency range, and a vibration chamber connected to the pressure receiving chamber through a second orifice passage tuned to a middle frequency range, so that positive damping effect is achieved by applying pressure fluctuation generated in the vibration chamber based on air pressure fluctuation due to external causes to the pressure receiving chamber, in which positive vibration damping effect is effectively achieved to a wide range from middle to high frequencies, and in which deterioration of a vibration state caused by high-order components is avoided in providing positive damping effect to middle frequency vibration. <P>SOLUTION: A through-hole 82 is provided in a partition wall 52 parting the pressure receiving chamber 58 from the balance chamber 38, and a movable plate 84 is disposed on the through-hole 82. Outer circumferential edge parts of the movable plate 84 are held by holding grooves 86 with prescribed rattle. By clearance for the rattle between the holding groove 86 and the movable plate 84, a third orifice passage 90 is formed to be tuned to a high frequency range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は、内部に封入された非圧縮性流体の流動作用や圧力作用に基づいて防振効果が発揮される流体封入式防振装置に係り、特に封入された非圧縮性流体の圧力変動を防振すべき振動に応じて外部から能動制御することにより防振効果を得るようにした流体封入式防振装置に関するものである。
【0002】
【背景技術】
自動車のボデーや各種部材等のように振動(振動に起因する騒音等を含む)が問題とされる防振対象部材においては、その振動を低減するために、従来から、振動部材と防振対象部材の間に介装されて振動部材から防振対象部材への振動伝達を低減するエンジンマウント等の防振装置が、用いられている。
【0003】
そして、このような防振装置の一種として、振動が入力される本体ゴム弾性体で壁部の一部が構成されて振動入力時に圧力変動が惹起される受圧室と、変形容易な可撓性膜で壁部の一部が構成されて容積変化が許容される平衡室を形成して、それら受圧室と平衡室に水等の非圧縮性流体を封入すると共に、それら両室を相互に連通する第一のオリフィス通路を設けて、振動入力時に第一のオリフィス通路を流動せしめられる流体の流動作用に基づいて受動的な防振効果を得るようにした流体封入式防振装置が知られている。また、近年では、防振性能の更なる向上を目的として、壁部の一部が弾性加振板で構成されて非圧縮性流体が封入された加振室を形成すると共に、この加振室を受圧室に連通する第二のオリフィス通路を設ける一方、加振室に対して弾性加振板を挟んで反対側に作用空気室を形成し、この作用空気室に外部から空気圧変動を及ぼしめて弾性加振板に加振力を作用せしめるようにした流体封入式防振装置が提案されている。このような流体封入式防振装置では、弾性加振板の加振により加振室に生ぜしめられる圧力変動を、防振すべき振動に応じて能動的に制御せしめて、第二のオリフィス通路を通じて受圧室に及ぼすことにより、防振すべき振動を相殺的乃至は積極的に低減することが出来るのであり、例えば自動車用エンジンマウント等への適用が検討されている。
【0004】
ところで、自動車用エンジンマウント等においては、車両走行状況等に応じて入力される振動が変化することとなり、それら複数種類の振動に対して、それぞれ、防振効果が要求されることとなる。そこで、例えば従来技術では、第一のオリフィス通路をエンジンシェイク等に相当する低周波振動にチューニングして、エンジンシェイク等に対しては、第一のオリフィス通路を流動せしめられる流体の流動作用を利用した受動的な防振効果を得る一方、第二のオリフィス通路をアイドリング振動等に相当する中周波振動にチューニングして、アイドリング振動等に対しては、第二のオリフィス通路を流動せしめられる流体の流動作用を利用した能動的な防振効果を得るようにすることが、提案されている。
【0005】
さらに、近年では、防振性能の一層の向上が要求されており、そのような要求に対処するための一つの方策として、例えば、走行時におけるこもり音やビビリ振動等の高周波振動に対しても、それらの振動に対応した周波数域の空気圧変動を作用空気室に及ぼして加振室ひいては受圧室を圧力制御することにより、能動的な防振効果を得るようにすることが考えられる。
【0006】
しかしながら、前述の如き従来構造の能動型の流体封入式防振装置では、加振室の圧力変動を受圧室に及ぼす第二のオリフィス通路がアイドリング振動等に相当する中周波数域にチューニングされていることから、これより高周波数域の圧力変動の伝達効率が第二のオリフィス通路の反共振的な作用で著しく低くなってしまい、そのために、たとえ加振室に高周波の圧力変動を惹起せしめても、その圧力変動が受圧室まで伝達され難く、目的とする能動的な防振効果を有効に得ることが難しいという問題があった。
【0007】
なお、かかる問題に対処するために、例えば、第二のオリフィス通路のチューニング周波数をこもり音等に相当する高周波数域とすることにより加振室に惹起される高周波数域の圧力変動の受圧室への伝達効率を改善することも考えられるが、そうすると、本来、第二のオリフィス通路を中周波数域にチューニングすることで、弾性加振板を中周波数域で空気圧加振するのに伴って加振室に生ぜしめられる圧力変動の高次成分が受圧室にまで伝達するのを抑えるフィルタ機能を果たしていた第二のオリフィス通路における当該機能が発揮されなくなるという問題がある。即ち、第二のオリフィス通路をこもり音等に相当する高周波数域にチューニングすると、確かに高周波数域で弾性加振板を空気圧加振することによって加振室に惹起される圧力変動を受圧室に伝達せしめて、高周波数域の振動に対して能動的な防振効果を得ることは可能となるものの、中周波数域の振動に対する防振効果が要求される際に、弾性加振板を中周波数域で空気圧加振すると、加振室に派生する圧力変動の高次成分が第二のオリフィス通路を通じて受圧室まで及ぼされてしまうことを抑えることが困難となり、その結果、防振すべき振動に対応していない高次の圧力変動が受圧室に生ぜしめられて、高次の周波数域での振動状態が逆に悪化してしまうおそれがあるのである。
【0008】
勿論、このような問題に対しては、受圧室と加振室を相互に連通する第二のオリフィス通路として、アイドリング振動等に相当する中周波数域にチューニングされたものと、走行こもり音等に相当する高周波数域にチューニングされたもの等を、互いに並列的に複数形成し、それら複数の第二のオリフィス通路をバルブ手段等で切り換えて、防振すべき振動に応じて選択的に作動せしめることにより対処することも考えられる。ところが、このような構造を採用すると、複数の第二のオリフィス通路を形成すると共に、それら複数の第二のオリフィス通路を切り換えるためのバルブ手段とアクチュエータが必要となり、構造の複雑化とサイズの大型化、更に製造コストの増大等が、大きな問題となることから、必ずしも有効な方策ではないのである。
【0009】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、前述の如き外部から空気圧変動を及ぼすことにより能動的な防振効果を発揮せしめ得る流体封入式防振装置において、受圧室を圧力制御することにより発揮される能動的な防振効果を、中周波数域から高周波数域の複数の乃至は広い周波数域の振動に対して、何れも有効に得ることの出来る、新規な構造の流体封入式防振装置を提供することにある。
【0010】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0011】
すなわち、本発明の第一の態様の特徴とするところは、(a)相互に離隔配置されて、防振連結すべき部材にそれぞれ取り付けられる第一の取付部材および第二の取付部材と、(b)それら第一の取付部材と第二の取付部材を弾性連結する本体ゴム弾性体と、(c)該本体ゴム弾性体で壁部の一部が構成されて振動入力時に圧力変動が生ぜしめられる、非圧縮性流体が封入された受圧室と、(d)可撓性膜で壁部の一部が構成されて容積変化が許容される、非圧縮性流体が封入された平衡室と、(e)前記受圧室と前記平衡室を相互に連通する第一のオリフィス通路と、(f)前記受圧室に対して隔壁を挟んで反対側に形成された、壁部の一部が弾性加振板で構成されて非圧縮性流体が封入された加振室と、(g)該加振室に対して前記弾性加振板を挟んで反対側に形成された、外部から空気圧変動を及ぼすことにより該弾性加振板に加振力を作用せしめて該加振室に圧力変動を生ぜしめる作用空気室と、(h)前記第一のオリフィス通路よりも高周波数域にチューニングされて前記受圧室と前記加振室を相互に連通する第二のオリフィス通路と、(i)前記隔壁に透孔を設けて該透孔の周縁部分において内周側に開口する環状の保持溝を形成すると共に、該透孔に硬質の可動板を配して該可動板の外周縁部を該保持溝に入り込ませて所定のガタをもって把持せしめることにより、該可動板を該保持溝内で板厚方向に該ガタ分だけ変位可能とし、該可動板が板厚方向に変位して該保持溝の内面に当接することによって該透孔が実質的に閉塞せしめられるようにすると共に、該保持溝において該可動板の外周縁部を回り込んで前記加振室と前記受圧室を相互に連通する第三のオリフィス通路を、前記第二のオリフィス通路よりも更に高いチューニング周波数をもって形成せしめ得る可動板機構とを、有する流体封入式防振装置にある。
【0012】
このような本態様に従う構造とされた流体封入式防振装置においては、低周波数域の振動に対して、振動入力に伴って受圧室と平衡室の間に惹起される相対的な圧力変動により第一のオリフィス通路を流動せしめられる流体の共振作用に基づく受動的な防振効果が有効に発揮される一方、第一のオリフィス通路の流動抵抗が著しく大きくなる中乃至高周波数域の振動入力時には、作用空気室に圧力変動を及ぼして弾性加振板を加振することで加振室に生ぜしめられる圧力変動を、第二のオリフィス通路または第三のオリフィス通路を通じて受圧室に伝達せしめて、該受圧室の圧力変動を防振すべき振動に応じて能動的に制御することにより、相殺的乃至は積極的な防振効果を得ることが出来るのである。
【0013】
そこにおいて、中周波数域の入力振動は、高周波数域の入力振動に比して振幅が大きいことが多く、特に自動車においては、中周波数域で問題となり易いアイドリング振動の振幅が、高周波数域で問題となり易い走行こもり音やビビリ音等の振動の振幅に比して十分に大きい。それ故、中周波数域の振動を防振するに際しては、弾性加振板の空気圧加振によって加振室に生ぜしめられる圧力変動が、防振すべき振動振幅の大きさに応じて大きくされることから、加振室の壁部を構成する加振板も大きく変位せしめられて隔壁の保持溝に当接せしめられることとなる。その結果、第三のオリフィス通路が閉塞状態となり、加振室と受圧室の間で第二のオリフィス通路を通じての流体流動が効率的に惹起されて、目的とする能動的な防振効果が流体の流動作用に基づいて一層有利に発揮され得ると共に、加振室に惹起される圧力変動の高次成分の第三のオリフィス通路を通じての伝達も回避され得る。一方、高周波数域の振動を防振するに際しては、第二のオリフィス通路の流体流動抵抗が反共振的作用により著しく大きくなるものの、弾性加振板の空気圧加振によって加振室に生ぜしめられる圧力変動が、防振すべき振動振幅の大きさに応じて小さくされることから、加振板の変位が高周波にまで追従し難いことと相俟って、加振板が隔壁の保持溝内で略浮いた状態となる。その結果、第三のオリフィス通路が連通状態となり、加振室と受圧室の間で第三のオリフィス通路を通じての流体流動が効率的に惹起されて、目的とする能動的な防振効果が流体の流動作用に基づいて有利に発揮され得るのである。
【0014】
従って、本態様の流体封入式防振装置においては、第一のオリフィス通路による受動的な防振効果が十分に発揮され難い中乃至高周波数域の振動に対しては、防振すべき振動に応じて弾性加振板の空気圧加振によって加振室に生ぜしめられる圧力変動の周波数や振幅を調節することにより、それに伴って、第二のオリフィス通路と第三のオリフィス通路が、自動的に選択されて機能せしめられるのであり、それ故、防振すべき振動が複数の乃至は広い周波数域に亘る場合でも、弾性加振板の空気圧加振によって加振室に生ぜしめられる圧力変動を、高次成分による防振性能の大幅な低下も回避せしめつつ、受圧室に対して伝達せしめて受圧室の圧力を制御することが出来るのであり、複数の乃至は広い周波数域の振動に対しても能動的な防振効果が有効に発揮され得るのである。
【0015】
また、本発明の第二の態様は、前記第一の態様に係る流体封入式防振装置において、前記隔壁に形成された前記保持溝の内面と、前記可動板が変位した際に該保持溝の内面に当接せしめられる該可動板の外周縁部との、少なくとも一方に緩衝ゴム層を設けたことを、特徴とする。このような本態様においては、加振板の保持溝への当接に際しての打音や衝撃が緩衝ゴム層の緩衝作用で軽減乃至は回避され得ることとなる。
【0016】
また、本発明の第三の態様は、前記第一又は第二の態様に係る流体封入式防振装置において、前記可動板の外周縁部を、略円弧形断面の外周面形状で周方向に延びるように形成すると共に、前記保持溝を該可動板の外周面よりも一回り大きな略円弧状断面の内周面形状で周方向に延びるように形成することにより、前記第三のオリフィス通路が、それら可動板の外周面と保持溝の内周面の間に略円弧形の流路形態をもって形成されるようにしたことを、特徴とする。このような本態様においては、第三のオリフィス通路の長さを有利に確保できることに加えて、第三のオリフィス通路における流体流動方向の形状を、屈曲部のない滑らかな形状とすることが可能となって、流体の流動抵抗が抑えられることにより、流体の流動作用に基づく能動的な防振効果を一層効率的に得ることが可能となるのである。なお、可動板の外周縁部を円弧形断面の外周面形状とするには、例えば、可動板の外周縁部にゴム弾性体を固着せしめて、可動板の外周縁部に対して円形断面で突出する環状突起を設けること等によって有利に形成され得、かかる環状突起を、前記第二の態様における緩衝ゴム層として利用することも可能である。
【0017】
また、本発明の第四の態様は、前記第一乃至第三の何れかの態様に係る流体封入式防振装置において、前記第二のオリフィス通路のチューニング周波数域で前記作用空気室に空気圧変動を及ぼして前記加振室に圧力変動を生ぜしめた際に、前記可動板が板厚方向の両側で前記保持溝の内面にそれぞれ当接せしめられるようにする一方、前記第三のオリフィス通路のチューニング周波数域で前記作用空気室に空気圧変動を及ぼして前記加振室に圧力変動を生ぜしめた際に、該可動板の板厚方向の振幅が該保持溝に対する該可動板のガタよりも小さくされて、該可動板の板厚方向での該保持溝への当接が抑えられて、該保持溝に前記第三のオリフィス通路が実質的に常時形成されるようにしたことを、特徴とする。このような本態様においては、防振すべき振動に応じて作用空気室に及ぼされる空気圧変動の大きさを考慮することにより、要求される防振特性に応じたチューニングが有利に実現され得ることとなる。
【0018】
また、本発明の第五の態様は、前記第一乃至第四の何れかの態様に係る流体封入式防振装置において、前記第一のオリフィス通路の長さ方向の中間部分に、該第一のオリフィス通路を前記加振室に連通せしめる接続窓が形成されていることにより、該第一のオリフィス通路の一部を利用して前記第二のオリフィス通路が形成されていることを、特徴とする。このような本態様においては、第一のオリフィス通路と第二のオリフィス通路を、少ないスペースでコンパクトに形成することが可能となる。また、より好適には、第一のオリフィス通路の少なくとも一部が、可動板の外周側に位置して周方向に延びるように形成されることとなり、それによって、少ないスペースでオリフィス通路の通路長さを一層効率的に確保することが可能となる。
【0019】
