JP2015059654A - Vibration-proof device - Google Patents

Vibration-proof device Download PDF

Info

Publication number
JP2015059654A
JP2015059654A JP2013195973A JP2013195973A JP2015059654A JP 2015059654 A JP2015059654 A JP 2015059654A JP 2013195973 A JP2013195973 A JP 2013195973A JP 2013195973 A JP2013195973 A JP 2013195973A JP 2015059654 A JP2015059654 A JP 2015059654A
Authority
JP
Japan
Prior art keywords
chamber
vibration
liquid chamber
restriction passage
main liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195973A
Other languages
Japanese (ja)
Other versions
JP5723944B2 (en
Inventor
小島 宏
Hiroshi Kojima
宏 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2013195973A priority Critical patent/JP5723944B2/en
Priority to PCT/JP2014/072894 priority patent/WO2015041033A1/en
Publication of JP2015059654A publication Critical patent/JP2015059654A/en
Application granted granted Critical
Publication of JP5723944B2 publication Critical patent/JP5723944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/18Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper characterised by the location or the shape of the equilibration chamber, e.g. the equilibration chamber, surrounding the plastics spring or being annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions

Abstract

PROBLEM TO BE SOLVED: To exert attenuation characteristic to vibration of wide frequency.SOLUTION: A vibration-proof device is provided with a cylindrical first mounting member 11 and a second mounting member 12, an elastic body 13 connecting both mounting members, a partitioning member 17 fitted in the first mounting member 11 and defining a main liquid chamber 14 applying the elastic body 13 as a part of a wall surface, and a sub-liquid chamber 15 and an intermediate chamber 16 disposed independently from the main liquid chamber 14, and an elastic film 19 configuring a part of a wall surface of the intermediate chamber 16. The partitioning member 17 is provided with a first limiting passage 31 communicating the main liquid chamber 14 and the sub-liquid chamber 15, a second limiting passage 33 extending from the main liquid chamber 14 toward the intermediate chamber 16, and having circulation resistance lower than that of the first limiting passage 31, and a movable body 35 disposed between the second limiting passage 33 and the intermediate chamber 16. An adjustment chamber 24 of which the inside can be decompressed or compressed with respect to a standard pressure, and is closably opened to the outside, is disposed in adjacent to the intermediate chamber 16 through the elastic film 19.

Description

本発明は、例えば自動車や産業機械等に適用され、エンジン等の振動発生部の振動を吸収および減衰する防振装置に関する。   The present invention relates to a vibration isolator that is applied to, for example, automobiles and industrial machines and absorbs and attenuates vibrations of a vibration generating unit such as an engine.

従来から、例えば下記特許文献1記載の防振装置が知られている。この防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、第1取付け部材内に嵌合され、弾性体を壁面の一部とする主液室、および主液室から独立して設けられた副液室を形成する仕切り部材と、を備えている。仕切り部材には、主液室と副液室とを連通する制限通路が設けられていて、この防振装置に、制限通路の共振周波数と同等の周波数の振動が入力されたときに、その振動を吸収および減衰する。   Conventionally, for example, a vibration isolator described in Patent Document 1 below is known. The vibration isolator includes a cylindrical first mounting member connected to one of the vibration generating unit and the vibration receiving unit, a second mounting member connected to the other, and an elastic connecting the both mounting members. A body, a main liquid chamber fitted into the first mounting member and having an elastic body as a part of the wall surface, and a partition member forming a sub liquid chamber provided independently of the main liquid chamber. Yes. The partition member is provided with a restriction passage that communicates the main liquid chamber and the sub liquid chamber. When vibration having a frequency equivalent to the resonance frequency of the restriction passage is input to the vibration isolator, the vibration is reduced. Absorbs and attenuates.

特開2012−172832号公報JP2012-172832A

しかしながら、前記従来の防振装置では、幅広い周波数の振動に対して減衰特性を発揮させることについて改善の余地がある。   However, the conventional vibration isolator has room for improvement in terms of exhibiting damping characteristics with respect to vibrations of a wide range of frequencies.

本発明は、前述した事情に鑑みてなされたものであって、幅広い周波数の振動に対して減衰特性を発揮させることができる防振装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a vibration isolator capable of exhibiting damping characteristics with respect to vibrations of a wide range of frequencies.

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、前記第1取付け部材内に嵌合され、前記弾性体を壁面の一部とする主液室、並びに前記主液室から独立して設けられた副液室および中間室を形成する仕切り部材と、前記中間室の壁面の一部を構成する弾性膜と、を備え、前記仕切り部材には、前記主液室と前記副液室とを連通する第1制限通路と、前記主液室から前記中間室に向けて延び、流通抵抗が、前記第1制限通路の流通抵抗よりも低い第2制限通路と、前記第2制限通路と前記中間室との間に配置された可動体と、が設けられ、前記中間室には、内部が標準圧に対して減圧もしくは加圧可能とされ、または内部が外部に対して閉塞可能に開放された調整室が、前記弾性膜を間に挟んで隣接していることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The vibration isolator according to the present invention includes a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both of these attachment members. An elastic body to be connected, a main liquid chamber fitted into the first mounting member and having the elastic body as a part of a wall surface, and a sub liquid chamber and an intermediate chamber provided independently from the main liquid chamber A partition member to be formed, and an elastic film constituting a part of the wall surface of the intermediate chamber, the partition member having a first restriction passage communicating the main liquid chamber and the sub liquid chamber, A second restriction passage extending from the main liquid chamber toward the intermediate chamber and having a flow resistance lower than the flow resistance of the first restriction passage, and a movable member disposed between the second restriction passage and the intermediate chamber. A body, and the intermediate chamber can be depressurized or pressurized with respect to a standard pressure. Is a, or inside the adjusting chamber which is closable open to the outside, characterized in that adjacent sandwiched between the elastic membrane.

