JPH0247613B2 - - Google Patents

Info

Publication number
JPH0247613B2
JPH0247613B2 JP59011731A JP1173184A JPH0247613B2 JP H0247613 B2 JPH0247613 B2 JP H0247613B2 JP 59011731 A JP59011731 A JP 59011731A JP 1173184 A JP1173184 A JP 1173184A JP H0247613 B2 JPH0247613 B2 JP H0247613B2
Authority
JP
Japan
Prior art keywords
fluid
chamber
vibration
frame
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59011731A
Other languages
Japanese (ja)
Other versions
JPS60155029A (en
Inventor
Toshuki Tabata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1173184A priority Critical patent/JPS60155029A/en
Publication of JPS60155029A publication Critical patent/JPS60155029A/en
Publication of JPH0247613B2 publication Critical patent/JPH0247613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジンを初めとするパワーユニツ
ト等の振動体から入力される振動入力を、流体の
絞り通過に起因する減衰力により減衰して、前記
振動が車体等の支持体に伝達することを防止する
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a system for damping vibration input from a vibrating body such as an engine or a power unit using a damping force caused by passage of a fluid through a constriction. , relates to a device that prevents the vibrations from being transmitted to a support such as a vehicle body.

〔従来の技術〕[Conventional technology]

従来の流体入り防振装置としては、例えば第1
図に示すようなものがある(特開昭58−72741号
公報記載)。即ち、振動体側の枠体1と支持体側
の枠体2との間に、両枠体1,2の相対移動によ
り内部の流体主室3の容積を変化させるゴム状弾
性体4を配置し、前記流体主室3には、当該流体
主室3の容積変化に対応して容積変化する流体副
次室5を、枠体2側に支持される仕切6に形成さ
れた絞り7,8を介して連結して、絞り7,8を
介しての流体主室3と流体副次室5との間の流体
9の移動により振動入力を減衰させるようにして
ある。絞り7,8は、その内径と長さとを相互に
相違させていて、減衰特性を相違させている。1
0は、流体副次室5を画成するためのダイヤフラ
ムであり、流体副次室5の容積変化に追従して形
状を変化するようにしてある。
As a conventional fluid-filled vibration isolator, for example, the first
There is one as shown in the figure (described in Japanese Patent Application Laid-open No. 72741/1983). That is, a rubber-like elastic body 4 is arranged between the frame body 1 on the vibrating body side and the frame body 2 on the support body side, which changes the volume of the internal fluid main chamber 3 by relative movement of both the frame bodies 1 and 2. A fluid sub-chamber 5 whose volume changes in accordance with a change in the volume of the fluid main chamber 3 is provided in the main fluid chamber 3 through throttles 7 and 8 formed in a partition 6 supported on the frame body 2 side. The fluid 9 moves between the main fluid chamber 3 and the auxiliary fluid chamber 5 via the throttles 7 and 8, thereby damping vibration input. The apertures 7 and 8 have different inner diameters and lengths, and have different damping characteristics. 1
0 is a diaphragm for defining the fluid sub-chamber 5, and is configured to change its shape in accordance with changes in the volume of the fluid sub-chamber 5.

かくして、枠体1側からの振動入力により流体
主室3の容積が変化して、流体主室3と流体副次
室5との間で流体9が移動し、このとき流体9が
絞り7,8を通過することにより絞られて、前記
振動入力が減衰される。ここで得られる減衰特性
は、絞り7による減衰特性と、絞り8による減衰
特性とが複合された、ピークが2つ表れる減衰特
性となり、第2図において実線で示される。第2
図における鎖線は、振動伝達力を示し、前記絞り
7,8で減衰されずに枠体2に伝達される振動で
ある。第2図におけるIVはエンジンのアイドリ
ング振動域である。
Thus, the volume of the main fluid chamber 3 changes due to the vibration input from the frame 1 side, and the fluid 9 moves between the main fluid chamber 3 and the sub-fluid chamber 5, and at this time, the fluid 9 moves through the throttle 7, 8, the vibration input is attenuated. The damping characteristic obtained here is a combination of the damping characteristic due to the diaphragm 7 and the damping characteristic due to the diaphragm 8, and has two peaks, and is shown by a solid line in FIG. 2. Second
The chain line in the figure indicates the vibration transmission force, which is the vibration transmitted to the frame 2 without being attenuated by the apertures 7 and 8. IV in Fig. 2 is the idling vibration range of the engine.