また、本発明の第六の態様は、前記第一乃至第五の何れかの態様に係る流体封入式防振装置において、前記第一の取付部材と前記第二の取付部材の一方をパワーユニット側部材に取り付けると共に、他方をボデー側部材に取り付けることにより、車両のパワーユニットをボデーに対して防振支持せしめるエンジンマウントを構成せしめて、前記第一のオリフィス通路をエンジンシェイクに相当する低周波数域にチューニングすると共に、前記第二のオリフィス通路をアイドリング振動に相当する中周波数域にチューニングし、更に前記第三のオリフィス通路を走行こもり音に相当する高周波数域にチューニングしたことを、特徴とする。このような本態様に従う構造とされたエンジンマウントにおいては、車両走行時に問題となり易いエンジンシェイクに対して第一のオリフィス通路を流動せしめられる流体の共振作用等によって受動的な防振効果が有効に発揮されると共に、同様に車両走行時に問題となり易い走行こもり音やビビリ音に対しては、弾性加振板の空気圧加振で加振室に生ぜしめられた圧力変動を第三のオリフィス通路を通じて受圧室に伝達せしめて受圧室の圧力変動を制御することにより、能動的な防振効果が有効に発揮され得る。また、車両停車時に問題となり易いアイドリング振動に対しては、弾性加振板の空気圧加振で加振室に生ぜしめられた圧力変動を第二のオリフィス通路を通じて受圧室に伝達せしめて圧力制御することにより能動的な防振効果が発揮されることとなり、そこにおいて、こもり音等に相当する高周波振動の防振に際して加振室に生ぜしめられる圧力変動に比して、アイドリング振動等に相当する中周波振動の防振に際して加振室に生ぜしめられる圧力変動は、その振幅が大きく加振板の変位量も大きくなって隔壁の保持溝に当接せしめられることにより第三のオリフィス通路が閉塞されることから、中周波振動の防振に際して、加振室に生ぜしめられる高次成分の受圧室への伝達が効果的に抑えられ得て、高次成分の伝達に起因する振動状態の悪化も有利に回避され得るのである。
【0020】
また、本発明の第七の態様は、前記第一乃至第六の何れかの態様に係る流体封入式防振装置において、前記第二の取付部材を筒体形状とし、該第二の取付部材の一方の開口部側に前記第一の取付部材を離隔配置せしめて、それら第一の取付部材と第二の取付部材を前記本体ゴム弾性体で連結することにより該第二の取付部材の一方の開口部を流体密に覆蓋すると共に、該第二の取付部材の軸方向他方の開口部を前記可撓性膜で流体密に覆蓋する一方、該第二の取付部材の軸方向で互いに重ね合わせた第一の仕切部材と第二の仕切部材を該第二の取付部材によって固定的に支持せしめて、該第一の仕切部材と前記本体ゴム弾性体の間に前記受圧室を形成すると共に、該第二の仕切部材と前記可撓性膜の間に前記平衡室を形成し、更に該第二の仕切部材の該第一の仕切部材に対する重ね合わせ面側に設けた凹所を前記弾性加振板で流体密に覆蓋することにより前記作用空気室を形成すると共に、該弾性加振板と該第一の仕切部材の間に前記加振室を形成したことを、特徴とする。このような本態様においては、それぞれ非圧縮性流体が封入された受圧室,平衡室及び加振室と、外部から空気圧変動が及ぼされる作用空気室を、効率的な配設スペースをもって形成することが出来るのであり、それによって、本発明に従う構造とされた流体封入式防振装置が、コンパクトに実現可能となる。
【0021】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0022】
先ず、図1〜2には、本発明の一実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が離隔配置されていると共に、それら第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で弾性連結された構造を有しており、第一の取付金具12が自動車のパワーユニット側に取り付けられる一方、第二の取付金具14が自動車のボデー側に取り付けられることによって、パワーユニットをボデーに対して防振支持せしめるようになっている。なお、以下の説明において、上下方向とは、原則として、図1中の上下方向をいうものとする。
【0023】
より詳細には、第一の取付金具12は、略逆円錐台形状を有しており、その大径側端部には、軸方向上方に向かって突出するナット部15が一体形成されている。そして、ナット部15のねじ穴17に螺着される図示しないボルトにより、第一の取付金具12がパワーユニット側に取り付けられるようになっている。
【0024】
また、第一の取付金具12には、本体ゴム弾性体16が加硫接着されている。かかる本体ゴム弾性体16は、下方に向かって拡径する全体として大径の略円錐台形状を呈していると共に、大径側端面に開口する逆すり鉢形状の凹部18を有している。そして、本体ゴム弾性体16の小径側端面から第一の取付金具12が軸方向下方に差し込まれた状態で同一中心軸上に配されて加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、大径円筒形状の金属スリーブ20が重ね合わされて加硫接着されている。
【0025】
一方、第二の取付金具14は、大径の略段付き円筒形状を有しており、軸方向中間部分に形成された段差部24を挟んで、軸方向上部が大径部26とされていると共に、軸方向下部が小径部28とされている。また、これら大径部26および小径部28の内周面には、それぞれ、略全面を覆う薄肉のシールゴム層30が設けられて加硫接着されていると共に、小径部28側の開口部には、略薄肉の円板形状を有する薄肉ゴム膜からなるダイヤフラム32が配されており、このダイヤフラム32の外周縁部が第二の取付金具14の開口周縁部に加硫接着されることによって、第二の取付金具14の下側開口部が流体密に閉塞されている。なお、本実施形態では、ダイヤフラム32が、シールゴム層30と一体成形されており、かかるダイヤフラム32によって可撓性膜が構成されている。
【0026】
そして、第二の取付金具14は、その大径部26が金属スリーブ20に外挿されて、圧入や絞り加工等で嵌着固定されることによって、本体ゴム弾性体16の外周面に固着されている。これにより、第一の取付金具12と第二の取付金具14が、防振すべき振動の主たる入力方向となる略同一の中心軸上に位置するようにして、相互に離間して配設されており、本体ゴム弾性体16によって弾性的に連結されている。また、第二の取付金具14の大径部26が本体ゴム弾性体16に固着されることにより、第二の取付金具14の上側開口部が本体ゴム弾性体16によって流体密に閉塞されている。
【0027】
さらに、第二の取付金具14には、軸方向上側からブラケット31が被せられて固定的に組み付けられている。このブラケット31は、全体として大径の略円筒形状を有しており、外周面には軸方向下方に延び出す複数の脚部33が溶着されている。そして、かかるブラケット31は、第二の取付金具14の大径部26に外嵌固定されており、その脚部33が、図示しない自動車のボデーに対してボルト固定されることにより、第二の取付金具14がかかるボデーに対して固定的に取り付けられるようになっている。
【0028】
また、第二の取付金具14には、その小径部28に仕切部材34が収容されており、本体ゴム弾性体16とダイヤフラム32の対向面間に配されている。この仕切部材34は、金属や合成樹脂等の硬質材で形成されており、略厚肉円板状のブロック形状を有している。そして、かかる仕切部材34は、第二の取付金具14の小径部28に嵌め込まれて、該小径部28への圧入組付けや、該小径部28の絞り加工等によって、その円筒状外周面が、小径部28に対して、シールゴム層30を挟んで流体密に密着固定されている。このように仕切部材34が第二の取付金具14内に組み付けられることによって、本体ゴム弾性体16とダイヤフラム32の間に形成されて、外部空間に対して密閉された領域が、該仕切部材34によって流体密に二分されており、以て、仕切部材34の上側には、壁部の一部が本体ゴム弾性体16で構成された主液室36が形成されている一方、仕切部材34の下側には、壁部の一部がダイヤフラム32で構成されて、該ダイヤフラム32の変形に基づいて容積変化が容易に許容される平衡室38が形成されている。
【0029】
そして、これら主液室36と平衡室38には、それぞれ、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の非圧縮性流体が充填されて封入されている。特に、本実施形態では、後述する流体の共振作用に基づく防振効果を有利に得るために、0.1Pa・s以下の粘度を有する低粘性流体が好適に採用される。なお、仕切部材34の軸方向下端面には、中央部分に開口する下側凹所39が形成されており、平衡室38の容積がこの下側凹所39で有利に確保されるようになっている。
【0030】
また、仕切部材34には、上面中央に開口する略すり鉢状の中央凹所40が形成されていると共に、該中央凹所40の開口周縁部には、仕切部材34の上方に向かって突出する環状の係止突部42が一体形成されている。そして、所定厚さの円板形状を有する弾性加振板としてのゴム弾性板44が、中央凹所40の開口部に重ね合わされており、ゴム弾性板44の外周面に加硫接着された円筒形状の係止金具46が、その下端開口部において仕切部材34の係止突部42に外嵌されて、該係止突部42に対して流体密にかしめ固定されている。これにより、中央凹所40の開口部がゴム弾性板44によって流体密に覆蓋されており、以て、主液室36や平衡室38から独立した作用空気室50が形成されている。そして、後述するように、外部の空気圧源から空気圧変動が及ぼされるようになっており、作用空気室50の空気圧変動に基づいてゴム弾性板44に加振力が作用せしめられるようになっている。
【0031】
なお、作用空気室50に対して圧力変動を作用せしめるために、仕切部材34には空気通路78が形成されており、この空気通路78の一方の開口端部が作用空気室50に開口連通せしめられている一方、空気通路78の他方の端部が、仕切部材34の外周面に突設されたポート部80に開口せしめられている。そして、マウント装着状態下では、このポート部80に外部の空気管路が接続されることにより、図示しない圧力制御手段から及ぼされる空気圧変動が、かかる空気管路から空気通路78を通じて作用空気室50に及ぼされるようになっている。
【0032】
さらに、本体ゴム弾性体16と仕切部材34の対向面間に形成された主液室36には、全体として略円板形状を有する隔壁としての隔壁部材52が収容配置されている。この隔壁部材52は、金属や合成樹脂等の硬質材で形成された、それぞれ略円板形状を呈する上下の隔壁板54,56を互いに固定的に重ね合わせた構造とされており、第二の取付金具14の軸直角方向に広がる状態で配設されている。そして、かかる隔壁部材52の外周縁部が、第二の取付金具14の段差部24と本体ゴム弾性体16の軸方向端面の間で挟圧保持されることによって、隔壁部材52が第二の取付金具14に固定されている。これにより、主液室36が、隔壁部材52を挟んで、本体ゴム弾性体16側と仕切部材34側とに流体密に仕切られている。而して、本体ゴム弾性体16と隔壁部材52の間には、壁部の一部が本体ゴム弾性体16で構成されて、振動入力時に本体ゴム弾性体16の弾性変形に伴う圧力変化が生ぜしめられる受圧室58が形成されている一方、隔壁部材52と仕切部材34の間には、壁部の一部がゴム弾性板44で構成されて、該ゴム弾性板44が作用空気室50の空気圧変動に基づいて加振されることにより圧力変動が直接に生ぜしめられる加振室60が形成されている。
【0033】
また、仕切部材34には、軸方向中間部分を周方向に所定長さで延びる外周凹溝66が形成されており、この外周凹溝66が第二の取り付け金具14の小径部28で流体密に覆蓋されることによって流体流路が形成されている。そして、この外周凹溝66で形成された流体流路の一方の端部が、軸方向に延びる通孔68を通じて、仕切部材34の上端面において中央凹所40の外周側に開口せしめられている。また一方、外周凹溝66の他方の端部は、径方向内方に延びる図示しない通孔を通じて、下側凹所39に開口せしめられている。更にまた、下側隔壁板56の外周縁部には、上方に向かって開口する溝形断面で周方向に延びる環状溝62が形成されており、下方に向かって突設されたこの環状溝62の形成部位において、下側隔壁板56が係止金具46に対して流体密に外嵌固定されている一方、かかる環状溝62が上側隔壁板54で覆蓋されることによって環状流路が形成されている。そして、この環状溝62で形成された環状流路が、径方向で対向する一方の位置において上側隔壁板54に貫設された連通孔70を通じて受圧室58に接続されている。更にまた、かかる環状溝62で形成された環状流路において径方向で対向する他方の位置では、下側隔壁板56に貫設された接続孔72を通じて、仕切部材34の外周凹溝66で形成された流体流路に接続されている。
【0034】
これにより、環状溝62で形成された環状流路と外周凹溝66で形成された流体流路が相互に直列的に接続されて、受圧室58と平衡室38を相互に連通せしめる第一のオリフィス通路74が形成されている。また、環状流路によって、受圧室58と加振室60を相互に連通せしめる第二のオリフィス通路76が形成されている。即ち、この第二のオリフィス通路76は、第一のオリフィス通路74が通路長さ方向の中間部分で加振室60に接続されることにより、第一のオリフィス通路74の一部を利用して形成されているのである。
【0035】
そして、振動入力時に本体ゴム弾性体16の弾性変形に基づいて受圧室58に圧力変動が生ぜしめられた際に、受圧室58と平衡室38の間での相対的な圧力差に基づいて第一のオリフィス通路74を通じて、それら両室58,38間での流体流動が生ぜしめられるようになっている。特に、本実施形態では、かかる第一のオリフィス通路74が、エンジンシェイク等に相当する10Hz前後の低周波数域にチューニングされている。それにより、低周波数域の入力振動に対して、第一のオリフィス通路74を流動せしめられる流体の共振作用等の流動作用に基づいて受動的な防振効果が発揮されるようになっている。
【0036】
また、本実施形態では、第二のオリフィス通路76が、アイドリング振動等に相当する20〜40Hz程度の中周波数域にチューニングされている。そして、中周波数域の振動入力時に、作用空気室50の空気圧変動に基づいて加振室60に生ぜしめられる圧力変動を、第二のオリフィス通路76を流動せしめられる流体の共振作用等の流動作用に基づいて受圧室58に対して効率的に及ぼしめて、受圧室58の圧力変動を積極的に調節することにより、能動的な防振効果が発揮されるようになっている。
【0037】
なお、第一及び第二のオリフィス通路74,76のチューニングは、例えば、受圧室58や平衡室38,加振室60の壁ばね剛性(単位容積だけ変化させるのに必要な圧力変化量に対応する特性値)等を考慮しつつ、通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路74,76を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路74,76のチューニング周波数として把握することが出来る。
【0038】
さらに、隔壁部材52を構成する上下の隔壁板54,56には、それぞれ中央部分に大径の透孔82が形成されており、この透孔82内に可動板84が配設されている。かかる可動板84は、剛性の金属プレートで構成されており、薄肉の円板形状を有している。一方、透孔82の内周縁部には、上下の隔壁板54,56が相互に離隔せしめられることによって、径方向内方に向かって開口する保持溝86が、周方向の全周に亘って連続して形成されている。そして、この保持溝86に対して、可動板84の外周縁部が、全周に亘って入り込んでおり、所定のガタ隙間をもって把持されている。これにより、可動板84は、保持溝86内で軸方向両側に当接するまでの所定距離だけ、即ち設定されたガタの分だけ、軸方向に移動可能に配設されている。
【0039】
また、本実施形態では、図2に拡大図が示されているように、保持溝86に入り込んだ可動板84の外周縁部に対してゴム弾性体が加硫接着されており、全周に亘って延びる環状の緩衝ゴム88が形成されている。特に、この緩衝ゴム88は、可動板84の外周縁部から径方向外方および軸方向両側にそれぞれ突出する円弧形の外周表面の断面形状をもって、可動板84の周方向全周に亘って連続して形成されている。
【0040】
更にまた、この可動板84の外周縁部を支持せしめる保持溝86は、可動板84に突設された緩衝ゴム88の外周面よりも一回り大きな円弧形断面を有する内周面形状で周方向の全周に亘って延びるように形成されている。これにより、図2に示されている如く、可動板84を、保持溝86内での移動範囲の略中央に位置せしめた状態下で、可動板84の外周縁部と隔壁部材52との間には、緩衝ゴム88の外周面と保持溝86の内周面の対向面間に形成されたガタによる隙間を延びて、受圧室58と加振室60を相互に連通せしめる第三のオリフィス通路90が形成されるようになっている。また、この第三のオリフィス通路90は、図3に示されているように、可動板84が軸方向の何れかに変位せしめられて緩衝ゴム88が保持溝86の内周面に当接せしめられた状態下では、上下の隔壁板54,56に形成された透孔82が可動板84で実質的に流体密に閉塞されることにより、実質的に遮断されて消失せしめられるようになっている。
【0041】
また、本実施形態では、かかる第三のオリフィス通路90が、自動車の走行こもり音やビビリ振動等に対応する50〜200Hz程度の高周波数域にチューニングされており、外部から作用空気室50に及ぼされる空気圧変動に基づいて加振室60に高周波数域の圧力変動が生ぜしめられた際、第三のオリフィス通路90を流動せしめられる流体の共振作用等の流動作用に基づいて、加振室60の圧力変動が受圧室58にまで効率的に伝達されるようになっている。
【0042】
従って、上述の如き構造とされた本実施形態のエンジンマウント10においては、エンジンシェイク等の低周波数域の振動入力時には、前述の如く、第一のオリフィス通路74を通じて受圧室58と平衡室60の間で流動せしめられる流体の共振作用に基づく高減衰作用により、有効な防振効果が発揮され得る。また、アイドリング振動等の中周波数域の振動入力時や、走行こもり音やビビリ音等の高周波数域の振動入力時には、第一のオリフィス通路74における流体の流動抵抗が反共振的に著しく増大することとなる。それ故、そのような中乃至高周波数域の振動入力時には、外部から作用空気室50に防振すべき振動に対応した周期の空気圧変動を及ぼしてゴム弾性板44を加振駆動することによって加振室60に内圧変動を生ぜしめ、この加振室60の内圧変動を、第二のオリフィス通路76または第三のオリフィス通路90を通じて受圧室58に及ぼすことにより、受圧室58の圧力変動を能動的乃至は積極的に制御することが可能であり、それによって、相殺的乃至は積極的な防振効果が発揮されることとなる。