この発明では、調整室内を標準圧とした標準状態の防振装置に、または調整室内を外部に開放した標準状態の防振装置に振動が入力されたときに、主液室内の液体が、第1制限通路または第2制限通路を流通しようとする。ここで第2制限通路の流通抵抗が、第1制限通路の流通抵抗よりも低いので、前述の液体を、第2制限通路に優先的に流通させることができる。したがって、この防振装置では、第2制限通路の共振周波数と同等の振動が入力されたときに第2制限通路で共振を生じさせ、この振動を吸収および減衰することができる。なお、液体が第2制限通路を流通するときには、液圧が可動体に及ぼされ、可動体が、中間室を介して弾性膜を変形させながら変位、変形する。
一方、防振装置を、調整室内を標準圧に対して減圧もしくは加圧した調整状態とし、または調整室内を外部に対して閉塞した調整状態とすると、この防振装置が標準状態である場合に比べて、弾性膜を拘束して弾性膜の変形抵抗を高めることができる。その結果、弾性膜に、中間室を介して可動体の変位、変形を規制させることが可能になり、液体を、第2制限通路に流通させ難くして第1制限通路に流通させ易くすることができる。したがって、この防振装置に振動が入力されたときに、主液室内の液体を、第2制限通路ではなく第1制限通路に優先的に流通させることができる。これにより、第1制限通路の共振周波数と同等の振動が入力されたときに第1制限通路で共振を生じさせ、この振動を吸収および減衰することができる。
この防振装置によれば、標準状態と調整状態とを切り替えることで、周波数が異なる振動をそれぞれ吸収および減衰することが可能になり、幅広い周波数の振動に対して減衰特性を発揮させることができる。
また標準状態の防振装置では、主液室内の液体が、可動体を変位、変形させながら第2制限通路を流通するので、主液室内の液圧上昇を、可動体の変位、変形により吸収して優れた減衰特性を発揮させ易くすることが可能になり、例えばこの防振装置の動ばね定数の上昇を効果的に抑えること等ができる。
さらに、標準状態の防振装置では、第2制限通路を流通する液体が、可動体を変位、変形させるとともに弾性膜を変形させることから、第2制限通路の共振周波数を、第2制限通路の流路長や流路断面積のみならず、可動体の変位、変形の態様や弾性膜の変形の態様などに基づいて調整することができる。したがって、例えば可動体や弾性膜の曲げ剛性を変更すること等により、第2制限通路の共振周波数を簡便かつ多様に調整することが可能になり、この防振装置の適用範囲を多岐にわたらせ易くすることができる。
According to the present invention, when vibration is input to the vibration isolator in the standard state where the adjustment chamber is set to the standard pressure or to the vibration isolator in the standard state where the adjustment chamber is opened to the outside, the liquid in the main liquid chamber It tries to circulate through the first restricted passage or the second restricted passage. Here, since the flow resistance of the second restriction passage is lower than the flow resistance of the first restriction passage, the liquid can be preferentially circulated through the second restriction passage. Therefore, in this vibration isolator, when vibration equivalent to the resonance frequency of the second restriction passage is input, resonance is generated in the second restriction passage, and this vibration can be absorbed and attenuated. When the liquid flows through the second restriction passage, the hydraulic pressure is exerted on the movable body, and the movable body is displaced and deformed while deforming the elastic film via the intermediate chamber.
On the other hand, when the vibration isolator is in an adjustment state in which the adjustment chamber is depressurized or pressurized with respect to the standard pressure, or in an adjustment state in which the adjustment chamber is closed to the outside, the vibration isolation device is in the standard state. In comparison, the elastic film can be restrained to increase the deformation resistance of the elastic film. As a result, it becomes possible to allow the elastic film to regulate the displacement and deformation of the movable body via the intermediate chamber, making it difficult for the liquid to flow through the second restriction passage and to flow through the first restriction passage. Can do. Therefore, when vibration is input to the vibration isolator, the liquid in the main liquid chamber can be preferentially circulated through the first restriction passage instead of the second restriction passage. Thereby, when vibration equivalent to the resonance frequency of the first restriction passage is input, resonance is generated in the first restriction passage, and this vibration can be absorbed and attenuated.
According to this vibration isolator, by switching between the standard state and the adjustment state, vibrations having different frequencies can be absorbed and attenuated, respectively, and a damping characteristic can be exhibited with respect to vibrations of a wide range of frequencies. .
Further, in the vibration isolator in the standard state, the liquid in the main liquid chamber flows through the second restricting passage while displacing and deforming the movable body. Therefore, the liquid pressure increase in the main liquid chamber is absorbed by the displacement and deformation of the movable body. Thus, it is possible to easily exhibit excellent damping characteristics. For example, an increase in the dynamic spring constant of the vibration isolator can be effectively suppressed.
Further, in the vibration isolator in the standard state, the liquid flowing through the second restriction passage displaces and deforms the movable body and deforms the elastic film. Therefore, the resonance frequency of the second restriction passage is set to the second restriction passage. The adjustment can be made based not only on the channel length and the channel cross-sectional area, but also on the displacement and deformation modes of the movable body and the deformation mode of the elastic membrane. Therefore, for example, by changing the bending rigidity of the movable body or the elastic film, the resonance frequency of the second restriction passage can be adjusted easily and in various ways, and the range of application of the vibration isolator can be easily varied. can do.

また、前記仕切り部材には、前記第2制限通路と前記中間室とを連通する収容室が設けられ、前記可動体は、前記収容室に、前記第1取付け部材の軸方向に変位自在に収容されていてもよい。   The partition member is provided with a storage chamber that communicates the second restriction passage and the intermediate chamber, and the movable body is stored in the storage chamber so as to be displaceable in the axial direction of the first mounting member. May be.

この場合、標準状態の防振装置に振動が入力されると、液体が、可動体を、収容室内で前記軸方向に変位させながら、主液室と中間室との間で第2制限通路および収容室を通して流通し、弾性膜を変形させる。
この防振装置によれば、可動体が、収容室に、前記軸方向に変位自在に収容されているので、可動体の変位の態様を、この防振装置に入力される振動の周波数に応じて高精度に調整することが可能になり、第2制限通路の共振周波数を一層簡便かつ多様に調整することができる。
In this case, when vibration is input to the vibration isolator in the standard state, the liquid displaces the movable body in the axial direction in the storage chamber, and the second restriction passage and the main liquid chamber and the intermediate chamber It circulates through the storage chamber and deforms the elastic membrane.
According to this vibration isolator, since the movable body is accommodated in the accommodating chamber so as to be displaceable in the axial direction, the displacement mode of the movable body is determined according to the frequency of vibration input to the vibration isolator. Therefore, the resonance frequency of the second restriction passage can be adjusted more easily and in a variety of ways.

また、前記副液室の壁面の一部を構成するダイヤフラムを備え、前記ダイヤフラムの変形抵抗は、前記弾性膜の変形抵抗よりも低くてもよい。   The diaphragm may constitute a part of the wall surface of the sub liquid chamber, and the deformation resistance of the diaphragm may be lower than the deformation resistance of the elastic film.

この場合、この防振装置が振動発生部と振動受部との間に介装され、この防振装置に初期荷重が加えられると、両取り付け部材が、弾性体を弾性変形させながら相対的に変位し、主液室の液圧が変動する。ここで、ダイヤフラムの変形抵抗が、弾性膜の変形抵抗よりも低いので、主液室の液圧の変動は、中間室ではなく副液室に及ぼされ、弾性膜ではなくダイヤフラムが変形して弾性膜の変形が抑えられる。
この防振装置によれば、この防振装置に初期荷重が加えられるときに弾性膜が変形することが抑えられるので、初期荷重を起因として弾性膜の変形の態様に影響が生じるのを抑制することが可能になり、減衰特性を効果的に発揮させ易くすることができる。
In this case, the vibration isolator is interposed between the vibration generator and the vibration receiver, and when an initial load is applied to the vibration isolator, the two attachment members relatively move while elastically deforming the elastic body. Displacement causes the fluid pressure in the main fluid chamber to fluctuate. Here, since the deformation resistance of the diaphragm is lower than the deformation resistance of the elastic film, the fluctuation of the hydraulic pressure in the main liquid chamber is applied not to the intermediate chamber but to the sub liquid chamber, and not the elastic film but the diaphragm is deformed to be elastic. Deformation of the film is suppressed.
According to this vibration isolator, since the elastic film is suppressed from being deformed when an initial load is applied to the vibration isolator, it is possible to suppress the influence of the deformation mode of the elastic film due to the initial load. Therefore, it is possible to easily exhibit the attenuation characteristics effectively.

本発明に係る防振装置によれば、幅広い周波数の振動に対して減衰特性を発揮させることができる。   According to the vibration isolator of the present invention, it is possible to exhibit a damping characteristic with respect to a wide range of vibrations.

本発明の一実施形態に係る防振装置の標準状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the standard state of the vibration isolator which concerns on one Embodiment of this invention. 図1に示す防振装置の調整状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the adjustment state of the vibration isolator shown in FIG. 検証試験の結果を示すグラフである。It is a graph which shows the result of a verification test.