第3図は、第1図の模式図であり、maは、絞
り7内の流体質量とダイヤフラム10とによる質
量、mbは、絞り8内の流体質量とダイヤフラム
10とによる質量であり、kaは、ダイヤフラム
10の剛性、kbは、ゴム状弾性体4の剛性、ca
は、絞り7の減衰力、cbは、絞り8の減衰力を
示している。
FIG. 3 is a schematic diagram of FIG. 1, where ma is the mass due to the fluid mass in the aperture 7 and the diaphragm 10, mb is the mass due to the fluid mass in the aperture 8 and the diaphragm 10, and ka is the mass due to the fluid mass in the aperture 8 and the diaphragm 10. , the stiffness of the diaphragm 10, kb is the stiffness of the rubber-like elastic body 4, ca
indicates the damping force of the diaphragm 7, and cb indicates the damping force of the diaphragm 8.

しかしながら、このような従来の流体入り防振
装置においては、流体主室3の容積と流体副次室
5の容積とが、絞り7,8の何れにも共通してい
て、ダイヤフラム10及び弾性体4の剛性ka、
kbが同一なため、防振装置の振動入力減衰特性
をチユーニングする領域が限定されやすい。この
ため、例えば、エンジンの上下方向振動域は一般
に10Hz程度、ステアリング共振域は一般に30Hz程
度、エンジンのアイドリング振動域が一般に20〜
30Hz程度であるところ、第2図に示すように、減
衰力のピークを10Hz程度に設定すると、アイドリ
ング振動域IV及びステアリング共振域の減衰力
を充分に設定することが困難になるという不具合
がある。
However, in such a conventional fluid-filled vibration isolator, the volume of the fluid main chamber 3 and the volume of the fluid subchamber 5 are common to both the throttles 7 and 8, and the diaphragm 10 and the elastic body Stiffness ka of 4,
Since kb is the same, the range for tuning the vibration input damping characteristics of the vibration isolator is likely to be limited. For this reason, for example, the engine's vertical vibration range is generally around 10Hz, the steering resonance range is generally around 30Hz, and the engine's idling vibration range is generally around 20Hz.
30Hz, but as shown in Figure 2, if the peak of the damping force is set to about 10Hz, there is a problem in that it becomes difficult to set a sufficient damping force in the idling vibration region IV and steering resonance region. .

本発明は、このような従来の不具合に着目して
なされたものであり、流体主室に絞りを介して連
続する流体副次室を、流体主室に対して複数形成
することにより、流体副次室及び絞りを他のそれ
らと独立して設置して、複数現れる減衰力のピー
クを、減衰しようとする振動域に適応させて設定
することを可能にし、以て前記従来の不具合を解
決することを目的としている。
The present invention has been made by focusing on such conventional problems, and by forming a plurality of fluid sub-chambers that are continuous to the fluid main chamber via a restriction, the fluid sub-chambers are connected to the fluid main chamber via a restriction. By installing the next chamber and the diaphragm independently of the others, it is possible to set the multiple peaks of damping force to suit the vibration range to be damped, thereby solving the above-mentioned conventional problems. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、振動体側の枠体と支持体側の枠体と
の間に、両枠体の相対移動により内部の流体主室
の容積を変化させるゴム状弾性体を配置し、前記
流体主室には、当該流体主室の容積変化に対応し
て容積変化する2つの流体副次室を、前記両枠体
に個別に固定した2つの絞りを個別に介して連結
し、各絞りを、流体主室側の孔と流体副次室側の
孔との間の流体通路を蛇行させることにより延長
させ且つ前記流体通路の断面積を大にして形成し
た流体入り防振装置にかかる。
In the present invention, a rubber-like elastic body is disposed between a frame on the vibrating body side and a frame on the support side, and changes the volume of an internal main fluid chamber by relative movement of both frames, and the main fluid chamber is The two fluid sub-chambers whose volume changes in accordance with the volume change of the fluid main chamber are connected via two throttles individually fixed to both frames, and each throttle is connected to the fluid main chamber. The present invention relates to a fluid-filled vibration isolator in which a fluid passage between a hole on the chamber side and a hole on the fluid sub-chamber side is extended by meandering and the cross-sectional area of the fluid passage is increased.