【0043】
なお、作用空気室50に空気圧変動を及ぼすための外部の空気圧制御手段は、周知技術であることからここでは詳述しないが、例えば、バキュームタンク等の負圧源と大気を作用空気室50に接続すると共に、その接続管路上において作用空気室50を負圧源と大気に択一的に連通せしめる電磁切換弁を配設し、かかる電磁切換弁を、防振すべき振動に対応した制御信号で切換作動せしめることによって、有利に実現され得る。また、そこにおいて、電磁切換弁の制御信号の生成は、例えば、エンジン回転数やアクセル開度,走行速度等を各種センサで検出し、エンジンの点火信号を参照信号として、適応制御やマップ制御等で、防振すべき振動に対応した周期や位相,振幅を有する空気圧変動が作用空気室50に及ぼされるように考慮して行なわれる。
【0044】
ここにおいて、かかるエンジンマウント10にあっては、受圧室58と加振室60を仕切る隔壁部材52に支持されて、それら両室58,60間に配設された可動板84の保持溝86内での軸方向の可動量が適当に調節されることにより、防振すべき振動周波数に応じて第二のオリフィス通路76と第三のオリフィス通路90が自動的に切り換えられて択一的に機能せしめられるようになっている。
【0045】
具体的には、20〜40Hz程度のアイドリング振動等の中周波数域の振動は、50〜200Hz程度の走行こもり音等の高周波数域の振動に比して、振幅が大きい。それ故、アイドリング振動等の中周波数域で能動制御する場合に、有効な防振効果を得るためには、走行こもり音等の高周波数域で能動制御する場合に比して、作用空気室50に及ぼされる空気圧変動の振幅が大きく設定されるのであり、その結果、加振室60には大きな振幅の圧力変動が生ぜしめられることとなる。一方、走行こもり音等の高周波数域で能動制御する場合に、有効な防振効果を得るためには、アイドリング振動等の中周波数域で能動制御する場合に比して、作用空気室50に及ぼされる空気圧変動が振幅が小さく設定されるのであり、その結果、加振室60には小さな振幅の圧力変動が生ぜしめられることとなる。
【0046】
また、このように加振室60に圧力変動が生ぜしめられると、加振室60と受圧室58の間での相対的な圧力変動が可動板84の上下両面に及ぼされることにより、可動板84が軸方向に往復駆動せしめられることとなる。そこにおいて、かかる可動板84は、保持溝86への当接によって軸方向変位量が制限されるようになっており、本実施形態では、可動板84の軸方向の変位量が、高周波数域で能動制御することによって加振室60に生ぜしめられる圧力変動は殆ど吸収し得るだけの変位量が許容されるようにされる一方、中周波数域で能動制御することによって加振室60に生ぜしめられる圧力変動は吸収し切らないように変位量が制限されるように設定されている。
【0047】
すなわち、例えば、図4に示されているように、中周波数域(30Hz)の振動防振のために能動制御するに際して加振室60に惹起される圧力変動を吸収するために必要とされる可動板84の軸方向変位量が±0.4mmであり、高周波数域(100Hz)の振動防振のために能動制御するに際して加振室60に惹起される圧力変動を吸収するために必要とされる可動板84の軸方向変位量が±0.06mmであったとすると、可動板84における軸方向の許容変位量(可動距離)を、例えば±0.1mmに設定する。そうすると、中周波数域の振動入力時に、対応する周波数の空気圧変動を及ぼして加振室60に圧力変動を生ぜしめた際には、可動板84は加振室60の圧力変動に伴って±0.4mmだけ軸方向変位しようとするが、実際には保持溝86への当接によって±0.1mmの範囲に制限されてしまう。その結果、少なくとも残りの±0.3mmの分だけは、可動板84の変位によって圧力変動が吸収されることなく加振室60に有効な圧力変動が生ぜしめられるのであり、この加振室60の圧力変動が、第二のオリフィス通路78を通じて、流体の共振作用を利用した効率的な圧力伝達効率をもって、受圧室58に及ぼされて有効な防振効果が発揮され得るのである。
【0048】
しかも、かかる中周波数域での能動制御に際しては、図4からも明らかなように、可動板84が、一周期中の多くの時間(図4中のt′の時間)に亘って保持板86への当接状態に保持されて透孔82ひいては第三のオリフィス通路90が閉塞状態に維持されることとなる。それ故、たとえ加振室60に対して圧力変動の高次成分が惹起されたとしても、第三のオリフィス通路90を通じての受圧室58への伝達が効果的に防止され得ると共に、第二のオリフィス通路76を通じての受圧室58への伝達も反共振的作用で有利に防止され得ることとなり、高次成分に起因する振動状態の悪化が問題となるようなこともないのである。
【0049】
また一方、高周波数域の振動入力時に、対応する周波数の空気圧変動を及ぼして加振室60に圧力変動を生ぜしめた際には、可動板84は、及ぼされる圧力変動の周波数が高いことと、それ自体のマス成分(質量)が封入流体の流動抵抗や質量と相加的に作用すること等に起因して、加振室60の圧力変動に対して追従して変位し難くなる。それ故、高周波数域で能動制御している状況下において、可動板84は、保持溝86から浮いた状態で略静止状態か僅かに微小変位せしめられた状態に保持されるのであり、その結果、可動板84と保持溝86の間には、第三のオリフィス通路90が連通状態に維持されることとなる。
【0050】
従って、高周波数域での能動制御に際しては、第二のオリフィス通路76が反共振的作用等によって流体流通抵抗が著しく大きくなってしまうが、高周波数域にチューニングされた第三のオリフィス通路90が機能し得ることとなり、第三のオリフィス通路90を通じて流動せしめられる流体の共振作用等の流動作用に基づいて、加振室60の圧力変動が効率的な圧力伝達効率をもって、受圧室58に及ぼされて有効な防振効果が発揮され得るのである。
【0051】
以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものでない。
【0052】
例えば、保持溝86による把持部のガタによって可動板84に許容される軸方向の変位量は、防振すべき振動の大きさ(振幅)や加振室60の容積,ゴム弾性板44のばね定数や有効ピストン面積,作用空気室50の容積等を考慮して適宜に設定されるものであって限定されるものでない。そこにおいて、可動板84に許容される可動変位量:δは、少なくとも中周波数域での能動制御に際して加振室60に惹起される圧力変動に伴う理論上の最大変位量(加振室60の圧力変動を吸収するだけの変位量):δaよりも小さく設定される必要があるが、必ずしも、高周波数域での能動制御に際して加振室60に惹起される圧力変動に伴う理論上の最大変位量:δbよりも大きい必要はない。蓋し、前述の如く、可動板84は、及ぼされる圧力変動の周波数が高くなると、慣性力の作用等によって変位し難くなり、理論上の最大変位量よりも実際の変位量が小さくなって、保持溝86内でフローティング状態で保持されるようになるからである。
【0053】
また、第一のオリフィス通路74,第二のオリフィス通路76および第三のオリフィス通路90のそれぞれのチューニング周波数は、要求される防振特性に応じて適宜に設定されるものであって、何等、限定されるものでないことは言うまでもない。
【0054】
更にまた、それら第一のオリフィス通路74,第二のオリフィス通路76および第三のオリフィス通路90の具体的な構造は、何等限定されるものでなく、マウント本体の構造や、マウントサイズ等を考慮して、適宜に変更可能である。そこにおいて、例えば前記実施形態では、第一のオリフィス通路74の一部を利用する形態で第二のオリフィス通路76が形成されていたが、それら第一のオリフィス通路74と第二のオリフィス通路76を、互いに独立した流路構造をもって形成しても良い。
【0055】
また、第三のオリフィス通路90のチューニング等の目的をもって、例えば、隔壁部材52において、可動板84と受圧室58の間に狭窄流路を形成し、第三のオリフィス通路90を流動せしめられる流体が、この狭窄流路を通じて受圧室58に導かれるようにすることも可能である。
【0056】
加えて、前記実施形態では、本発明を自動車用のエンジンマウントに適用したものの具体例を示したが、その他、本発明は、特に複数の乃至は広い周波数域に亘る振動に対して防振効果が要求される各種振動部材における防振装置に対して、何れも、有効に適用され得る。
【0057】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式防振装置においては、低周波数域の振動に対して第一のオリフィス通路による受動的な防振効果が有効に発揮され得る一方、中乃至高周波数域の振動に対しては、防振すべき振動に対応する周期で作用空気室に空気圧変動を及ぼして加振室に生ぜしめた圧力変動を、第二のオリフィス通路および第三のオリフィス通路を通じて受圧室に及ぼしめて該受圧室の圧力を制御することにより、能動的な防振効果が発揮され得ることとなる。
【0058】
また、そこにおいて、第三のオリフィス通路は、中周波振動と高周波振動の振幅差を巧く利用して、中周波振動の防振作動時に実質的に閉塞状態に維持され得ることから、中周波振動の防振作動に際しては、第二のオリフィス通路を通じての流体流動が有利に生ぜしめられて、圧力変動の伝達効率が、第二のオリフィス通路を流動せしめられる流体の共振作用等に基づいて有利に確保され得ると共に、加振室に生ぜしめられる高次成分の受圧室への伝達が効果的に防止され得ることとなり、そのような高次成分の伝達に起因する防振性能の大幅な低下も回避され得るのである。
【図面の簡単な説明】
【図1】本発明の一実施形態としての自動車用エンジンマウントを示す縦断面説明図である。
【図2】図1に示されたエンジンマウントにおける要部を拡大して示す説明図である。
【図3】図2に示された要部の別の作動状態を示す説明図である。
【図4】図1に示されたエンジンマウントにおける可動板の作動を説明するためのグラフである。
【符号の説明】
10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
32 ダイヤフラム
38 平衡室
44 ゴム弾性板
50 作用空気室
52 隔壁部材
58 受圧室
60 加振室
74 第一のオリフィス通路
76 第二のオリフィス通路
84 可動板
86 保持溝
88 緩衝ゴム
90 第三のオリフィス通路
[0001]
【Technical field】
The present invention relates to a fluid-filled type vibration damping device in which a vibration damping effect is exerted based on a flow action and a pressure action of an incompressible fluid enclosed therein, and particularly to a pressure fluctuation of the sealed incompressible fluid. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid-filled type vibration damping device in which a vibration damping effect is obtained by externally performing active control according to vibration to be damped.
[0002]
[Background Art]
In the case of vibration-damping members, such as automobile bodies and various members, in which vibration (including noise caused by vibration) is a problem, in order to reduce the vibration, conventionally, the vibration member and the vibration-damping object are used. 2. Description of the Related Art An anti-vibration device such as an engine mount, which is interposed between members to reduce the transmission of vibration from a vibration member to a vibration-isolation target member, is used.
[0003]
As one type of such a vibration isolator, a pressure receiving chamber in which a part of a wall is formed of a main rubber elastic body to which vibration is input and pressure fluctuation is caused when vibration is input, and a flexible and easily deformable A part of the wall is made up of the membrane to form an equilibrium chamber where the volume change is allowed. The pressure receiving chamber and the equilibrium chamber are filled with an incompressible fluid such as water, and both chambers communicate with each other. There is known a fluid-filled type vibration damping device in which a first orifice passage is provided to obtain a passive vibration damping effect based on a flow action of a fluid which is caused to flow through the first orifice passage at the time of vibration input. I have. In recent years, in order to further improve the vibration isolation performance, a part of a wall portion is formed of an elastic vibration plate to form a vibration chamber in which an incompressible fluid is sealed. A second orifice passage communicating with the pressure receiving chamber is provided, and a working air chamber is formed on the opposite side of the vibrating chamber with the elastic vibrating plate interposed therebetween. There has been proposed a fluid filled type vibration damping device in which a vibration force is applied to an elastic vibration plate. In such a fluid-filled type vibration damping device, the pressure fluctuation generated in the vibration chamber by the vibration of the elastic vibration plate is actively controlled according to the vibration to be damped, and the second orifice passage is controlled. In this case, the vibration to be damped can be counteracted or positively reduced by applying the pressure to the pressure receiving chamber.
[0004]
By the way, in an automobile engine mount or the like, the input vibration changes in accordance with the vehicle running conditions and the like, and a vibration damping effect is required for each of these plural types of vibrations. Therefore, for example, in the prior art, the first orifice passage is tuned to low-frequency vibration corresponding to an engine shake or the like, and the flow action of the fluid that is caused to flow through the first orifice passage is used for the engine shake or the like. Tune the second orifice passage to medium-frequency vibrations equivalent to idling vibrations, etc., to prevent the fluid flowing through the second orifice passages against idling vibrations. It has been proposed to obtain an active vibration damping effect using a flow action.