以下、図面を参照し、本発明の一実施形態に係る防振装置を説明する。
図1に示すように、防振装置10は、振動発生部および振動受部のうちのいずれか一方に連結される筒状の第1取付け部材11、および他方に連結される第2取付け部材12と、第1取付け部材11および第2取付け部材12を弾性的に連結する弾性体13と、第1取付け部材11内に嵌合され、弾性体13を壁面の一部とする主液室14、並びに主液室14から独立して設けられた副液室15および中間室16を形成する仕切り部材17と、副液室15の壁面の一部を構成するダイヤフラム18と、中間室16の壁面の一部を構成する弾性膜19と、を備えている。
Hereinafter, a vibration isolator according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the vibration isolator 10 includes a cylindrical first mounting member 11 connected to one of a vibration generating unit and a vibration receiving unit, and a second mounting member 12 connected to the other. An elastic body 13 that elastically connects the first mounting member 11 and the second mounting member 12, and a main liquid chamber 14 that is fitted into the first mounting member 11 and has the elastic body 13 as a part of the wall surface, A partition member 17 that forms the sub-liquid chamber 15 and the intermediate chamber 16 provided independently of the main liquid chamber 14, a diaphragm 18 that forms part of the wall surface of the sub-liquid chamber 15, and a wall surface of the intermediate chamber 16. And an elastic film 19 constituting a part.

この液体封入型の防振装置10が例えば自動車に装着された場合、第2取付け部材12が振動発生部としてのエンジンに連結される一方、第1取付け部材11が振動受部としての車体に連結されることにより、エンジンの振動が車体に伝達することが抑えられる。この防振装置10では、装着時の支持荷重に基づいて主液室14に正圧が作用する。   When this liquid-filled vibration isolator 10 is mounted on, for example, an automobile, the second mounting member 12 is connected to an engine as a vibration generating unit, while the first mounting member 11 is connected to a vehicle body as a vibration receiving unit. As a result, the vibration of the engine is prevented from being transmitted to the vehicle body. In this vibration isolator 10, positive pressure acts on the main liquid chamber 14 based on the support load at the time of mounting.

第1取付け部材11は円筒状、図示の例では多段円筒状に形成されている。以下では、第1取付け部材11の軸線Oに沿う方向を軸方向といい、前記軸線Oに直交する方向を径方向といい、前記軸線O回りに周回する方向を周方向という。   The first mounting member 11 is formed in a cylindrical shape, in the illustrated example, in a multistage cylindrical shape. Hereinafter, a direction along the axis O of the first mounting member 11 is referred to as an axial direction, a direction orthogonal to the axis O is referred to as a radial direction, and a direction around the axis O is referred to as a circumferential direction.

第2取付け部材12は、第1取付け部材11において軸方向に沿った一方側(以下、「一方側」という)に位置する一端部に配設されている。第2取付け部材12は、前記軸線Oと同軸に配置された柱状に形成されている。
弾性体13は、第1取付け部材11の一端部の内周面および第2取付け部材12の外周面に各別に接着されていて、第1取付け部材11の一端部を閉塞している。
The second mounting member 12 is disposed at one end of the first mounting member 11 located on one side (hereinafter referred to as “one side”) along the axial direction. The second mounting member 12 is formed in a columnar shape arranged coaxially with the axis O.
The elastic body 13 is separately bonded to the inner peripheral surface of one end of the first mounting member 11 and the outer peripheral surface of the second mounting member 12, and closes one end of the first mounting member 11.

仕切り部材17は、本体部材20と、流路部材21と、を備えている。本体部材20は、前記軸線Oと同軸に配置され、第1取付け部材11において、一端部よりも軸方向に沿った他方側(以下、「他方側」という)に位置する部分内に液密に嵌合されている。本体部材20において他方側に位置する端部には、径方向の外側に向けて突出する環状のフランジ部20aが設けられている。流路部材21は、前記軸線Oと同軸に配置され、本体部材20に一方側から組み付けられている。   The partition member 17 includes a main body member 20 and a flow path member 21. The main body member 20 is disposed coaxially with the axis O, and is liquid-tight in a portion of the first mounting member 11 that is located on the other side (hereinafter referred to as “the other side”) along the axial direction from the one end. It is mated. An end of the main body member 20 located on the other side is provided with an annular flange portion 20a that protrudes outward in the radial direction. The flow path member 21 is disposed coaxially with the axis O and is assembled to the main body member 20 from one side.

主液室14は、第1取付け部材11内において、弾性体13と仕切り部材17との間に位置する部分に形成されている。主液室14の液圧は、振動の入力時に、弾性体13が変形してこの主液室14の内容積が変化することで変動する。
副液室15は、主液室14から他方側に離間していて、前記軸線Oと同軸の環状に形成されている。本実施形態では、副液室15は、本体部材20に形成され他方側に向けて開口する液室凹部20bが、前記ダイヤフラム18により閉塞されてなり、ダイヤフラム18が変形することにより拡縮する。
The main liquid chamber 14 is formed in a portion located between the elastic body 13 and the partition member 17 in the first attachment member 11. The hydraulic pressure in the main liquid chamber 14 varies when the elastic body 13 is deformed and the internal volume of the main liquid chamber 14 changes when vibration is input.
The sub liquid chamber 15 is separated from the main liquid chamber 14 on the other side, and is formed in an annular shape coaxial with the axis O. In the present embodiment, the auxiliary liquid chamber 15 is expanded and contracted by the liquid chamber recess 20 b formed in the main body member 20 opening toward the other side being closed by the diaphragm 18, and the diaphragm 18 being deformed.

ダイヤフラム18は、弾性変形可能な膜状に形成されている。ダイヤフラム18は、前記軸線Oと同軸の環状に形成されていて、液室凹部20bを他方側から閉塞している。ダイヤフラム18の内周縁部および外周縁部は、本体部材20に固定されている。ダイヤフラム18の内周縁部は、本体部材20において液室凹部20bよりも径方向の内側に位置する部分に加硫接着されている。ダイヤフラム18の外周縁部は、本体部材20のフランジ部20aに固定されていて、図示の例では、フランジ部20aと、このフランジ部20aに他方側から重ね合わされた固定リング22と、の間に挟持されている。   The diaphragm 18 is formed in an elastically deformable film shape. The diaphragm 18 is formed in an annular shape coaxial with the axis O, and closes the liquid chamber recess 20b from the other side. The inner peripheral edge and the outer peripheral edge of the diaphragm 18 are fixed to the main body member 20. The inner peripheral edge of the diaphragm 18 is vulcanized and bonded to a portion of the main body member 20 that is located on the inner side in the radial direction than the liquid chamber recess 20b. The outer peripheral edge of the diaphragm 18 is fixed to the flange portion 20a of the main body member 20, and in the illustrated example, between the flange portion 20a and the fixing ring 22 superimposed on the flange portion 20a from the other side. It is pinched.

中間室16は、主液室14から他方側に離間していて、前記軸線Oと同軸に配置されている。本実施形態では、中間室16は、仕切り部材17内に形成されていて、本体部材20内に形成された内空間23が、前記弾性膜19により仕切られてなる。中間室16は、弾性膜19が変形することにより拡縮する。   The intermediate chamber 16 is separated from the main liquid chamber 14 on the other side, and is disposed coaxially with the axis O. In the present embodiment, the intermediate chamber 16 is formed in the partition member 17, and the inner space 23 formed in the main body member 20 is partitioned by the elastic film 19. The intermediate chamber 16 expands and contracts when the elastic film 19 is deformed.