〔作用〕[Effect]

振動入力による流体主室の容積変化により、流
体が絞りを介して流体副次室との間で移動し、こ
のとき流体が絞りを通過することによつて前記振
動入力を減衰させる。特に本発明では、流体副次
室を、流体主室に対して複数並列に形成したた
め、複数の流体副次室が相互に独立して形成さ
れ、夫々が絞りを介して流体主室に直接且つ個別
に連通することになつているから、各絞りにより
もたらされる減衰力を独立して個別に設定するこ
とができ、したがつて両絞りによる減衰力が両絞
り相互間で干渉を受けことがない。
Due to a change in the volume of the main fluid chamber due to the vibration input, the fluid moves between the fluid main chamber and the secondary fluid chamber through the restriction, and at this time, the fluid passes through the restriction, thereby attenuating the vibration input. In particular, in the present invention, since a plurality of fluid sub-chambers are formed in parallel with the fluid main chamber, a plurality of fluid sub-chambers are formed independently of each other, and each is directly connected to the fluid main chamber via the aperture. Since they are supposed to communicate individually, the damping force provided by each aperture can be set independently and individually, and therefore the damping force of both apertures does not interfere with each other. .

しかも、両流体副次室がいずれも流体主室に絞
りを介して直結されているために、流体は流体主
室の容積変化により、いずれかの位置で容積変化
が吸収されることなく振動入力の周波数に対応す
るいずれかの絞りを確実に通過する。このため、
アイドリング振動のような微少な流体圧変化によ
つても流体はその振動周波数に見合う絞りを必ず
通過することになる。
Moreover, since both fluid sub-chambers are directly connected to the main fluid chamber via a throttle, the fluid receives vibration input due to volume changes in the main fluid chamber without the volume changes being absorbed at either position. pass through one of the apertures corresponding to the frequency of . For this reason,
Even when there is a minute fluid pressure change such as idling vibration, the fluid always passes through a throttle that matches the vibration frequency.

また、本発明では、各絞りの流体通路を蛇行し
ているために、その長さの延長を実現することが
でき、且つ前記流体通路の断面積を大にしたた
め、低周波数振動域における共振レベルを大にす
ることができる。
Further, in the present invention, since the fluid passage of each throttle is meandering, the length can be increased, and the cross-sectional area of the fluid passage is increased, so that the resonance level in the low frequency vibration region can be increased. can be made large.

〔実施例〕〔Example〕

以下に、本発明を図示実施例に基づいて説明す
る。第4〜8図は、本発明の第1実施例を示す図
であり、エンジンを初めとするパワーユニツトの
防振装置に本発明を適用した例を示す。
The present invention will be explained below based on illustrated embodiments. 4 to 8 are diagrams showing a first embodiment of the present invention, and show an example in which the present invention is applied to a vibration isolating device for a power unit such as an engine.