[0005]
Furthermore, in recent years, further improvement in vibration isolation performance has been demanded, and as one measure to cope with such a demand, for example, for high-frequency vibration such as muffled sound and chatter vibration during traveling. It is conceivable that an active vibration damping effect can be obtained by exerting air pressure fluctuations in a frequency range corresponding to those vibrations on the working air chamber and controlling the pressure of the vibration chamber and the pressure receiving chamber.
[0006]
However, in the active type fluid filled type vibration damping device having the conventional structure as described above, the second orifice passage which exerts pressure fluctuation of the vibration chamber on the pressure receiving chamber is tuned to a middle frequency range corresponding to idling vibration or the like. From this, the transmission efficiency of pressure fluctuations in the higher frequency range becomes significantly lower due to the anti-resonant action of the second orifice passage. Therefore, even if high-frequency pressure fluctuations are caused in the vibration chamber, However, there is a problem that the pressure fluctuation is hard to be transmitted to the pressure receiving chamber, and it is difficult to effectively obtain a desired active vibration damping effect.
[0007]
In order to cope with such a problem, for example, the tuning frequency of the second orifice passage is set to a high frequency range corresponding to a muffled sound or the like. It is conceivable to improve the transmission efficiency of the elastic vibration plate to the middle frequency range by tuning the second orifice passage to the middle frequency range. There is a problem that the function in the second orifice passage, which has been performing the filter function of suppressing transmission of the higher-order component of the pressure fluctuation generated in the vibration chamber to the pressure receiving chamber, is not performed. That is, if the second orifice passage is tuned to a high frequency range corresponding to muffled sound, the pressure fluctuation caused in the vibration chamber by the pneumatic vibration of the elastic vibration plate in the high frequency range surely causes the pressure fluctuation in the pressure receiving chamber. It is possible to obtain an active vibration damping effect against vibrations in the high frequency range, but when the vibration damping effect is required for vibrations in the middle frequency range, When air pressure is applied in the frequency range, it is difficult to prevent high-order components of pressure fluctuations derived from the excitation chamber from being applied to the pressure receiving chamber through the second orifice passage. Therefore, higher-order pressure fluctuations that do not correspond to the above may be generated in the pressure receiving chamber, and the vibration state in the higher-order frequency range may be adversely deteriorated.
[0008]
Of course, for such a problem, as the second orifice passage that connects the pressure receiving chamber and the vibration chamber to each other, the second orifice passage is tuned to the middle frequency range equivalent to idling vibration, etc. A plurality of components or the like tuned to a corresponding high frequency range are formed in parallel with each other, and the plurality of second orifice passages are switched by valve means or the like to selectively operate according to vibration to be damped. It is also conceivable to deal with it. However, when such a structure is employed, a plurality of second orifice passages are formed, and valve means and an actuator for switching the plurality of second orifice passages are required. However, this is not always an effective measure because the increase in manufacturing cost and the like are serious problems.
[0009]
[Solution]
Here, the present invention has been made in view of the above-mentioned circumstances, and the problem to be solved is to exert an active vibration damping effect by applying an external air pressure fluctuation as described above. In the obtained fluid-filled type vibration damping device, the active vibration damping effect exerted by controlling the pressure in the pressure receiving chamber is improved with respect to a plurality of vibrations from a middle frequency range to a high frequency range or a vibration in a wide frequency range. Another object of the present invention is to provide a fluid-filled type vibration damping device having a novel structure, which can also be effectively obtained.
[0010]
[Solution]
Hereinafter, embodiments of the present invention made to solve such problems will be described. The components employed in each of the embodiments described below can be employed in any combination as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or based on the invention ideas that can be understood by those skilled in the art from the descriptions. It should be understood that it is recognized on the basis of.
[0011]
That is, the features of the first aspect of the present invention are as follows: (a) a first mounting member and a second mounting member which are spaced apart from each other and respectively mounted on members to be vibration-isolated and connected; b) a main rubber elastic body for elastically connecting the first mounting member and the second mounting member; and (c) a part of the wall portion is formed by the main rubber elastic body, so that pressure fluctuation occurs at the time of vibration input. (D) a pressure receiving chamber filled with an incompressible fluid, and (d) an equilibrium chamber filled with an incompressible fluid, wherein a part of a wall is formed of a flexible membrane and volume change is allowed. (E) a first orifice passage for communicating the pressure receiving chamber and the equilibrium chamber with each other; and (f) a part of a wall portion formed on the opposite side of the pressure receiving chamber with a partition wall interposed therebetween. A vibrating chamber formed of a vibration plate and filled with an incompressible fluid; (H) an acting air chamber formed on the opposite side with respect to the vibration plate, which exerts a vibration force on the elastic vibration plate by exerting an air pressure fluctuation from the outside to generate a pressure fluctuation in the vibration chamber; A) a second orifice passage which is tuned to a higher frequency range than the first orifice passage and communicates the pressure receiving chamber and the vibration chamber with each other; and (i) a through hole is provided in the partition wall. An annular holding groove that opens to the inner peripheral side is formed at the peripheral portion of the movable member, and a hard movable plate is disposed in the through-hole, and the outer peripheral edge of the movable plate is inserted into the holding groove and has a predetermined play. The movable plate can be displaced in the holding groove by the play in the plate thickness direction by being gripped, and the movable plate is displaced in the plate thickness direction and abuts on the inner surface of the holding groove to form the through hole. Is substantially closed, and the holding groove is A movable orifice which can form a third orifice passage which wraps around the outer peripheral edge of the movable plate and connects the vibration chamber and the pressure receiving chamber to each other with a tuning frequency higher than that of the second orifice passage. And a plate mechanism.