内空間23は、本体部材20において液室凹部20bよりも径方向の内側に位置する部分に形成されている。弾性膜19は、内空間23の軸方向の中央部に配置されていて、内空間23を軸方向に仕切っている。弾性膜19の外周縁部は、内空間23の内周面に、周方向の全周にわたって液密に固定されている。そして内空間23のうち、弾性膜19よりも一方側に位置する部分が中間室16とされ、他方側に位置する部分は、内部に空気(流体)が収容された調整室24とされている。   The inner space 23 is formed in a portion of the main body member 20 that is located on the inner side in the radial direction than the liquid chamber recess 20b. The elastic film 19 is disposed in the central portion of the inner space 23 in the axial direction, and partitions the inner space 23 in the axial direction. The outer peripheral edge of the elastic film 19 is liquid-tightly fixed to the inner peripheral surface of the inner space 23 over the entire circumference in the circumferential direction. Of the inner space 23, a portion located on one side of the elastic film 19 is the intermediate chamber 16, and a portion located on the other side is the adjustment chamber 24 in which air (fluid) is accommodated. .

調整室24は、中間室16に、弾性膜19を間に挟んで隣接している。調整室24は、主液室14から他方側に離間していて、仕切り部材17内に形成されるとともに前記軸線Oと同軸に配置されている。調整室24は、一方側から他方側に向かうに従い漸次、縮径する逆円錐台状に形成されている。調整室24の周壁面と底壁面とを接続する部分は、他方側に向けて凹となる凹曲面状に形成されている。なお調整室24の容積は、主液室14および副液室15の容積よりも小さく、主液室14の容積の1/5以下であることが好ましい。例えば、本実施形態では、調整室24の容積は主液室14の容積の1/10程度となっている。   The adjustment chamber 24 is adjacent to the intermediate chamber 16 with the elastic film 19 interposed therebetween. The adjustment chamber 24 is separated from the main liquid chamber 14 on the other side, is formed in the partition member 17, and is disposed coaxially with the axis O. The adjusting chamber 24 is formed in an inverted truncated cone shape that gradually decreases in diameter from one side to the other side. A portion connecting the peripheral wall surface and the bottom wall surface of the adjustment chamber 24 is formed in a concave curved surface shape that is concave toward the other side. The volume of the adjustment chamber 24 is preferably smaller than the volumes of the main liquid chamber 14 and the auxiliary liquid chamber 15 and not more than 1/5 of the volume of the main liquid chamber 14. For example, in the present embodiment, the volume of the adjustment chamber 24 is about 1/10 of the volume of the main liquid chamber 14.

調整室24は、内部が標準圧に対して減圧可能とされている。調整室24の底壁面には、この防振装置10の外部に設けられた調整機構25が接続される接続孔24aが開口している。調整機構25は、接続孔24aに接続パイプ26を介して接続される切り替え弁27と、この切り替え弁27を制御する図示しない制御部と、を備えている。
切り替え弁27は、例えば電磁弁などにより形成される。切り替え弁27には、例えばエンジンのインテークマニホールド等の負圧源28に接続される負圧パイプ29と、大気開放される大気圧パイプ30と、が接続されている。切り替え弁27は、接続パイプ26に接続されるパイプを、負圧パイプ29と大気圧パイプ30とで切り替える。前記制御部は、例えば前記振動発生部の作動状況などに基づいて切り替え弁27を制御する。
The inside of the adjustment chamber 24 can be reduced with respect to the standard pressure. A connection hole 24 a to which an adjustment mechanism 25 provided outside the vibration isolator 10 is connected is opened on the bottom wall surface of the adjustment chamber 24. The adjustment mechanism 25 includes a switching valve 27 connected to the connection hole 24a via a connection pipe 26, and a control unit (not shown) that controls the switching valve 27.
The switching valve 27 is formed by, for example, an electromagnetic valve. For example, a negative pressure pipe 29 connected to a negative pressure source 28 such as an intake manifold of an engine and an atmospheric pressure pipe 30 opened to the atmosphere are connected to the switching valve 27. The switching valve 27 switches the pipe connected to the connection pipe 26 between the negative pressure pipe 29 and the atmospheric pressure pipe 30. The control unit controls the switching valve 27 based on, for example, the operating status of the vibration generating unit.

ここで仕切り部材17には、第1制限通路31と、第2制限通路33と、収容室34と、可動体35と、が設けられている。
第1制限通路31は、主液室14と副液室15とを連通する。第1制限通路31は、仕切り部材17の本体部材20に形成されていて、前記軸線Oを回避して配置され軸方向に延びている。第1制限通路31の共振周波数は、アイドル振動(例えば、周波数が15Hz〜40Hz、振幅が±0.5mm以下)の周波数と同等となっていて、第1制限通路31は、アイドル振動の入力に対して共振(液柱共振)を生じさせる。
Here, the partition member 17 is provided with a first restriction passage 31, a second restriction passage 33, a storage chamber 34, and a movable body 35.
The first restriction passage 31 communicates the main liquid chamber 14 and the sub liquid chamber 15. The first restriction passage 31 is formed in the main body member 20 of the partition member 17, is arranged so as to avoid the axis O, and extends in the axial direction. The resonance frequency of the first restriction passage 31 is equivalent to the frequency of idle vibration (for example, the frequency is 15 Hz to 40 Hz and the amplitude is ± 0.5 mm or less), and the first restriction passage 31 is used as an input of idle vibration. On the other hand, resonance (liquid column resonance) is generated.

第2制限通路33は、主液室14から中間室16に向けて延びている。第2制限通路33は、仕切り部材17の流路部材21に形成されていて、流路部材21を軸方向に貫通している。第2制限通路33は、流路部材21に前記軸線Oを回避して配置され、周方向に間隔をあけて複数設けられている。第2制限通路33の共振周波数は、ロックアップ振動(例えば、周波数が80Hz程度)の周波数と同等となっていて、第2制限通路33は、ロックアップ振動の入力に対して共振(液柱共振)を生じさせる。
第2制限通路33の流通抵抗は、第1制限通路31の流通抵抗よりも低くなっている。なお各制限通路の流通抵抗は、例えば各制限通路の流路長や流路断面積などに基づいて決定される。
The second restriction passage 33 extends from the main liquid chamber 14 toward the intermediate chamber 16. The second restriction passage 33 is formed in the flow path member 21 of the partition member 17 and penetrates the flow path member 21 in the axial direction. The second restriction passage 33 is disposed in the flow path member 21 while avoiding the axis O, and a plurality of second restriction passages 33 are provided at intervals in the circumferential direction. The resonance frequency of the second restriction passage 33 is equivalent to the frequency of lock-up vibration (for example, the frequency is about 80 Hz), and the second restriction passage 33 resonates with respect to the input of the lock-up vibration (liquid column resonance). ).
The flow resistance of the second restriction passage 33 is lower than the flow resistance of the first restriction passage 31. The flow resistance of each restriction passage is determined based on, for example, the flow path length or the cross-sectional area of each restriction passage.

収容室34は、第2制限通路33と中間室16とを連通する。収容室34は、仕切り部材17において、第2制限通路33と中間室16との間に軸方向に挟み込まれた部分に配置されている。収容室34は、前記軸線Oと同軸に配置されている。収容室34は、仕切り部材17の本体部材20の一方側に向けて開口する凹部により形成されている。収容室34の底壁面には、中間室16に向けて開口する連通孔36が形成されている。連通孔36は、収容室34の底壁面において第2制限通路33と軸方向に対向する各位置に形成されていて、複数設けられている。   The storage chamber 34 communicates the second restriction passage 33 and the intermediate chamber 16. The storage chamber 34 is disposed in a portion of the partition member 17 that is sandwiched in the axial direction between the second restriction passage 33 and the intermediate chamber 16. The storage chamber 34 is arranged coaxially with the axis O. The storage chamber 34 is formed by a recess that opens toward one side of the main body member 20 of the partition member 17. A communication hole 36 that opens toward the intermediate chamber 16 is formed in the bottom wall surface of the storage chamber 34. A plurality of communication holes 36 are formed at each position facing the second restriction passage 33 in the axial direction on the bottom wall surface of the storage chamber 34.