まず構成を説明すると、11が振動体たるパワ
ーユニツト側の枠体、12が支持体たる車体側の
枠体である。枠体11には仕切板13が固定され
ていて、仕切板13の中央部に形成された第1絞
り14を除く部分は、実体的に枠体11の一部を
なす。また、枠体12には補助枠15と仕切板1
6とが固定され、補助枠15は実体的に枠体12
の一部をなす。仕切板16には第2絞り17が形
成される。
First, to explain the structure, numeral 11 is a frame on the power unit side which is a vibrating body, and numeral 12 is a frame on the vehicle body side which is a support. A partition plate 13 is fixed to the frame 11, and the portion of the partition plate 13 excluding the first aperture 14 formed in the center substantially forms a part of the frame 11. In addition, the frame body 12 includes an auxiliary frame 15 and a partition plate 1.
6 are fixed, and the auxiliary frame 15 is substantially the frame body 12.
form part of A second aperture 17 is formed on the partition plate 16 .

前記した、実体的に枠体11をなす仕切板13
と、実体的に枠体12をなす補助枠15との間
に、ゴム状弾性体18を加硫接着して、ゴム状弾
性体18の内側の、第1絞り14と第2絞り17
との間に流体主室19が形成される。仕切板13
の上側には、上面をダイヤフラム20で画成した
第1流体副次室21が形成され、また仕切板16
の下側には、下面をダイヤフラム22で画成した
第2流体副次室23が形成される。
The above-mentioned partition plate 13 that substantially forms the frame 11
A rubber-like elastic body 18 is vulcanized and bonded between the auxiliary frame 15 that substantially forms the frame 12, and the first aperture 14 and the second aperture 17 are formed inside the rubber-like elastic body 18.
A main fluid chamber 19 is formed between the two. Partition plate 13
A first fluid subchamber 21 whose upper surface is defined by a diaphragm 20 is formed on the upper side, and a partition plate 16
A second fluid sub-chamber 23 whose lower surface is defined by a diaphragm 22 is formed below the diaphragm 22 .

枠体11とダイヤフラム20との間には空気室
24が形成され、これは、枠体11に開口された
空気孔25を介して大気に連通している。また枠
体12とダイヤフラム22との間には空気室26
が形成され、これは、枠体12に開口された空気
孔27を介して大気に連通している。
An air chamber 24 is formed between the frame body 11 and the diaphragm 20, and this air chamber 24 communicates with the atmosphere through an air hole 25 opened in the frame body 11. Furthermore, an air chamber 26 is provided between the frame body 12 and the diaphragm 22.
is formed, which communicates with the atmosphere through air holes 27 opened in the frame 12.

第1絞り14は、第4,5図に示すように、仕
切板13に隙間をおいて固定された板体14a
と、仕切板13に開設された孔14bと、板体1
4aに開設された孔14cと、仕切板13及び板
体14aの間に、孔14b及び孔14cを連結し
且つ蛇行して形成された蛇行通路14dとからな
る。第2絞り17の構造は、第1絞り14と同様
であるが、その孔14b,14C蛇行通路14d
の長さや大きさの寸法を第1絞り14と相違させ
て、実体的に絞り14,17の径と長さとを変え
て減衰力が相違するようにしてある。
As shown in FIGS. 4 and 5, the first diaphragm 14 is a plate body 14a fixed to the partition plate 13 with a gap therebetween.
, the hole 14b opened in the partition plate 13, and the plate 1
4a, and a meandering passage 14d formed between the partition plate 13 and the plate body 14a, connecting the holes 14b and 14c and meandering. The structure of the second throttle 17 is similar to that of the first throttle 14, but its holes 14b, 14C and meandering passage 14d
The length and size of the first diaphragm 14 are different from those of the first diaphragm 14, and the diameter and length of the diaphragms 14 and 17 are substantially changed so that the damping forces are different.