[0012]
In such a fluid-filled type vibration damping device having a structure according to this aspect, relative vibration of a low frequency range is caused by relative pressure fluctuations induced between the pressure receiving chamber and the equilibrium chamber due to vibration input. While the passive vibration damping effect based on the resonance action of the fluid caused to flow through the first orifice passage is effectively exerted, the vibration resistance of the first orifice passage is significantly increased at the time of vibration input in a medium to high frequency range where the flow resistance is significantly increased. The pressure fluctuation generated in the vibration chamber by applying pressure fluctuation to the working air chamber to vibrate the elastic vibration plate is transmitted to the pressure receiving chamber through the second orifice passage or the third orifice passage, By actively controlling the pressure fluctuation in the pressure receiving chamber in accordance with the vibration to be damped, a destructive or positive damping effect can be obtained.
[0013]
Here, the input vibration in the middle frequency range often has a larger amplitude than the input vibration in the high frequency range, and particularly in automobiles, the amplitude of idling vibration, which tends to be a problem in the middle frequency range, is high in the high frequency range. It is sufficiently large compared to the amplitude of vibrations such as running muffled sounds and chattering sounds that are likely to cause problems. Therefore, when damping vibration in the middle frequency range, the pressure fluctuation generated in the vibration chamber by the air pressure vibration of the elastic vibration plate is increased according to the magnitude of the vibration amplitude to be vibration-proof. Therefore, the vibration plate constituting the wall portion of the vibration chamber is also displaced greatly, and is brought into contact with the holding groove of the partition. As a result, the third orifice passage is closed, and the fluid flow through the second orifice passage is efficiently caused between the vibration chamber and the pressure receiving chamber, so that the desired active vibration damping effect is achieved. And the transmission of higher-order components of pressure fluctuations induced in the vibration chamber through the third orifice passage can be avoided. On the other hand, when the vibration in the high frequency range is damped, the fluid flow resistance of the second orifice passage is significantly increased due to the anti-resonant action, but is generated in the vibration chamber by the air pressure vibration of the elastic vibration plate. Since the pressure fluctuation is reduced according to the magnitude of the vibration amplitude to be damped, the vibration plate is difficult to follow up to high frequencies, and the vibration plate is placed in the holding groove of the partition wall. It is almost in a floating state. As a result, the third orifice passage is in a communicating state, and the fluid flow through the third orifice passage is efficiently caused between the vibration chamber and the pressure receiving chamber, and the desired active vibration damping effect is achieved. Can be advantageously exerted based on the flow action of
[0014]
Therefore, in the fluid-filled type vibration damping device of this aspect, the vibration to be damped is applied to the vibration in the middle to high frequency range where the passive vibration damping effect by the first orifice passage is not sufficiently exerted. By adjusting the frequency and amplitude of the pressure fluctuation generated in the vibration chamber by the pneumatic vibration of the elastic vibration plate accordingly, the second orifice passage and the third orifice passage are automatically adjusted accordingly. Therefore, even when the vibration to be damped is over a plurality of or a wide frequency range, the pressure fluctuation caused in the vibration chamber by the pneumatic vibration of the elastic vibration plate is selected. It is possible to control the pressure in the pressure receiving chamber by transmitting it to the pressure receiving chamber while avoiding a significant decrease in the vibration isolation performance due to higher order components, and it is possible to control vibrations in multiple or wide frequency ranges. Active vibration isolation Result is as it can be effectively exhibited.
[0015]
According to a second aspect of the present invention, in the fluid-filled type vibration damping device according to the first aspect, the inner surface of the holding groove formed in the partition and the holding groove when the movable plate is displaced. A cushioning rubber layer is provided on at least one of an outer peripheral edge portion of the movable plate and an inner surface of the movable plate. In this embodiment, the impact sound and impact when the vibration plate abuts on the holding groove can be reduced or avoided by the buffering action of the buffer rubber layer.
[0016]
According to a third aspect of the present invention, in the fluid-filled type vibration damping device according to the first or second aspect, the outer peripheral edge of the movable plate is formed in a circumferential direction with an outer peripheral shape of a substantially circular arc cross section. The third orifice passage is formed by extending the holding groove so as to extend in the circumferential direction with an inner circumferential surface shape having a substantially arc-shaped cross section slightly larger than the outer circumferential surface of the movable plate. Is formed between the outer peripheral surface of the movable plate and the inner peripheral surface of the holding groove in a substantially arc-shaped flow path form. In this aspect, in addition to advantageously securing the length of the third orifice passage, the shape of the third orifice passage in the fluid flow direction can be a smooth shape without a bent portion. Thus, by suppressing the flow resistance of the fluid, it is possible to more efficiently obtain an active vibration isolation effect based on the flow action of the fluid. In order to make the outer peripheral edge of the movable plate have an arc-shaped outer peripheral surface, for example, a rubber elastic body is fixed to the outer peripheral edge of the movable plate, and the outer peripheral edge of the movable plate has a circular cross section. It can be advantageously formed by providing an annular projection projecting from the above, and such an annular projection can be used as the cushioning rubber layer in the second aspect.
[0017]
According to a fourth aspect of the present invention, there is provided the fluid filled type vibration damping device according to any one of the first to third aspects, wherein air pressure fluctuation is applied to the working air chamber in a tuning frequency range of the second orifice passage. When the pressure fluctuation is caused in the vibration chamber by applying the pressure, the movable plate is brought into contact with the inner surfaces of the holding grooves on both sides in the plate thickness direction, while the third orifice passage is closed. When air pressure fluctuation is applied to the working air chamber in the tuning frequency range to cause pressure fluctuation in the vibration chamber, the amplitude in the thickness direction of the movable plate is smaller than the play of the movable plate with respect to the holding groove. The contact of the movable plate with the holding groove in the plate thickness direction is suppressed, and the third orifice passage is formed substantially constantly in the holding groove. I do. In this aspect, by considering the magnitude of the air pressure fluctuation exerted on the working air chamber according to the vibration to be damped, tuning according to the required damping characteristics can be advantageously achieved. It becomes.
[0018]
According to a fifth aspect of the present invention, in the fluid-filled type vibration damping device according to any one of the first to fourth aspects, the first orifice passage has a first intermediate portion in a longitudinal direction intermediate portion. A connection window that allows the orifice passage to communicate with the vibrating chamber is formed, so that the second orifice passage is formed using a part of the first orifice passage. I do. In such an embodiment, the first orifice passage and the second orifice passage can be formed compactly in a small space. More preferably, at least a part of the first orifice passage is formed so as to be located on the outer peripheral side of the movable plate and extend in the circumferential direction, whereby the passage length of the orifice passage is reduced in a small space. Can be secured more efficiently.
[0019]
According to a sixth aspect of the present invention, in the fluid filled type vibration damping device according to any one of the first to fifth aspects, one of the first mounting member and the second mounting member is connected to a power unit side. By attaching to the member and attaching the other to the body side member, an engine mount for supporting the power unit of the vehicle with vibration isolation against the body is configured, and the first orifice passage is set to a low frequency range corresponding to an engine shake. In addition to the tuning, the second orifice passage is tuned to a middle frequency range corresponding to idling vibration, and the third orifice passage is tuned to a high frequency range corresponding to a traveling muffled sound. In the engine mount having such a structure according to this aspect, a passive vibration damping effect can be effectively provided by the resonance effect of the fluid that is caused to flow through the first orifice passage against the engine shake that tends to be a problem when the vehicle is running. As well as exerting noise, chattering noise and chattering noise, which are likely to cause problems when the vehicle is running, the pressure fluctuations generated in the vibration chamber by the air pressure vibration of the elastic vibration plate are passed through the third orifice passage. By transmitting the pressure to the pressure receiving chamber and controlling the pressure fluctuation in the pressure receiving chamber, an active vibration isolation effect can be effectively exhibited. Further, for idling vibration which is likely to be a problem when the vehicle is stopped, pressure control is performed by transmitting the pressure fluctuation generated in the vibration chamber by the air pressure vibration of the elastic vibration plate to the pressure receiving chamber through the second orifice passage. As a result, an active vibration damping effect is exhibited, and in this case, compared to the pressure fluctuation generated in the vibration chamber when damping high frequency vibration corresponding to muffled noise, it corresponds to idling vibration etc. Pressure fluctuations generated in the vibration chamber during vibration isolation of medium-frequency vibrations have large amplitudes and large displacements of the vibration plate, and the third orifice passage is blocked by contact with the holding groove of the partition. Therefore, during vibration isolation of the medium-frequency vibration, the transmission of the higher-order components generated in the vibration chamber to the pressure-receiving chamber can be effectively suppressed, and the vibration state caused by the transmission of the higher-order components can be reduced. Reduction also as it can be advantageously avoided.
[0020]
A seventh aspect of the present invention is the fluid-filled type vibration damping device according to any one of the first to sixth aspects, wherein the second mounting member has a cylindrical shape, and the second mounting member has a cylindrical shape. The first mounting member is spaced apart from one of the openings, and the first mounting member and the second mounting member are connected to each other by the rubber elastic body. And the other opening in the axial direction of the second mounting member is fluid-tightly covered with the flexible film, while being overlapped with each other in the axial direction of the second mounting member. The combined first partition member and second partition member are fixedly supported by the second mounting member, and the pressure receiving chamber is formed between the first partition member and the main rubber elastic body. Forming the equilibrium chamber between the second partition member and the flexible membrane, and further comprising the second partition member. The working air chamber is formed by covering the recess provided on the superposed surface side of the member with the first partition member in a fluid-tight manner with the elastic vibration plate, and the elastic vibration plate and the first Wherein the vibration chamber is formed between the partition members. In this embodiment, the pressure receiving chamber, the equilibrium chamber, and the vibration chamber, each of which is filled with an incompressible fluid, and the working air chamber to which air pressure fluctuation is applied from the outside are formed with an efficient arrangement space. Accordingly, the fluid-filled vibration damping device structured according to the present invention can be realized in a compact manner.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0022]
First, FIGS. 1 and 2 show an automobile engine mount 10 as one embodiment of the present invention. In this engine mount 10, a first mounting member 12 as a first mounting member and a second mounting member 14 as a second mounting member are spaced apart from each other. The second mounting bracket 14 has a structure in which the first mounting bracket 12 is mounted on the power unit side of the vehicle, while the second mounting bracket 14 is mounted on the body side of the vehicle. By attaching the power unit to the body, the power unit is supported for vibration isolation with respect to the body. In the following description, the vertical direction refers to the vertical direction in FIG. 1 in principle.
[0023]
More specifically, the first mounting member 12 has a substantially inverted truncated conical shape, and a nut portion 15 protruding upward in the axial direction is integrally formed at the large-diameter end. . The first mounting member 12 is mounted on the power unit side by a bolt (not shown) screwed into the screw hole 17 of the nut portion 15.
[0024]
Further, a main rubber elastic body 16 is vulcanized and bonded to the first mounting member 12. The main rubber elastic body 16 has a generally large truncated conical shape having a large diameter as a whole, which expands in a downward direction, and has an inverted mortar-shaped concave portion 18 which is open at the large-diameter end surface. The first mounting member 12 is arranged on the same central axis in a state of being inserted axially downward from the small diameter side end surface of the main rubber elastic body 16 and is vulcanized and bonded. A large-diameter cylindrical metal sleeve 20 is superposed on the outer peripheral surface of the large-diameter end portion of the main rubber elastic body 16 and is vulcanized and bonded.
[0025]
On the other hand, the second mounting member 14 has a large-diameter substantially stepped cylindrical shape, and has a large-diameter portion 26 at an upper portion in the axial direction with a step portion 24 formed at an intermediate portion in the axial direction interposed therebetween. At the same time, the lower part in the axial direction is a small diameter part 28. A thin seal rubber layer 30 covering almost the entire surface is provided on the inner peripheral surfaces of the large diameter portion 26 and the small diameter portion 28, respectively, and is vulcanized and bonded. A diaphragm 32 made of a thin rubber film having a substantially thin disk shape is provided, and the outer peripheral edge of the diaphragm 32 is vulcanized and bonded to the peripheral edge of the opening of the second mounting member 14, whereby the second The lower opening of the second mounting bracket 14 is fluid-tightly closed. In the present embodiment, the diaphragm 32 is formed integrally with the seal rubber layer 30, and the diaphragm 32 forms a flexible film.