可動体35は、第2制限通路33と中間室16との間に配置されている。可動体35は、収容室34に、軸方向に変位自在に収容されたいわゆるガタメンブランである。可動体35は、例えばゴム材料などの弾性体材料により、表裏面が軸方向を向く板状に形成されている。   The movable body 35 is disposed between the second restriction passage 33 and the intermediate chamber 16. The movable body 35 is a so-called loose membrane that is accommodated in the accommodation chamber 34 so as to be displaceable in the axial direction. The movable body 35 is made of an elastic material such as a rubber material, for example, and is formed in a plate shape whose front and back faces in the axial direction.

この防振装置10では、ダイヤフラム18の変形抵抗は、弾性膜19の変形抵抗よりも低くなっている。なお、ダイヤフラム18や弾性膜19の変形抵抗は、例えば、各部材を形成する材料のヤング率や各部材の厚さ等に基づいて、各部材の曲げ剛性や各部材における単位荷重あたりの体積変化量などを適宜変更すること等により調整することができる。   In the vibration isolator 10, the deformation resistance of the diaphragm 18 is lower than the deformation resistance of the elastic film 19. The deformation resistance of the diaphragm 18 and the elastic film 19 is based on, for example, the Young's modulus of the material forming each member, the thickness of each member, etc., and the change in volume per unit load in each member. It can be adjusted by appropriately changing the amount and the like.

そしてこの防振装置10は、例えばエチレングリコール、水、シリコーンオイル等の液体が封入された液体封入型である。防振装置10のうち、主液室14、副液室15、中間室16、第1制限通路31、第2制限通路33、収容室34、連通孔36には、前記液体が充填されている。   The vibration isolator 10 is a liquid enclosure type in which a liquid such as ethylene glycol, water, or silicone oil is enclosed. In the vibration isolator 10, the main liquid chamber 14, the sub liquid chamber 15, the intermediate chamber 16, the first restriction passage 31, the second restriction passage 33, the storage chamber 34, and the communication hole 36 are filled with the liquid. .

次に、この防振装置10の作用について説明する。   Next, the operation of the vibration isolator 10 will be described.

この防振装置10が振動発生部と振動受部との間に介装されたときには、この防振装置10に、第2取付け部材12を第1取付け部材11に対して他方側に向けて変位させるような初期荷重が加えられて主液室14が縮小し、主液室14の液圧が変動して高められる。ここでこの防振装置10では、ダイヤフラム18の変形抵抗が、弾性膜19の変形抵抗よりも低いので、このとき主液室14から押し出される液体は、ダイヤフラム18を壁面の一部とする副液室15に流入する。その結果、主液室14の液圧の変動は、中間室16ではなく副液室15に及ぼされ、弾性膜19ではなくダイヤフラム18が変形して弾性膜19の変形が抑えられる。   When the vibration isolator 10 is interposed between the vibration generating unit and the vibration receiving unit, the second mounting member 12 is displaced toward the other side with respect to the first mounting member 11 in the vibration isolating device 10. The initial load is applied to reduce the main liquid chamber 14, and the liquid pressure in the main liquid chamber 14 is fluctuated and increased. Here, in the vibration isolator 10, since the deformation resistance of the diaphragm 18 is lower than the deformation resistance of the elastic film 19, the liquid pushed out from the main liquid chamber 14 at this time is a secondary liquid having the diaphragm 18 as a part of the wall surface. It flows into the chamber 15. As a result, the fluctuation of the hydraulic pressure in the main liquid chamber 14 is applied not to the intermediate chamber 16 but to the sub liquid chamber 15, and not the elastic film 19 but the diaphragm 18 is deformed to suppress deformation of the elastic film 19.

またこの防振装置10は、調整機構25の前記制御部が、切り替え弁27を制御することで、図1に示すような、調整室24の内圧を標準圧とした標準状態と、図2に示すような、調整室24の内圧を標準圧に対して減圧した調整状態と、に切り替えられる。調整状態の防振装置10では、調整室24内が減圧されることで、弾性膜19が調整室24の周壁面および底壁面に密接し、調整室24が縮小して消滅し、中間室16が拡大する。調整室24内に対する減圧を解除すると、弾性膜19が復元変形して調整室24が標準圧に復元する。   Further, in the vibration isolator 10, the control unit of the adjustment mechanism 25 controls the switching valve 27 so that the internal pressure of the adjustment chamber 24 is a standard pressure as shown in FIG. As shown, the adjustment chamber 24 is switched to an adjustment state in which the internal pressure of the adjustment chamber 24 is reduced relative to the standard pressure. In the vibration isolator 10 in the adjusted state, the inside of the adjustment chamber 24 is depressurized, so that the elastic film 19 comes into close contact with the peripheral wall surface and the bottom wall surface of the adjustment chamber 24, and the adjustment chamber 24 shrinks and disappears. Expands. When the decompression to the inside of the adjustment chamber 24 is released, the elastic film 19 is restored and deformed, and the adjustment chamber 24 is restored to the standard pressure.

なお例えば、この防振装置10が自動車に適用された場合、前記制御部は、前記振動発生部としてのエンジンの回転数や、車速に基づいて切り替え弁27を制御すること等ができる。またこの場合、制御部は、自動車が走行状態のときは、切り替え弁27により接続パイプ26と大気圧パイプ30とを接続し、調整室24の内圧を、標準圧としての大気圧にする。また制御部は、自動車がアイドル状態のときは、切り替え弁27により接続パイプ26と負圧パイプ29とを接続し、調整室24の内圧を減圧する。なお、前記負圧源28としてインテークマニホールドを適用した場合には、インテークマニホールドに発生する吸入負圧を利用して、調整室24内を減圧することができる。   For example, when the vibration isolator 10 is applied to an automobile, the control unit can control the switching valve 27 based on the number of rotations of the engine as the vibration generating unit and the vehicle speed. Further, in this case, when the automobile is in a running state, the control unit connects the connection pipe 26 and the atmospheric pressure pipe 30 by the switching valve 27 and sets the internal pressure of the adjustment chamber 24 to the atmospheric pressure as the standard pressure. Further, when the automobile is in an idle state, the control unit connects the connection pipe 26 and the negative pressure pipe 29 by the switching valve 27 to reduce the internal pressure of the adjustment chamber 24. In the case where an intake manifold is applied as the negative pressure source 28, the inside of the adjustment chamber 24 can be decompressed using the suction negative pressure generated in the intake manifold.

図1に示すような標準状態の防振装置10に軸方向に振動が入力されると、両取付け部材11、12が、弾性体13を弾性変形させながら軸方向に相対的に変位し、主液室14の液圧が変動し、主液室14内の液体が、第1制限通路31または第2制限通路33を流通しようとする。ここで、第2制限通路33の流通抵抗が、第1制限通路31の流通抵抗よりも低いので、このとき主液室14内の液体を、第2制限通路33に優先的に流通させることができる。したがって、この防振装置10では、第2制限通路33の共振周波数と同等の振動であるロックアップ振動が入力されたときに第2制限通路33で共振を生じさせ、例えばこの防振装置10の動ばね定数の上昇を抑制する等して振動を吸収および減衰することができる。   When vibration is input in the axial direction to the vibration isolator 10 in the standard state as shown in FIG. 1, both the attachment members 11 and 12 are relatively displaced in the axial direction while elastically deforming the elastic body 13. The liquid pressure in the liquid chamber 14 fluctuates, and the liquid in the main liquid chamber 14 tends to flow through the first restriction passage 31 or the second restriction passage 33. Here, since the flow resistance of the second restriction passage 33 is lower than the flow resistance of the first restriction passage 31, the liquid in the main liquid chamber 14 can be preferentially circulated through the second restriction passage 33 at this time. it can. Therefore, the vibration isolator 10 causes resonance in the second restricting passage 33 when a lock-up vibration that is equivalent to the resonance frequency of the second restricting passage 33 is input. Vibration can be absorbed and damped by suppressing an increase in the dynamic spring constant.