前記流体主室19、第1流体副次室21、第2
流体副次室23には液体が充填されてあり、この
液体は、第1絞り14、第2絞り17を介して各
室19,21,23に連通するようにしてある。
また、ダイヤフラム20,22の剛性は、相互に
相違させている。
The fluid main chamber 19, the first fluid sub-chamber 21, the second
The fluid subchamber 23 is filled with liquid, and this liquid is communicated with each chamber 19 , 21 , 23 via the first restrictor 14 and the second restrictor 17 .
Further, the rigidities of the diaphragms 20 and 22 are made different from each other.

次に作用を説明する。 Next, the action will be explained.

振動体の上下振動が枠体11から入力されると
仕切板13が枠体11と一体に振動して、ゴム状
弾性体18を伸縮させる。すると、流体主室19
の容積が拡縮変化して、その都度流体主室19と
第1流体副次室21及び第2流体副次室23との
間で第1絞り14、第2絞り17を介して液体の
往復移動が生じる。この、液体が第1絞り14及
び第2絞り17を通過するときに、各絞り14,
17の流通抵抗を受けるため、この抵抗により振
動エネルギーが熱エネルギーに変換されて、前記
振動が減衰される。かくして枠体11に入力され
た振動は枠体12には伝達されないか、又は減衰
されて微弱になつた振動が枠体12に伝達される
ことになる。
When the vertical vibration of the vibrating body is input from the frame 11, the partition plate 13 vibrates together with the frame 11, causing the rubber-like elastic body 18 to expand and contract. Then, the fluid main chamber 19
The volume of the fluid expands and contracts, and the liquid moves back and forth between the main fluid chamber 19, the first fluid sub-chamber 21, and the second fluid sub-chamber 23 via the first restrictor 14 and the second restrictor 17 each time. occurs. When the liquid passes through the first aperture 14 and the second aperture 17, each aperture 14,
17, the vibration energy is converted into thermal energy by this resistance and the vibration is damped. In this way, the vibrations input to the frame body 11 are not transmitted to the frame body 12, or vibrations that have been damped and become weaker are transmitted to the frame body 12.

流体主室19の容積が縮小されたときには、そ
この液体が第1流体副次室21、第2流体副次室
23に移動するため、両副次室21,23の容積
が増大する。このときはダイヤフラム20,22
が流体主室19より遠い側に変形して前記容積の
増大を許容する。そして、このときの空気室2
4,26の容積変化は、孔25,27から空気が
外部に逃げ出すことによつて許容される。
When the volume of the main fluid chamber 19 is reduced, the liquid therein moves to the first sub-fluid chamber 21 and the second sub-fluid chamber 23, so that the volumes of both sub-chambers 21 and 23 increase. At this time, diaphragms 20 and 22
deforms toward the side farther from the main fluid chamber 19 to allow the increase in volume. At this time, air chamber 2
The change in volume of holes 25 and 26 is allowed by air escaping to the outside through holes 25 and 27.

第6図は、第4図のモデル図、第8図は、第4
図の模式図であり、第8図において、keは流体
主室19の液体を支える剛性、ccは第1絞り14
の減衰力、cdは第2絞り17の減衰力、mcは第
1絞り14内の液体質量とダイヤフラム20とに
よる質量、mdは第2絞り17内の液体質量とダ
イヤフラム22とによる質量、kcはダイヤフラ
ム20の剛性、kdはダイヤフラム22の剛性で
ある。かかる減衰力、質量、剛性を適度に設定す
ることにより防振装置の特性は第7図に示すよう
になる。
Figure 6 is a model diagram of Figure 4, Figure 8 is a model diagram of Figure 4.
In FIG. 8, ke is the rigidity that supports the liquid in the main fluid chamber 19, and cc is the first constriction 14.
, cd is the damping force of the second diaphragm 17, mc is the mass due to the liquid mass in the first diaphragm 14 and the diaphragm 20, md is the mass due to the liquid mass in the second diaphragm 17 and the diaphragm 22, kc is the The stiffness of the diaphragm 20, kd, is the stiffness of the diaphragm 22. By appropriately setting the damping force, mass, and rigidity, the characteristics of the vibration isolator become as shown in FIG. 7.