[0026]
The large-diameter portion 26 of the second mounting member 14 is fixed to the outer peripheral surface of the main rubber elastic body 16 by being externally inserted into the metal sleeve 20 and fitted and fixed by press-fitting, drawing, or the like. ing. Thereby, the first mounting bracket 12 and the second mounting bracket 14 are arranged apart from each other so as to be located on substantially the same central axis which is the main input direction of the vibration to be damped. And are elastically connected by a rubber elastic body 16. Further, since the large-diameter portion 26 of the second mounting member 14 is fixed to the main rubber elastic body 16, the upper opening of the second mounting member 14 is closed in a fluid-tight manner by the main rubber elastic body 16. .
[0027]
Further, a bracket 31 is fixedly attached to the second mounting bracket 14 from above in the axial direction. The bracket 31 has a large diameter substantially cylindrical shape as a whole, and a plurality of legs 33 extending downward in the axial direction are welded to the outer peripheral surface. The bracket 31 is externally fitted and fixed to the large-diameter portion 26 of the second mounting bracket 14, and its leg 33 is bolted to a vehicle body (not shown) to thereby secure the second bracket 31. The mounting bracket 14 is fixedly mounted on the body.
[0028]
In the second mounting member 14, a partition member 34 is accommodated in the small diameter portion 28 thereof, and is disposed between the opposing surfaces of the main rubber elastic body 16 and the diaphragm 32. The partition member 34 is formed of a hard material such as a metal or a synthetic resin, and has a substantially thick disk-shaped block shape. The partition member 34 is fitted into the small-diameter portion 28 of the second mounting member 14, and its cylindrical outer peripheral surface is formed by press-fitting the small-diameter portion 28 or drawing the small-diameter portion 28. , Is tightly fixed to the small diameter portion 28 in a fluid-tight manner with a seal rubber layer 30 interposed therebetween. When the partition member 34 is assembled in the second mounting member 14 in this manner, a region formed between the main rubber elastic body 16 and the diaphragm 32 and sealed with respect to an external space is formed by the partition member 34. Thus, a main liquid chamber 36 in which a part of the wall portion is formed of the main rubber elastic body 16 is formed on the upper side of the partition member 34 while the main liquid chamber 36 is formed on the upper side of the partition member 34. On the lower side, an equilibrium chamber 38 is formed in which a part of the wall portion is constituted by the diaphragm 32 and a volume change is easily allowed based on the deformation of the diaphragm 32.
[0029]
The main liquid chamber 36 and the equilibrium chamber 38 are filled and sealed with incompressible fluids such as water, alkylene glycol, polyalkylene glycol, and silicone oil. In particular, in the present embodiment, a low-viscosity fluid having a viscosity of 0.1 Pa · s or less is preferably employed in order to advantageously obtain a vibration damping effect based on a resonance effect of the fluid described below. A lower recess 39 is formed at the lower end face in the axial direction of the partition member 34 and opens at the center portion. The volume of the equilibrium chamber 38 is advantageously secured by the lower recess 39. ing.
[0030]
The partition member 34 is formed with a substantially mortar-shaped central recess 40 that opens at the center of the upper surface, and protrudes upward from the partition member 34 at the periphery of the opening of the central recess 40. An annular locking projection 42 is integrally formed. A rubber elastic plate 44 as an elastic vibrating plate having a disk shape with a predetermined thickness is superposed on the opening of the central recess 40, and is vulcanized and bonded to the outer peripheral surface of the rubber elastic plate 44. A locking fitting 46 having a shape is externally fitted to the locking projection 42 of the partition member 34 at its lower end opening, and is caulked and fixed to the locking projection 42 in a fluid-tight manner. As a result, the opening of the central recess 40 is covered with the rubber elastic plate 44 in a fluid-tight manner, so that the working air chamber 50 independent of the main liquid chamber 36 and the equilibrium chamber 38 is formed. As will be described later, air pressure fluctuations are applied from an external air pressure source, and a vibration force is applied to the rubber elastic plate 44 based on the air pressure fluctuations in the working air chamber 50. .
[0031]
An air passage 78 is formed in the partition member 34 in order to cause pressure fluctuation to act on the working air chamber 50, and one open end of the air passage 78 communicates with the working air chamber 50. On the other hand, the other end of the air passage 78 is opened to a port 80 projecting from the outer peripheral surface of the partition member 34. In the mounted state, an external air line is connected to the port portion 80, so that air pressure fluctuations exerted by pressure control means (not shown) are transmitted from the air line to the working air chamber 50 through the air passage 78. Has been affected.
[0032]
Further, in the main liquid chamber 36 formed between the opposing surfaces of the main rubber elastic body 16 and the partition member 34, a partition member 52 as a partition having a substantially disk shape as a whole is housed and arranged. The partition member 52 has a structure in which upper and lower partition plates 54 and 56 each formed of a hard material such as metal or synthetic resin and each having a substantially disk shape are fixedly overlapped with each other. The mounting bracket 14 is provided so as to spread in a direction perpendicular to the axis. Then, the outer peripheral edge of the partition member 52 is sandwiched and held between the step portion 24 of the second mounting member 14 and the axial end surface of the main rubber elastic body 16 so that the partition member 52 is in the second position. It is fixed to the mounting bracket 14. Thus, the main liquid chamber 36 is fluid-tightly partitioned between the main rubber elastic body 16 and the partition member 34 with the partition member 52 interposed therebetween. Thus, a part of the wall is formed of the main rubber elastic body 16 between the main rubber elastic body 16 and the partition member 52, and the pressure change accompanying the elastic deformation of the main rubber elastic body 16 at the time of vibration input. While a pressure receiving chamber 58 to be generated is formed, a part of a wall portion is constituted by a rubber elastic plate 44 between the partition member 52 and the partition member 34, and the rubber elastic plate 44 serves as the working air chamber 50. A vibration chamber 60 is formed in which vibrations are generated based on the air pressure fluctuations, thereby directly causing pressure fluctuations.
[0033]
The partitioning member 34 has an outer peripheral groove 66 extending at a predetermined length in the circumferential direction at an intermediate portion in the axial direction, and the outer peripheral groove 66 is fluid-tight at the small diameter portion 28 of the second mounting member 14. A fluid flow path is formed by being covered by the cover. One end of the fluid flow path formed by the outer peripheral groove 66 is opened at the upper end surface of the partition member 34 on the outer peripheral side of the central recess 40 through a through hole 68 extending in the axial direction. . On the other hand, the other end of the outer circumferential groove 66 is opened to the lower recess 39 through a through hole (not shown) extending radially inward. Further, an annular groove 62 extending in the circumferential direction with a groove-shaped cross section opening upward is formed on the outer peripheral edge of the lower partition plate 56, and the annular groove 62 protruding downward is formed. The lower partition wall plate 56 is fluid-tightly fitted and fixed to the locking metal fitting 46 at the portion where the lower partition wall plate 56 is formed, and the annular groove 62 is covered with the upper partition wall plate 54 to form an annular flow path. ing. The annular flow path formed by the annular groove 62 is connected to the pressure receiving chamber 58 through a communication hole 70 formed through the upper partition plate 54 at one position facing the radial direction. Further, at the other position radially opposed to the annular flow path formed by the annular groove 62, the outer peripheral groove 66 of the partition member 34 is formed by a connection hole 72 penetrating through the lower partition plate 56. Connected to the fluid flow path.
[0034]
As a result, the annular flow path formed by the annular groove 62 and the fluid flow path formed by the outer peripheral concave groove 66 are connected in series with each other, so that the first pressure receiving chamber 58 and the equilibrium chamber 38 communicate with each other. An orifice passage 74 is formed. In addition, a second orifice passage 76 that connects the pressure receiving chamber 58 and the vibration chamber 60 to each other is formed by the annular flow path. That is, the second orifice passage 76 utilizes a part of the first orifice passage 74 by connecting the first orifice passage 74 to the vibration chamber 60 at an intermediate portion in the passage length direction. It is formed.
[0035]
Then, when a pressure fluctuation is generated in the pressure receiving chamber 58 based on the elastic deformation of the main rubber elastic body 16 at the time of vibration input, the pressure fluctuation is generated based on the relative pressure difference between the pressure receiving chamber 58 and the equilibrium chamber 38. Fluid flow between the two chambers 58 and 38 is generated through one orifice passage 74. In particular, in the present embodiment, the first orifice passage 74 is tuned to a low frequency range of about 10 Hz corresponding to an engine shake or the like. Thus, a passive vibration damping effect is exerted on the input vibration in the low frequency range based on the flow action such as the resonance action of the fluid that is caused to flow through the first orifice passage 74.
[0036]
In the present embodiment, the second orifice passage 76 is tuned to a middle frequency range of about 20 to 40 Hz corresponding to idling vibration or the like. Then, at the time of vibration input in the middle frequency range, the pressure fluctuation generated in the vibration chamber 60 based on the air pressure fluctuation of the working air chamber 50 is caused by the flow action such as the resonance action of the fluid caused to flow through the second orifice passage 76. , The pressure is effectively applied to the pressure receiving chamber 58, and the pressure fluctuation in the pressure receiving chamber 58 is positively adjusted, whereby an active vibration damping effect is exerted.
[0037]
The tuning of the first and second orifice passages 74 and 76 corresponds to, for example, the wall spring stiffness of the pressure receiving chamber 58, the equilibrium chamber 38, and the vibration chamber 60 (corresponding to the amount of pressure change required to change by a unit volume). This can be performed by adjusting the passage length and the passage cross-sectional area while taking into consideration the characteristic value of the passage, and generally, the phase of the pressure fluctuation transmitted through the orifice passages 74 and 76 changes, and the resonance state is substantially changed. Can be grasped as the tuning frequency of the orifice passages 74 and 76.
[0038]
Further, the upper and lower partition plates 54 and 56 constituting the partition member 52 are each formed with a large-diameter through-hole 82 at the center thereof, and a movable plate 84 is provided in the through-hole 82. The movable plate 84 is formed of a rigid metal plate and has a thin disk shape. On the other hand, the upper and lower partition plates 54 and 56 are separated from each other at the inner peripheral edge of the through-hole 82, so that a holding groove 86 that opens inward in the radial direction extends over the entire circumference in the circumferential direction. It is formed continuously. The outer peripheral edge of the movable plate 84 enters the holding groove 86 over the entire circumference, and is held with a predetermined play gap. Thus, the movable plate 84 is disposed so as to be movable in the axial direction by a predetermined distance until the movable plate 84 contacts both sides in the axial direction in the holding groove 86, that is, by the set play.
[0039]
Further, in the present embodiment, as shown in an enlarged view in FIG. 2, a rubber elastic body is vulcanized and bonded to the outer peripheral edge portion of the movable plate 84 that has entered the holding groove 86, and the entire periphery is vulcanized. An annular cushion rubber 88 is formed extending therethrough. In particular, the cushioning rubber 88 has a cross-sectional shape of an arc-shaped outer peripheral surface protruding radially outward and axially both sides from the outer peripheral edge of the movable plate 84, and extends over the entire circumferential direction of the movable plate 84. It is formed continuously.
[0040]
Further, the holding groove 86 for supporting the outer peripheral edge of the movable plate 84 has an inner peripheral surface shape having an arc-shaped cross section slightly larger than the outer peripheral surface of the buffer rubber 88 protruding from the movable plate 84. It is formed so as to extend over the entire circumference in the direction. As a result, as shown in FIG. 2, the movable plate 84 is positioned substantially at the center of the movement range in the holding groove 86, and between the outer peripheral edge of the movable plate 84 and the partition member 52. A third orifice passage extending between the outer peripheral surface of the cushion rubber 88 and the opposing surface of the inner peripheral surface of the holding groove 86 due to backlash to allow the pressure receiving chamber 58 and the vibration chamber 60 to communicate with each other. 90 are formed. Further, as shown in FIG. 3, the third orifice passage 90 allows the movable plate 84 to be displaced in any of the axial directions and the cushion rubber 88 to contact the inner peripheral surface of the holding groove 86. In this state, the through holes 82 formed in the upper and lower partition plates 54 and 56 are substantially fluid-tightly closed by the movable plate 84, so that they are substantially blocked and disappear. I have.
[0041]
In the present embodiment, the third orifice passage 90 is tuned to a high frequency range of about 50 to 200 Hz corresponding to the muffled sound and chatter vibration of the vehicle, and the third orifice passage 90 is externally applied to the working air chamber 50. When pressure fluctuations in a high frequency range are generated in the vibration chamber 60 based on the air pressure fluctuations generated, the vibration chamber 60 is controlled based on the flow action such as the resonance action of the fluid flowing through the third orifice passage 90. Is efficiently transmitted to the pressure receiving chamber 58.