なお、液体が第2制限通路33を流通するときには、液圧が可動体35に及ぼされ、可動体35が、中間室16を介して弾性膜19を変形させながら変位、変形する。このとき本実施形態では、液体が、可動体35を、収容室34内で軸方向に変位させながら、主液室14と中間室16との間で第2制限通路33および収容室34を通して流通し、弾性膜19を変形させる。   When the liquid flows through the second restriction passage 33, the hydraulic pressure is applied to the movable body 35, and the movable body 35 is displaced and deformed while deforming the elastic film 19 via the intermediate chamber 16. At this time, in this embodiment, the liquid flows through the second restriction passage 33 and the storage chamber 34 between the main liquid chamber 14 and the intermediate chamber 16 while moving the movable body 35 in the axial direction in the storage chamber 34. Then, the elastic film 19 is deformed.

一方、図2に示すように、防振装置10を調整状態とすると、この防振装置10が標準状態である場合に比べて、弾性膜19を拘束して弾性膜19の変形抵抗を高めることができる。その結果、弾性膜19に、中間室16を介して可動体35の変位、変形を規制させることが可能になり、液体を、第2制限通路33に流通させ難くして第1制限通路31に流通させ易くすることができる。したがって、この防振装置10に振動が入力されたときに、主液室14内の液体を、第2制限通路33ではなく第1制限通路31に優先的に流通させることができる。これにより、第1制限通路31の共振周波数と同等の振動であるアイドル振動が入力されたときに第1制限通路31で共振を生じさせ、例えばこの防振装置10の動ばね定数の上昇を抑制する等して振動を吸収および減衰することができる。   On the other hand, as shown in FIG. 2, when the vibration isolator 10 is in the adjusted state, the elastic film 19 is restrained and the deformation resistance of the elastic film 19 is increased compared to the case where the vibration isolator 10 is in the standard state. Can do. As a result, the elastic film 19 can be restricted from displacement and deformation of the movable body 35 via the intermediate chamber 16, and it is difficult for the liquid to flow through the second restriction passage 33, so that the liquid is passed through the first restriction passage 31. It can be made easy to distribute. Therefore, when vibration is input to the vibration isolator 10, the liquid in the main liquid chamber 14 can be preferentially circulated through the first restriction passage 31 instead of the second restriction passage 33. As a result, when idle vibration that is equivalent to the resonance frequency of the first limiting passage 31 is input, resonance is generated in the first limiting passage 31, and for example, an increase in the dynamic spring constant of the vibration isolator 10 is suppressed. For example, vibration can be absorbed and damped.

以上説明したように、本実施形態に係る防振装置10によれば、標準状態と調整状態とを切り替えることで、周波数が異なる振動をそれぞれ吸収および減衰することが可能になり、幅広い周波数の振動に対して減衰特性を発揮させることができる。
また、この防振装置10に初期荷重が加えられるときに弾性膜19が変形することが抑えられるので、初期荷重を起因として弾性膜19の変形の態様に影響が生じるのを抑制することが可能になり、減衰特性を効果的に発揮させ易くすることができる。
As described above, according to the vibration isolator 10 according to the present embodiment, it is possible to absorb and attenuate vibrations having different frequencies by switching between the standard state and the adjustment state, and vibrations with a wide range of frequencies. Can exhibit damping characteristics.
Further, since the elastic film 19 is suppressed from being deformed when an initial load is applied to the vibration isolator 10, it is possible to suppress the influence of the deformation mode of the elastic film 19 from being caused by the initial load. Thus, the attenuation characteristics can be easily exhibited effectively.

また標準状態の防振装置10では、主液室14内の液体が、可動体35を変位、変形させながら第2制限通路33を流通するので、主液室14内の液圧上昇を、可動体35の変位、変形により吸収して優れた減衰特性を発揮させ易くすることが可能になり、例えばこの防振装置10の動ばね定数の上昇を効果的に抑えること等ができる。   Further, in the vibration isolator 10 in the standard state, the liquid in the main liquid chamber 14 flows through the second restricting passage 33 while displacing and deforming the movable body 35. Therefore, the increase in the liquid pressure in the main liquid chamber 14 is movable. It is possible to easily absorb the displacement and deformation of the body 35 to exhibit excellent damping characteristics. For example, it is possible to effectively suppress an increase in the dynamic spring constant of the vibration isolator 10.

さらに、標準状態の防振装置10では、第2制限通路33を流通する液体が、可動体35を変位、変形させるとともに、弾性膜19を変形させることから、第2制限通路33の共振周波数を、第2制限通路33の流路長や流路断面積のみならず、可動体35の変位、変形の態様や弾性膜19の変形の態様などに基づいて調整することができる。したがって、例えば可動体35や弾性膜19の曲げ剛性を変更する等により、第2制限通路33の共振周波数を簡便かつ多様に調整することが可能になり、この防振装置10の適用範囲を多岐にわたらせ易くすることができる。   Further, in the vibration isolator 10 in the standard state, the liquid flowing through the second restriction passage 33 displaces and deforms the movable body 35 and also deforms the elastic film 19, so that the resonance frequency of the second restriction passage 33 is set. In addition to the flow path length and flow path cross-sectional area of the second restriction passage 33, adjustment can be made based on the displacement and deformation modes of the movable body 35, the deformation mode of the elastic film 19, and the like. Therefore, for example, by changing the bending rigidity of the movable body 35 and the elastic film 19, the resonance frequency of the second restriction passage 33 can be adjusted easily and in various ways. It can be made easy to spread.

また可動体35が、収容室34に、軸方向に変位自在に収容されているので、可動体35の変位の態様を、この防振装置10に入力される振動の周波数に応じて高精度に調整することが可能になり、第2制限通路33の共振周波数を一層簡便かつ多様に調整することができる。   Further, since the movable body 35 is accommodated in the accommodation chamber 34 so as to be freely displaceable in the axial direction, the displacement mode of the movable body 35 can be set with high accuracy according to the frequency of vibration input to the vibration isolator 10. It becomes possible to adjust, and the resonant frequency of the 2nd restriction | limiting channel | path 33 can be adjusted more simply and variously.

なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

前記実施形態では、調整室24の内部が標準圧に対して減圧可能としたが、本発明はこれに限られない。
例えば、本発明の第1変形例では、調整室の内部を標準圧に対して加圧可能とし、防振装置の調整状態を、調整室内を標準圧に対して加圧して弾性膜を拘束した状態としてもよい。この場合、例えば前記負圧源に代えて圧力源を採用すること等ができる。
さらに例えば、本発明の第2変形例では、調整室の内部を外部に対して閉塞可能に開放し、防振装置の標準状態を、調整室内を外部に開放した状態とし、防振装置の調整状態を、調整室内を外部に対して閉塞した状態としてもよい。この場合、調整状態の防振装置において、調整室内の圧力を背圧として利用することで弾性膜を拘束することができる。なおこの構成において、前記切り替え弁に代えて、調整室内をこの防振装置の外部に対して開閉する開閉弁を採用してもよい。さらに、切り替え弁および接続パイプに代えて、接続孔を直接開閉する開閉機構を採用してもよい。
In the embodiment, the inside of the adjustment chamber 24 can be reduced with respect to the standard pressure, but the present invention is not limited to this.
For example, in the first modification of the present invention, the inside of the adjustment chamber can be pressurized against the standard pressure, and the adjustment state of the vibration isolator is pressed against the standard pressure in the adjustment chamber to restrain the elastic membrane. It is good also as a state. In this case, for example, a pressure source can be employed instead of the negative pressure source.
Further, for example, in the second modification of the present invention, the adjustment chamber is opened so that the inside of the adjustment chamber can be closed with respect to the outside, and the standard state of the vibration isolation device is opened to the outside. The state may be a state in which the adjustment chamber is closed with respect to the outside. In this case, in the vibration isolator in the adjusted state, the elastic film can be restrained by using the pressure in the adjustment chamber as the back pressure. In this configuration, an opening / closing valve that opens and closes the adjustment chamber with respect to the outside of the vibration isolator may be employed instead of the switching valve. Furthermore, an opening / closing mechanism that directly opens and closes the connection hole may be employed instead of the switching valve and the connection pipe.

また前記実施形態では、可動体35が、収容室34に、軸方向に変位自在に収容されているが、本発明はこれに限られない。例えば可動体が、第2制限通路と中間室とを仕切る弾性仕切り壁により構成され、この可動体の外周縁部が、仕切り部材に、周方向の全周にわたって液密に固定されていてもよい。   Moreover, in the said embodiment, although the movable body 35 is accommodated in the storage chamber 34 so that displacement in the axial direction is possible, this invention is not limited to this. For example, the movable body may be configured by an elastic partition wall that partitions the second restriction passage and the intermediate chamber, and the outer peripheral edge of the movable body may be liquid-tightly fixed to the partition member over the entire circumference in the circumferential direction. .

その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the embodiment with known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.

次に、以上説明した作用効果についての検証試験を実施した。   Next, the verification test about the effect demonstrated above was implemented.

この検証試験では、実施例1、2の2つの防振装置を準備した。実施例1には、図1、2に示す防振装置を採用し、実施例2には、前記第2変形例に係る防振装置を採用した。
そして、実施例1の防振装置を標準状態とした上で、周波数が異なる振動を各別に入力し、各振動入力時の動ばね定数を測定した。さらに、実施例1、2の各防振装置をそれぞれ調整状態とした上でも、周波数が異なる振動を各別に入力し、各振動入力時の動ばね定数を測定した。
In this verification test, two vibration isolators of Examples 1 and 2 were prepared. The vibration isolator shown in FIGS. 1 and 2 was adopted in Example 1, and the vibration isolator according to the second modification was adopted in Example 2.
And after making the vibration isolator of Example 1 into a standard state, the vibration from which a frequency differs was input separately, and the dynamic spring constant at the time of each vibration input was measured. Furthermore, even when each vibration isolator of Examples 1 and 2 was in an adjusted state, vibrations with different frequencies were input separately, and the dynamic spring constant at each vibration input was measured.

結果を図3に示す。図3に示すグラフでは、横軸が周波数(Hz)を示し、縦軸が動ばね定数を示している。またこのグラフに示すグラフ線のうち、一点鎖線で示されたグラフ線G1が、実施例1の標準状態の結果を示し、破線で示されたグラフ線G2が、実施例1の調整状態の結果を示し、実線で示されたグラフ線G3が、実施例2の調整状態の結果を示す。   The results are shown in FIG. In the graph shown in FIG. 3, the horizontal axis indicates the frequency (Hz), and the vertical axis indicates the dynamic spring constant. Of the graph lines shown in this graph, the graph line G1 indicated by the alternate long and short dash line indicates the result of the standard state of Example 1, and the graph line G2 indicated by the broken line indicates the result of the adjustment state of Example 1. The graph line G3 indicated by a solid line indicates the result of the adjustment state of the second embodiment.

この結果から、実施例1の防振装置では、標準状態において、80Hz程度の振動であるロックアップ振動が入力されたときに動ばね定数が抑えられ、調整状態において、周波数が15Hz〜40Hz程度の振動であるアイドル振動が入力されたときに動ばね定数が抑えられていることが確認された。また実施例2の防振装置でも、調整状態において、周波数が15Hz〜40Hz程度の振動であるアイドル振動が入力されたときに動ばね定数が抑えられていることが確認された。   From this result, in the vibration isolator of Example 1, the dynamic spring constant is suppressed when the lock-up vibration that is about 80 Hz is input in the standard state, and the frequency is about 15 Hz to 40 Hz in the adjusted state. It was confirmed that the dynamic spring constant was suppressed when idle vibration, which is vibration, was input. In the vibration isolator of Example 2, it was also confirmed that the dynamic spring constant was suppressed when an idle vibration having a frequency of about 15 Hz to 40 Hz was input in the adjusted state.

10 防振装置
11 第1取付け部材
12 第2取付け部材
13 弾性体
14 主液室
15 副液室
16 中間室
17 仕切り部材
18 ダイヤフラム
19 弾性膜
24 調整室
31 第1制限通路
33 第2制限通路
34 収容室
35 可動体
DESCRIPTION OF SYMBOLS 10 Vibration isolator 11 1st attachment member 12 2nd attachment member 13 Elastic body 14 Main liquid chamber 15 Sub liquid chamber 16 Intermediate chamber 17 Partition member 18 Diaphragm 19 Elastic film 24 Adjustment chamber 31 1st restriction path 33 2nd restriction path 34 Containment chamber 35 Movable body

前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る防振装置は、振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、これらの両取付け部材を連結する弾性体と、前記第1取付け部材内に嵌合され、前記弾性体を壁面の一部とする主液室、並びに前記主液室から独立して設けられた副液室および中間室を形成する仕切り部材と、前記中間室の壁面の一部を構成する弾性膜と、を備え、前記仕切り部材には、前記主液室と前記副液室とを連通する第1制限通路と、前記主液室から前記中間室に向けて延び、流通抵抗が、前記第1制限通路の流通抵抗よりも低い第2制限通路と、前記第2制限通路と前記中間室との間に配置された可動体と、が設けられ、前記中間室には、内部が標準圧に対して減圧もしくは加圧可能とされ、または内部が外部に対して閉塞可能に開放された調整室が、前記弾性膜を間に挟んで隣接し、前記調整室は、標準圧に対して減圧もしくは加圧されたときに、または外部に対して閉塞されたときに、前記弾性膜を拘束して前記弾性膜の変形抵抗を高め、前記弾性膜に、前記中間室を介して前記可動体の変位、変形を規制させることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The vibration isolator according to the present invention includes a cylindrical first attachment member connected to one of the vibration generating portion and the vibration receiving portion, a second attachment member connected to the other, and both of these attachment members. An elastic body to be connected, a main liquid chamber fitted into the first mounting member and having the elastic body as a part of a wall surface, and a sub liquid chamber and an intermediate chamber provided independently from the main liquid chamber A partition member to be formed, and an elastic film constituting a part of the wall surface of the intermediate chamber, the partition member having a first restriction passage communicating the main liquid chamber and the sub liquid chamber, A second restriction passage extending from the main liquid chamber toward the intermediate chamber and having a flow resistance lower than the flow resistance of the first restriction passage, and a movable member disposed between the second restriction passage and the intermediate chamber. A body, and the intermediate chamber can be depressurized or pressurized with respect to a standard pressure. When the closable open the adjustment chamber, adjacent in between the elastic membrane, the adjustment chamber, whose pressure vacuum or under relative standard pressure to the to, or inside an external, Alternatively, when closed against the outside, the elastic film is restrained to increase the deformation resistance of the elastic film, and the elastic film is allowed to regulate the displacement and deformation of the movable body via the intermediate chamber. Features.