第7図において実線が減衰力の変移を示し、鎖
線が振動伝達力の変移を示している。IVはエン
ジンのアイドリング振動域である。このような特
性をもつ防振装置の狙いは、異なる周波数におい
て減衰力のピークを発生させて、例えば、エンジ
ンの上下振動である10Hz周辺、ステアリング共振
である30Hz周辺における減衰力を増大させ、且つ
通常のアイドリング振動域IVでの振動伝達力低
下をはかることにある。この図では、減衰力が右
側のピークに至るよりも少し小さい周波数の振動
域、即ちアイドリング振動域IVで振動伝達力が
低下しており、且つ10Hz及び30Hz付近で減衰力が
増大していて、前記狙いを達成している。かかる
狙いの達成は、この実施例が流体主室19に対し
て、相互に独立した2つの副次室21,23と、
各絞り14,17と、各ダイヤフラム20,22
とを備え、絞り14,17の各減衰力とダイヤフ
ラム20,22の各剛性とを、夫々相違させてい
るからである。
In FIG. 7, the solid line shows the change in damping force, and the chain line shows the change in vibration transmission force. IV is the engine's idling vibration range. The aim of a vibration isolator with such characteristics is to generate peak damping force at different frequencies, for example, to increase the damping force around 10Hz, which is the vertical vibration of the engine, and around 30Hz, which is the steering resonance. The purpose is to reduce the vibration transmission force in the normal idling vibration range IV. In this figure, the vibration transmission force decreases in a frequency range slightly lower than that where the damping force reaches the peak on the right side, that is, the idling vibration range IV, and the damping force increases around 10Hz and 30Hz. The above aim has been achieved. To achieve this aim, this embodiment has two mutually independent sub-chambers 21 and 23 for the main fluid chamber 19;
Each aperture 14, 17 and each diaphragm 20, 22
This is because the damping forces of the throttles 14 and 17 and the rigidities of the diaphragms 20 and 22 are made different.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、流体副
次室を、流体主室に対して複数並列に形成したた
め、複数の流体副次室が相互に独立して形成さ
れ、夫々が絞りを介して流体主室に直接且つ個別
に連通することになつているから、各絞りにより
もたらされる減衰力を独立して個別に設定するこ
とができ、したがつて両絞りによる減衰力が両絞
り相互間で干渉を受けることがない。このため、
複数現れる減衰力のピークを、減衰しようとする
振動域に適応させて設定することが可能となつた
から、各周波数の振動入力を悉く減衰することが
できる。
As explained above, according to the present invention, a plurality of fluid sub-chambers are formed in parallel to the main fluid chamber, so a plurality of fluid sub-chambers are formed independently of each other, and each of the fluid sub-chambers is formed independently of the fluid main chamber. The damping force provided by each throttle can be set independently and individually, so that the damping force caused by both throttles is directly and individually communicated with the main fluid chamber. There will be no interference. For this reason,
Since it is now possible to set a plurality of damping force peaks to suit the vibration range to be damped, it is possible to damp all vibration inputs at each frequency.

しかも、両流体副次室がいずれも流体主室に絞
りを介して直結されているために、流体は流体主
室の容積変化により、いずれかの位置で容積変化
が吸収されることなく振動入力の周波数に対応す
るいずれかの絞りを確実に通過する。このため、
アイドリング振動のような微少な流体圧変化によ
つても流体はその振動周波数に見合う絞りを必ず
通過することになり、確実にその振動入力を減衰
させる効果がある。
Moreover, since both fluid sub-chambers are directly connected to the main fluid chamber via a throttle, the fluid receives vibration input due to volume changes in the main fluid chamber without the volume changes being absorbed at either position. pass through one of the apertures corresponding to the frequency of . For this reason,
Even when there is a minute fluid pressure change such as idling vibration, the fluid always passes through a throttle that matches the vibration frequency, which has the effect of reliably damping the vibration input.