[0042]
Therefore, in the engine mount 10 of the present embodiment having the above-described structure, when vibrations in a low frequency range such as an engine shake are input, the pressure receiving chamber 58 and the equilibrium chamber 60 are connected through the first orifice passage 74 as described above. An effective vibration damping effect can be exhibited by the high damping action based on the resonance action of the fluid flowing between them. In addition, at the time of vibration input in a medium frequency range such as idling vibration, or at the time of vibration input of a high frequency range such as running noise and chattering sound, the flow resistance of the fluid in the first orifice passage 74 increases remarkably anti-resonantly. It will be. Therefore, at the time of such a middle to high frequency vibration input, the rubber elastic plate 44 is vibrated by applying an external air pressure fluctuation to the working air chamber 50 in a cycle corresponding to the vibration to be damped. An internal pressure fluctuation is generated in the vibration chamber 60, and the internal pressure fluctuation in the vibration chamber 60 is applied to the pressure receiving chamber 58 through the second orifice passage 76 or the third orifice passage 90, so that the pressure fluctuation in the pressure receiving chamber 58 is activated. It is possible to control the target or aggressively, whereby a destructive or aggressive vibration damping effect is exerted.
[0043]
The external air pressure control means for exerting air pressure fluctuations on the working air chamber 50 is well known in the art and will not be described in detail here. For example, a negative pressure source such as a vacuum tank and the atmosphere are supplied to the working air chamber 50. An electromagnetic switching valve for connecting and selectively connecting the working air chamber 50 to the negative pressure source and the atmosphere on the connection pipe is provided, and the electromagnetic switching valve is controlled by a control signal corresponding to the vibration to be damped. This can be advantageously realized by performing the switching operation with. In addition, the control signal of the electromagnetic switching valve is generated, for example, by detecting an engine speed, an accelerator opening, a traveling speed, and the like with various sensors, and using an ignition signal of the engine as a reference signal, adaptive control, map control, and the like. The air pressure fluctuation having a cycle, a phase, and an amplitude corresponding to the vibration to be damped is taken into consideration so as to affect the working air chamber 50.
[0044]
Here, in the engine mount 10, the support plate 52 is supported by the partition member 52 that separates the pressure receiving chamber 58 and the vibration chamber 60, and is provided in the holding groove 86 of the movable plate 84 provided between the chambers 58 and 60. The second orifice passage 76 and the third orifice passage 90 are automatically switched according to the vibration frequency to be damped by appropriately adjusting the axial movement amount at I am being squeezed.
[0045]
Specifically, the vibration in the middle frequency range such as the idling vibration of about 20 to 40 Hz has a larger amplitude than the vibration in the high frequency range such as the running muffled sound of about 50 to 200 Hz. Therefore, when active control is performed in a medium frequency range such as idling vibration, an effective vibration damping effect is obtained, compared to when active control is performed in a high frequency range such as running muffled sound. Is set to be large, and as a result, a large amplitude pressure fluctuation is generated in the vibration chamber 60. On the other hand, when active control is performed in a high frequency range such as a running muffled sound, in order to obtain an effective anti-vibration effect, compared to a case where active control is performed in a middle frequency range such as idling vibration, the working air chamber 50 is not provided. The amplitude of the applied air pressure fluctuation is set to be small, and as a result, a pressure fluctuation of a small amplitude is generated in the vibration chamber 60.
[0046]
When the pressure fluctuation is generated in the vibration chamber 60 in this way, the relative pressure fluctuation between the vibration chamber 60 and the pressure receiving chamber 58 is exerted on the upper and lower surfaces of the movable plate 84, and the movable plate 84 is reciprocated in the axial direction. Here, the amount of displacement of the movable plate 84 in the axial direction is limited by the contact with the holding groove 86. In the present embodiment, the amount of displacement of the movable plate 84 in the axial direction is limited to a high frequency range. The pressure fluctuation generated in the vibration chamber 60 by the active control in the vibration chamber 60 is allowed to have a displacement amount that can be almost absorbed, while the pressure fluctuation generated in the vibration chamber 60 by the active control in the middle frequency range is allowed. The displacement is set so that the amount of displacement is limited so as not to completely absorb the pressure fluctuation.
[0047]
That is, for example, as shown in FIG. 4, it is necessary to absorb the pressure fluctuation caused in the vibration chamber 60 when performing active control for vibration damping in the middle frequency range (30 Hz). The axial displacement of the movable plate 84 is ± 0.4 mm, which is necessary to absorb pressure fluctuations caused in the vibration chamber 60 when performing active control for vibration damping in a high frequency range (100 Hz). Assuming that the axial displacement of the movable plate 84 is ± 0.06 mm, the allowable axial displacement (movable distance) of the movable plate 84 is set to, for example, ± 0.1 mm. Then, at the time of vibration input in the middle frequency range, when the air pressure fluctuation of the corresponding frequency is caused to cause the pressure fluctuation in the vibration chamber 60, the movable plate 84 moves to ± 0 with the pressure fluctuation of the vibration chamber 60. Although it is attempted to displace in the axial direction by 0.4 mm, it is actually limited to a range of ± 0.1 mm due to contact with the holding groove 86. As a result, for at least the remaining ± 0.3 mm, the pressure fluctuation is not absorbed by the displacement of the movable plate 84, and an effective pressure fluctuation is generated in the vibration chamber 60. Is applied to the pressure receiving chamber 58 through the second orifice passage 78 with an efficient pressure transmission efficiency utilizing the resonance action of the fluid, so that an effective vibration damping effect can be exhibited.
[0048]
In addition, in the active control in the middle frequency range, as is clear from FIG. 4, the movable plate 84 moves the holding plate 86 over a long period of time in one cycle (time t 'in FIG. 4). The through-hole 82 and thus the third orifice passage 90 are maintained in a closed state. Therefore, even if a higher-order component of the pressure fluctuation is induced in the vibration chamber 60, the transmission to the pressure receiving chamber 58 through the third orifice passage 90 can be effectively prevented, and the second Transmission to the pressure receiving chamber 58 through the orifice passage 76 can also be advantageously prevented by the anti-resonant action, and the deterioration of the vibration state caused by the higher-order component does not become a problem.
[0049]
On the other hand, at the time of vibration input in the high frequency range, when the air pressure fluctuation of the corresponding frequency is caused to cause the pressure fluctuation in the vibration chamber 60, the movable plate 84 has a high frequency of the pressure fluctuation applied. Due to the fact that the mass component (mass) itself acts on the flow resistance and mass of the sealed fluid additively, the displacement becomes difficult to follow the pressure fluctuation of the vibration chamber 60. Therefore, in a situation where active control is performed in a high frequency range, the movable plate 84 is held in a substantially stationary state or a state where it is slightly displaced slightly while floating from the holding groove 86. As a result, The third orifice passage 90 is maintained in communication between the movable plate 84 and the holding groove 86.
[0050]
Therefore, during active control in the high frequency range, the fluid flow resistance of the second orifice passage 76 significantly increases due to anti-resonant action and the like, but the third orifice passage 90 tuned to the high frequency range has Thus, the pressure fluctuation of the vibration chamber 60 is exerted on the pressure receiving chamber 58 with an efficient pressure transmission efficiency based on the flow action such as the resonance action of the fluid flowing through the third orifice passage 90. Thus, an effective anti-vibration effect can be exhibited.
[0051]
As described above, one embodiment of the present invention has been described in detail. However, this is merely an example, and the present invention is not interpreted in any limited manner by the specific description in the embodiment.
[0052]
For example, the amount of axial displacement allowed for the movable plate 84 by the play of the holding portion 86 due to the play of the gripping portion depends on the magnitude (amplitude) of the vibration to be damped, the volume of the vibration chamber 60, and the spring of the rubber elastic plate 44. It is appropriately set in consideration of the constant, the effective piston area, the volume of the working air chamber 50, and the like, and is not limited. Here, the movable displacement amount: δ allowed for the movable plate 84 is the theoretical maximum displacement amount (of the vibration chamber 60 due to the pressure fluctuation induced in the vibration chamber 60 at least in active control in the middle frequency range). Displacement to absorb pressure fluctuation): It is necessary to set smaller than δa, but it is not always necessary to set the theoretical maximum displacement due to pressure fluctuation induced in the vibration chamber 60 during active control in a high frequency range. Amount: need not be greater than δb. As described above, as described above, when the frequency of the applied pressure fluctuation increases, the movable plate 84 becomes difficult to be displaced by the action of the inertial force or the like, and the actual displacement becomes smaller than the theoretical maximum displacement. This is because it is held in the holding groove 86 in a floating state.
[0053]
The tuning frequency of each of the first orifice passage 74, the second orifice passage 76, and the third orifice passage 90 is appropriately set according to the required vibration isolation characteristics. It goes without saying that it is not limited.
[0054]
Furthermore, the specific structures of the first orifice passage 74, the second orifice passage 76, and the third orifice passage 90 are not limited at all, and the structure of the mount body and the mount size are taken into consideration. Then, it can be changed appropriately. In this case, for example, in the above-described embodiment, the second orifice passage 76 is formed by using a part of the first orifice passage 74. However, the first orifice passage 74 and the second orifice passage 76 are formed. May be formed with independent channel structures.
[0055]
For the purpose of tuning the third orifice passage 90, for example, a stenotic flow path is formed between the movable plate 84 and the pressure receiving chamber 58 in the partition member 52, and a fluid that allows the third orifice passage 90 to flow therethrough. However, it is also possible to guide the pressure to the pressure receiving chamber 58 through the narrowed flow path.
[0056]
In addition, in the above-described embodiment, a specific example in which the present invention is applied to an engine mount for an automobile has been described. However, the present invention also has an anti-vibration effect particularly against vibrations over a plurality of or a wide frequency range. Any of them can be effectively applied to a vibration isolator in various vibration members requiring the following.
[0057]
【The invention's effect】
As is clear from the above description, in the fluid filled type vibration damping device having the structure according to the present invention, the passive vibration damping effect by the first orifice passage is effectively exerted against the vibration in the low frequency range. On the other hand, for the vibration in the middle to high frequency range, the pressure fluctuation generated in the vibration chamber by applying air pressure fluctuation to the working air chamber at a cycle corresponding to the vibration to be damped is generated in the second orifice passage. By controlling the pressure in the pressure receiving chamber by exerting the pressure on the pressure receiving chamber through the third orifice passage, an active vibration damping effect can be exhibited.
[0058]
Also, in this case, the third orifice passage can be maintained in a substantially closed state during the vibration isolation operation of the medium-frequency vibration by making good use of the amplitude difference between the medium-frequency vibration and the high-frequency vibration. At the time of the vibration damping operation, the fluid flow through the second orifice passage is advantageously generated, and the transmission efficiency of the pressure fluctuation is improved based on the resonance action of the fluid caused to flow through the second orifice passage. And the transmission of higher-order components generated in the vibration chamber to the pressure receiving chamber can be effectively prevented, and the vibration-proof performance greatly reduced due to the transmission of such higher-order components. Can also be avoided.
[Brief description of the drawings]
FIG. 1 is an explanatory longitudinal sectional view showing an automobile engine mount as one embodiment of the present invention.
FIG. 2 is an explanatory view showing an enlarged main part of the engine mount shown in FIG. 1;
FIG. 3 is an explanatory view showing another operation state of the main part shown in FIG. 2;
FIG. 4 is a graph for explaining an operation of a movable plate in the engine mount shown in FIG. 1;
[Explanation of symbols]
10 Engine mount
12 First mounting bracket
14 Second mounting bracket
16 Rubber elastic body
32 diaphragm
38 Equilibrium chamber
44 Rubber elastic plate
50 working air chamber
52 Partition member
58 Pressure receiving chamber
60 Excitation chamber
74 First orifice passage
76 Second orifice passage
84 movable plate
86 Holding groove
88 cushion rubber
90 Third orifice passage

Claims (7)

相互に離隔配置されて、防振連結すべき部材にそれぞれ取り付けられる第一の取付部材および第二の取付部材と、
それら第一の取付部材と第二の取付部材を弾性連結する本体ゴム弾性体と、
該本体ゴム弾性体で壁部の一部が構成されて振動入力時に圧力変動が生ぜしめられる、非圧縮性流体が封入された受圧室と、
可撓性膜で壁部の一部が構成されて容積変化が許容される、非圧縮性流体が封入された平衡室と、
前記受圧室と前記平衡室を相互に連通する第一のオリフィス通路と、
前記受圧室に対して隔壁を挟んで反対側に形成された、壁部の一部が弾性加振板で構成されて非圧縮性流体が封入された加振室と、
該加振室に対して前記弾性加振板を挟んで反対側に形成された、外部から空気圧変動を及ぼすことにより該弾性加振板に加振力を作用せしめて該加振室に圧力変動を生ぜしめる作用空気室と、
前記第一のオリフィス通路よりも高周波数域にチューニングされて前記受圧室と前記加振室を相互に連通する第二のオリフィス通路と、
前記隔壁に透孔を設けて該透孔の周縁部分において内周側に開口する環状の保持溝を形成すると共に、該透孔に硬質の可動板を配して該可動板の外周縁部を該保持溝に入り込ませて所定のガタをもって把持せしめることにより、該可動板を該保持溝内で板厚方向に該ガタ分だけ変位可能とし、該可動板が板厚方向に変位して該保持溝の内面に当接することによって該透孔が実質的に閉塞せしめられるようにすると共に、該保持溝において該可動板の外周縁部を回り込んで前記加振室と前記受圧室を相互に連通する第三のオリフィス通路を、前記第二のオリフィス通路よりも更に高いチューニング周波数をもって形成せしめ得る可動板機構とを、
有することを特徴とする流体封入式防振装置。
A first mounting member and a second mounting member which are arranged apart from each other and are respectively mounted on members to be vibration-isolated and connected,
A body rubber elastic body that elastically connects the first mounting member and the second mounting member,
A pressure receiving chamber filled with an incompressible fluid, in which a part of a wall portion is formed of the main rubber elastic body and pressure fluctuation is generated at the time of vibration input,
An equilibrium chamber in which an incompressible fluid is sealed, in which a part of the wall is made of a flexible membrane and a volume change is allowed,
A first orifice passage communicating the pressure receiving chamber and the equilibrium chamber with each other,
A vibration chamber in which a part of a wall portion is formed of an elastic vibration plate and is filled with an incompressible fluid,
The vibrating force is applied to the elastic vibrating plate by applying air pressure fluctuation from the outside formed on the opposite side of the elastic vibrating plate with respect to the elastic vibrating plate. And a working air chamber that produces
A second orifice passage tuned to a higher frequency range than the first orifice passage and interconnecting the pressure receiving chamber and the vibration chamber;
A through hole is provided in the partition wall to form an annular holding groove that opens to the inner peripheral side at a peripheral portion of the through hole, and a hard movable plate is disposed in the through hole to form an outer peripheral portion of the movable plate. The movable plate can be displaced in the thickness direction by the amount of play in the holding groove by being inserted into the holding groove and gripped with a predetermined play. The through hole is substantially closed by contacting the inner surface of the groove, and the vibration chamber and the pressure receiving chamber communicate with each other by wrapping around the outer peripheral edge of the movable plate in the holding groove. A movable plate mechanism capable of forming a third orifice passage having a higher tuning frequency than the second orifice passage.