また、前記仕切り部材には、前記第2制限通路と前記中間室とを連通する収容室が設けられ、前記可動体は、前記収容室に、前記第1取付け部材の軸方向に変位自在に収容され、前記主液室と前記中間室とは、前記第2制限通路および前記収容室を通してのみ連通されていてもよい。
さらに、前記仕切り部材は、前記第1取付け部材内に嵌合された本体部材と、前記軸方向に沿って、前記本体部材に対して前記主液室が位置する一方側から前記本体部材に組み付けられた流路部材と、を備え、前記収容室は、前記本体部材と前記流路部材との間に前記第1取付け部材の軸線と同軸に配置され、前記第2制限通路は、前記流路部材に前記軸線を回避して配置されていてもよい。
The partition member is provided with a storage chamber that communicates the second restriction passage and the intermediate chamber, and the movable body is stored in the storage chamber so as to be displaceable in the axial direction of the first mounting member. The main liquid chamber and the intermediate chamber may be communicated only through the second restriction passage and the storage chamber .
Furthermore, the partition member is assembled to the main body member from the one side where the main liquid chamber is located with respect to the main body member along the axial direction with the main body member fitted in the first mounting member. The storage chamber is disposed between the main body member and the flow path member coaxially with the axis of the first mounting member, and the second restricting passage is formed of the flow path member. The member may be arranged so as to avoid the axis.

Claims (3)

振動発生部および振動受部のうちの一方に連結される筒状の第1取付け部材、および他方に連結される第2取付け部材と、
これらの両取付け部材を連結する弾性体と、
前記第1取付け部材内に嵌合され、前記弾性体を壁面の一部とする主液室、並びに前記主液室から独立して設けられた副液室および中間室を形成する仕切り部材と、
前記中間室の壁面の一部を構成する弾性膜と、を備え、
前記仕切り部材には、前記主液室と前記副液室とを連通する第1制限通路と、前記主液室から前記中間室に向けて延び、流通抵抗が、前記第1制限通路の流通抵抗よりも低い第2制限通路と、前記第2制限通路と前記中間室との間に配置された可動体と、が設けられ、
前記中間室には、内部が標準圧に対して減圧もしくは加圧可能とされ、または内部が外部に対して閉塞可能に開放された調整室が、前記弾性膜を間に挟んで隣接していることを特徴とする防振装置。
A cylindrical first mounting member coupled to one of the vibration generating unit and the vibration receiving unit, and a second mounting member coupled to the other;
An elastic body connecting both of these mounting members;
A partition member which is fitted in the first mounting member and forms a main liquid chamber having the elastic body as a part of a wall surface, and a sub liquid chamber and an intermediate chamber provided independently from the main liquid chamber;
An elastic membrane constituting a part of the wall surface of the intermediate chamber,
The partition member has a first restriction passage communicating the main liquid chamber and the sub liquid chamber, and extends from the main liquid chamber toward the intermediate chamber, and a flow resistance is a flow resistance of the first restriction passage. A lower second restriction passage, and a movable body disposed between the second restriction passage and the intermediate chamber,
In the intermediate chamber, an adjustment chamber whose inside is capable of being depressurized or pressurized with respect to a standard pressure or opened so that the inside can be closed with respect to the outside is adjacent to the elastic chamber with the elastic membrane interposed therebetween. An anti-vibration device characterized by that.
請求項1記載の防振装置であって、
前記仕切り部材には、前記第2制限通路と前記中間室とを連通する収容室が設けられ、
前記可動体は、前記収容室に、前記第1取付け部材の軸方向に変位自在に収容されていることを特徴とする防振装置。
The vibration isolator according to claim 1,
The partition member is provided with a storage chamber that communicates the second restriction passage and the intermediate chamber,
The vibration isolator according to claim 1, wherein the movable body is housed in the housing chamber so as to be freely displaceable in the axial direction of the first mounting member.
請求項2記載の防振装置であって、
前記副液室の壁面の一部を構成するダイヤフラムを備え、
前記ダイヤフラムの変形抵抗は、前記弾性膜の変形抵抗よりも低いことを特徴とする防振装置。
A vibration isolator according to claim 2,
Comprising a diaphragm constituting a part of the wall surface of the auxiliary liquid chamber;
The vibration isolation device according to claim 1, wherein a deformation resistance of the diaphragm is lower than a deformation resistance of the elastic film.
JP2013195973A 2013-09-20 2013-09-20 Vibration isolator Active JP5723944B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013195973A JP5723944B2 (en) 2013-09-20 2013-09-20 Vibration isolator
PCT/JP2014/072894 WO2015041033A1 (en) 2013-09-20 2014-09-01 Vibration-damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195973A JP5723944B2 (en) 2013-09-20 2013-09-20 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2015059654A true JP2015059654A (en) 2015-03-30
JP5723944B2 JP5723944B2 (en) 2015-05-27

Family

ID=52688687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195973A Active JP5723944B2 (en) 2013-09-20 2013-09-20 Vibration isolator

Country Status (2)

Country Link
JP (1) JP5723944B2 (en)
WO (1) WO2015041033A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223366A (en) * 2016-06-16 2017-12-21 ベイジンウェスト・インダストリーズ・カンパニー・リミテッドBeijingwest Industries Co., Ltd. Multi-stage damping assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069005A (en) * 2002-08-09 2004-03-04 Tokai Rubber Ind Ltd Fluid-sealed type vibration damper
JP2004332884A (en) * 2003-05-12 2004-11-25 Bridgestone Corp Vibration isolation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069005A (en) * 2002-08-09 2004-03-04 Tokai Rubber Ind Ltd Fluid-sealed type vibration damper
JP2004332884A (en) * 2003-05-12 2004-11-25 Bridgestone Corp Vibration isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223366A (en) * 2016-06-16 2017-12-21 ベイジンウェスト・インダストリーズ・カンパニー・リミテッドBeijingwest Industries Co., Ltd. Multi-stage damping assembly

Also Published As

Publication number Publication date
JP5723944B2 (en) 2015-05-27
WO2015041033A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5642241B1 (en) Vibration isolator
JP5198605B2 (en) Liquid-filled vibration isolator
JP5665989B2 (en) Vibration isolator
JP5882125B2 (en) Liquid-filled vibration isolator
WO2011099357A1 (en) Vibration-damping device
JP2009103141A (en) Liquid filling type vibration-proof device
JP5431982B2 (en) Liquid-filled vibration isolator
JP5882124B2 (en) Liquid-filled vibration isolator
JP5723944B2 (en) Vibration isolator
JP5510713B2 (en) Liquid-filled vibration isolator
JP2010255831A (en) Vibration control device
JP2018115718A (en) Vibration control device
JP6153428B2 (en) Liquid-filled vibration isolator
JP5893482B2 (en) Liquid-filled vibration isolator
JP6388441B2 (en) Vibration isolator
JP5436252B2 (en) Vibration isolator
JP2008138802A (en) Vibration damper
JP6315782B2 (en) Vibration isolator
JP2007198541A (en) Fluid-sealed vibration isolating device
JP6404616B2 (en) Vibration isolator
JP5690988B2 (en) Liquid-filled vibration isolator
JP5925564B2 (en) Liquid-filled vibration isolator
JP2009144808A (en) Liquid sealed vibration control device
JP2019218966A (en) Vibration control device
JP2014178016A (en) Vibration-proof device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150330

R150 Certificate of patent or registration of utility model

Ref document number: 5723944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250