ところで、 流体共振レベル{tanδ)max}∝絞り断面積
の関係があるから、低周波数の振動において流体
の大きな共振レベル{tanδ)max}を得るため
には、絞りの断面積を大にし、且つ絞りの長さも
大にする必要がある。
by the way, Since there is a relationship between fluid resonance level {tan δ) max} ∝ diaphragm cross-sectional area, in order to obtain a large fluid resonance level {tan δ) max} in low-frequency vibrations, the diaphragm cross-sectional area should be increased and the diaphragm cross-sectional area should be increased. The length also needs to be increased.

そこで本発明では、各絞りを、流体主室側の孔
と流体副次室側の孔との間の流体通路を蛇行させ
て構成することにより、長さの延長を実現するこ
とができ、また前記流体通路の断面積を大にした
ために、低周波数振動域における共振レベルを大
にすることができる。
Therefore, in the present invention, by configuring each throttle by meandering the fluid passage between the hole on the fluid main chamber side and the hole on the fluid subchamber side, it is possible to realize an extension in length. Since the cross-sectional area of the fluid passage is increased, the resonance level in the low frequency vibration region can be increased.

また、本発明の各絞りは、振動体側の枠体と支
持体側の枠体とに個別に固定してあるため、アイ
ドリング振動のような流体主室内の微少な流体圧
の変化においても流体の前記共振レベルを大きく
することができる。
In addition, since each throttle of the present invention is individually fixed to the frame on the vibrating body side and the frame on the support side, even if there is a minute change in fluid pressure in the main fluid chamber such as idling vibration, the fluid The resonance level can be increased.

よつて、本発明においては振動入力の減衰効率
を向上することができる。
Therefore, in the present invention, the damping efficiency of vibration input can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図は従来例の振
動伝達力と減衰力との特性を示すグラフ、第3図
は第1図の模式図、第4図は本発明の第1実施例
を示す断面図、第5図は第4図のV−V線断面拡
大図、第6図は第4図のモデル図、第7図は第1
実施例の振動伝達力と減衰力との特性を示すグラ
フ、第8図は第4図の模式図である。 11……振動体側の枠体、12……支持体側の
枠体、13,16……仕切板、14,17……絞
り、15……補助枠、18……ゴム状弾性体、1
9……流体主室、20,22……ダイヤフラム、
21,23……流体副次室、24,26……空気
室。
Fig. 1 is a cross-sectional view of the conventional example, Fig. 2 is a graph showing the characteristics of vibration transmission force and damping force of the conventional example, Fig. 3 is a schematic diagram of Fig. 1, and Fig. 4 is the first example of the present invention. 5 is an enlarged cross-sectional view taken along the line V-V in FIG. 4, FIG. 6 is a model diagram of FIG. 4, and FIG. 7 is a cross-sectional view of FIG.
FIG. 8 is a graph showing the characteristics of vibration transmission force and damping force in the example, and is a schematic diagram of FIG. 4. 11... Frame on the vibrating body side, 12... Frame on the support side, 13, 16... Partition plate, 14, 17... Diaphragm, 15... Auxiliary frame, 18... Rubber-like elastic body, 1
9...Fluid main chamber, 20, 22...Diaphragm,
21, 23...Fluid subchamber, 24, 26...Air chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 振動体側の枠体と支持体側の枠体との間に、
両枠体の相対移動により内部の流体主室の容積を
変化させるゴム状弾性体を配置し、前記流体主室
には、当該流体主室の容積変化に対応して容積変
化する2つの流体副次室を、前記両枠体に個別に
固定した2つの絞りを個別に介して連結し、各絞
りを、流体主室側の孔と流体副次室側の孔との間
の流体通路を蛇行させることにより延長させ且つ
前記流体通路の断面積を大にして形成したことを
特徴とする流体入り防振装置。
1 Between the frame on the vibrating body side and the frame on the support side,
A rubber-like elastic body is arranged to change the volume of an internal main fluid chamber by relative movement of both frames, and the main fluid chamber has two sub-fluid chambers whose volume changes in response to changes in the volume of the main fluid chamber. The secondary chambers are connected through two throttles individually fixed to both frames, and each throttle is connected to the fluid passageway between the hole on the main fluid chamber side and the hole on the side of the fluid subchamber in a meandering manner. A fluid-filled vibration isolator characterized in that the fluid passage is extended by increasing the cross-sectional area of the fluid passage.
JP1173184A 1984-01-25 1984-01-25 Vibration isolating device containing fluid Granted JPS60155029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173184A JPS60155029A (en) 1984-01-25 1984-01-25 Vibration isolating device containing fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173184A JPS60155029A (en) 1984-01-25 1984-01-25 Vibration isolating device containing fluid