A fluid filled type vibration damping device characterized by having.
前記隔壁に形成された前記保持溝の内面と、前記可動板が変位した際に該保持溝の内面に当接せしめられる該可動板の外周縁部との、少なくとも一方に緩衝ゴム層を設けた請求項1に記載の流体封入式防振装置。A buffer rubber layer is provided on at least one of an inner surface of the holding groove formed in the partition and an outer peripheral edge of the movable plate which is brought into contact with the inner surface of the holding groove when the movable plate is displaced. The fluid filled type vibration damping device according to claim 1. 前記可動板の外周縁部を、略円弧形断面の外周面形状で周方向に延びるように形成すると共に、前記保持溝を該可動板の外周面よりも一回り大きな略円弧状断面の内周面形状で周方向に延びるように形成することにより、前記第三のオリフィス通路が、それら可動板の外周面と保持溝の内周面の間に略円弧形の流路形態をもって形成されるようにした請求項1又は2に記載の流体封入式防振装置。The outer peripheral edge of the movable plate is formed so as to extend in the circumferential direction with an outer peripheral shape of a substantially arc-shaped cross section, and the holding groove is formed in an approximately arc-shaped cross section slightly larger than the outer peripheral surface of the movable plate. The third orifice passage is formed to have a substantially arc-shaped flow path between the outer peripheral surface of the movable plate and the inner peripheral surface of the holding groove by being formed so as to extend in the circumferential direction with the peripheral surface shape. The fluid filled type vibration damping device according to claim 1 or 2, wherein 前記第二のオリフィス通路のチューニング周波数域で前記作用空気室に空気圧変動を及ぼして前記加振室に圧力変動を生ぜしめた際に、前記可動板が板厚方向の両側で前記保持溝の内面にそれぞれ当接せしめられるようにする一方、前記第三のオリフィス通路のチューニング周波数域で前記作用空気室に空気圧変動を及ぼして前記加振室に圧力変動を生ぜしめた際に、該可動板の板厚方向の振幅が該保持溝に対する該可動板のガタよりも小さくされて、該可動板の板厚方向での該保持溝への当接が抑えられて、該保持溝に前記第三のオリフィス通路が実質的に常時形成されるようにした請求項1乃至3の何れかに記載の流体封入式防振装置。When air pressure fluctuations are applied to the working air chamber in the tuning frequency range of the second orifice passage to cause pressure fluctuations in the vibration chamber, the movable plate moves on the inner surface of the holding groove on both sides in the plate thickness direction. When the air pressure fluctuates in the working air chamber in the tuning frequency range of the third orifice passage to cause pressure fluctuation in the vibrating chamber, the movable plate The amplitude in the plate thickness direction is made smaller than the play of the movable plate with respect to the holding groove, and the contact of the movable plate with the holding groove in the plate thickness direction is suppressed. The fluid filled type vibration damping device according to any one of claims 1 to 3, wherein the orifice passage is formed substantially constantly. 前記第一のオリフィス通路の長さ方向の中間部分に、該第一のオリフィス通路を前記加振室に連通せしめる接続窓が形成されていることにより、該第一のオリフィス通路の一部を利用して前記第二のオリフィス通路が形成されている請求項1乃至4の何れかに記載の流体封入式防振装置。A connection window for connecting the first orifice passage to the vibrating chamber is formed in a longitudinally intermediate portion of the first orifice passage, so that a part of the first orifice passage is used. The fluid filled type vibration damping device according to any one of claims 1 to 4, wherein the second orifice passage is formed. 前記第一の取付部材と前記第二の取付部材の一方をパワーユニット側部材に取り付けると共に、他方をボデー側部材に取り付けることにより、車両のパワーユニットをボデーに対して防振支持せしめるエンジンマウントを構成せしめて、前記第一のオリフィス通路をエンジンシェイクに相当する低周波数域にチューニングすると共に、前記第二のオリフィス通路をアイドリング振動に相当する中周波数域にチューニングし、更に前記第三のオリフィス通路を走行こもり音に相当する高周波数域にチューニングした請求項1乃至5の何れかに記載の流体封入式防振装置。By attaching one of the first attachment member and the second attachment member to the power unit side member and attaching the other to the body side member, an engine mount for supporting the power unit of the vehicle against vibration with respect to the body is constituted. The first orifice passage is tuned to a low frequency range corresponding to an engine shake, the second orifice passage is tuned to a medium frequency range corresponding to idling vibration, and the vehicle travels through the third orifice passage. The fluid filled type vibration damping device according to any one of claims 1 to 5, wherein the vibration is tuned to a high frequency range corresponding to a muffled sound. 前記第二の取付部材を筒体形状とし、該第二の取付部材の一方の開口部側に前記第一の取付部材を離隔配置せしめて、それら第一の取付部材と第二の取付部材を前記本体ゴム弾性体で連結することにより該第二の取付部材の一方の開口部を流体密に覆蓋すると共に、該第二の取付部材の軸方向他方の開口部を前記可撓性膜で流体密に覆蓋する一方、該第二の取付部材の軸方向で互いに重ね合わせた第一の仕切部材と第二の仕切部材を該第二の取付部材によって固定的に支持せしめて、該第一の仕切部材と前記本体ゴム弾性体の間に前記受圧室を形成すると共に、該第二の仕切部材と前記可撓性膜の間に前記平衡室を形成し、更に該第二の仕切部材の該第一の仕切部材に対する重ね合わせ面側に設けた凹所を前記弾性加振板で流体密に覆蓋することにより前記作用空気室を形成すると共に、該弾性加振板と該第一の仕切部材の間に前記加振室を形成した請求項1乃至5の何れかに記載の流体封入式防振装置。The second mounting member has a cylindrical shape, and the first mounting member is spaced apart from one opening side of the second mounting member, and the first mounting member and the second mounting member are separated from each other. By connecting with the main rubber elastic body, one opening of the second mounting member is covered in a fluid-tight manner, and the other opening in the axial direction of the second mounting member is fluidized by the flexible film. While the lid is tightly covered, the first partition member and the second partition member which are overlapped with each other in the axial direction of the second mounting member are fixedly supported by the second mounting member, and The pressure receiving chamber is formed between the partition member and the main rubber elastic body, and the equilibrium chamber is formed between the second partition member and the flexible membrane. The recess provided on the superposed surface side with respect to the first partition member is covered with the elastic vibration plate in a fluid-tight manner. 6. The fluid-filled vibration damping device according to claim 1, wherein the working air chamber is formed by the above and the vibration chamber is formed between the elastic vibration plate and the first partition member. .
JP2002232357A 2002-08-09 2002-08-09 Fluid-sealed type vibration damper Withdrawn JP2004069005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002232357A JP2004069005A (en) 2002-08-09 2002-08-09 Fluid-sealed type vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002232357A JP2004069005A (en) 2002-08-09 2002-08-09 Fluid-sealed type vibration damper

Publications (1)

Publication Number Publication Date
JP2004069005A true JP2004069005A (en) 2004-03-04

Family

ID=32017793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002232357A Withdrawn JP2004069005A (en) 2002-08-09 2002-08-09 Fluid-sealed type vibration damper

Country Status (1)

Country Link
JP (1) JP2004069005A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009186A1 (en) * 2004-07-23 2006-01-26 Bridgestone Corporation Vibration control device
JP2009275910A (en) * 2008-04-16 2009-11-26 Tokai Rubber Ind Ltd Fluid-filled type vibration control device
JP2010169121A (en) * 2009-01-20 2010-08-05 Tokai Rubber Ind Ltd Fluid filled vibration control device
JP2013002456A (en) * 2011-06-13 2013-01-07 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
US8573570B2 (en) 2009-02-23 2013-11-05 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
US8882090B2 (en) 2011-12-14 2014-11-11 Tokai Rubber Industries, Ltd. Fluid-filled type vibration damping device
WO2015041033A1 (en) * 2013-09-20 2015-03-26 株式会社ブリヂストン Vibration-damping device
US9707837B2 (en) 2015-02-13 2017-07-18 Hyundai Motor Company Hydraulic mount
JP2021067295A (en) * 2019-10-18 2021-04-30 住友理工株式会社 Fluid-sealed type vibration isolation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009186A1 (en) * 2004-07-23 2006-01-26 Bridgestone Corporation Vibration control device
JP2009275910A (en) * 2008-04-16 2009-11-26 Tokai Rubber Ind Ltd Fluid-filled type vibration control device
JP2010169121A (en) * 2009-01-20 2010-08-05 Tokai Rubber Ind Ltd Fluid filled vibration control device
US8573570B2 (en) 2009-02-23 2013-11-05 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
JP2013002456A (en) * 2011-06-13 2013-01-07 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
US8882090B2 (en) 2011-12-14 2014-11-11 Tokai Rubber Industries, Ltd. Fluid-filled type vibration damping device
WO2015041033A1 (en) * 2013-09-20 2015-03-26 株式会社ブリヂストン Vibration-damping device
JP2015059654A (en) * 2013-09-20 2015-03-30 株式会社ブリヂストン Vibration-proof device
US9707837B2 (en) 2015-02-13 2017-07-18 Hyundai Motor Company Hydraulic mount
JP2021067295A (en) * 2019-10-18 2021-04-30 住友理工株式会社 Fluid-sealed type vibration isolation device
JP7269146B2 (en) 2019-10-18 2023-05-08 住友理工株式会社 Fluid-filled anti-vibration device

Similar Documents

Publication Publication Date Title
US7210674B2 (en) Fluid-filled vibration damping device
JP2843088B2 (en) Fluid-filled mounting device
US6491290B2 (en) Fluid-filled vibration damping device having pressure receiving chamber whose spring stiffness is controllable
JP4381333B2 (en) Fluid filled vibration isolator
JPH04277338A (en) Liquid-filled type mount device
JP4075054B2 (en) Fluid-filled engine mount for vehicles
US6902156B2 (en) Pneumatically operated active vibration damping device
US6598865B1 (en) Fluid-filled vibration damping device
JP3715230B2 (en) Active fluid filled vibration isolator
JP2010031989A (en) Fluid-sealed vibration control device
JP2004069005A (en) Fluid-sealed type vibration damper
US20050127585A1 (en) Series-type engine mount and method of manufacturing series-type engine mount
JP3738717B2 (en) Pneumatic active vibration isolator and vibration isolator using the same
JP2011256930A (en) Fluid-sealed anti-vibration device
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP2005113954A (en) Vibration damping device
JP2010031988A (en) Fluid-sealed vibration control device
JP2008121811A (en) Fluid-sealed vibration isolator
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP3407616B2 (en) Fluid filled type vibration damping device
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP2884804B2 (en) Fluid-filled mounting device
JP2004218753A (en) Fluid sealing type vibration control device
JP3780835B2 (en) Active fluid filled vibration isolator
JP4210851B2 (en) Fluid-filled engine mount for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060906