Publications (2)

Publication Number Publication Date
JPS60155029A JPS60155029A (en) 1985-08-14
JPH0247613B2 true JPH0247613B2 (en) 1990-10-22

Family

ID=11786172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173184A Granted JPS60155029A (en) 1984-01-25 1984-01-25 Vibration isolating device containing fluid

Country Status (1)

Country Link
JP (1) JPS60155029A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179541A (en) * 1984-02-27 1985-09-13 Nissan Motor Co Ltd Liquid charged power unit mount device
DE3611529A1 (en) * 1986-04-05 1987-10-08 Freudenberg Carl Fa ENGINE MOUNT WITH HYDRAULIC DAMPING
JPS6323041A (en) * 1986-07-16 1988-01-30 Honda Motor Co Ltd Fluid seal type vibration proofing device
JPS6366643U (en) * 1986-10-22 1988-05-06
FR2609766B1 (en) * 1987-01-20 1989-05-19 Peugeot ELASTIC SUPPORT, IN PARTICULAR FOR THE SUSPENSION OF A VEHICLE ENGINE
DE8701876U1 (en) * 1987-02-07 1988-06-09 Boge Ag, 5208 Eitorf, De
FR2613799B1 (en) * 1987-04-13 1990-12-07 Peugeot HYDROELASTIC SUPPORT, IN PARTICULAR FOR THE SUSPENSION OF A VEHICLE ENGINE
FR2617930B1 (en) * 1987-07-07 1992-07-31 Peugeot HYDROELASTIC SUPPORT, IN PARTICULAR FOR PROVIDING THE SUSPENSION OF AN ENGINE IN A VEHICLE
US4880215A (en) * 1988-08-05 1989-11-14 Tokai Rubber Industries, Ltd. Fluid-filled elastic mounting structure
JPH0510373A (en) * 1991-07-08 1993-01-19 Bridgestone Corp Vibration-proof device
US5286012A (en) * 1992-05-07 1994-02-15 Hutchinson Hydraulic antivibration devices
KR102466062B1 (en) * 2017-08-25 2022-11-14 현대자동차주식회사 Hydraulic engine mount

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132144A (en) * 1983-12-19 1985-07-15 Bridgestone Corp Vibration isolator
JPS60139941A (en) * 1983-12-28 1985-07-24 Bridgestone Corp Vibration isolator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132144A (en) * 1983-12-19 1985-07-15 Bridgestone Corp Vibration isolator
JPS60139941A (en) * 1983-12-28 1985-07-24 Bridgestone Corp Vibration isolator

Also Published As

Publication number Publication date
JPS60155029A (en) 1985-08-14

Similar Documents

Publication Publication Date Title
JPH033088B2 (en)
JPH0247613B2 (en)
US5887844A (en) Fluid-sealed vibration isolating device
EP0178652B1 (en) Liquid-filled type vibration damping structure
US4936555A (en) Vibration damping device
JP2532076B2 (en) Inner / outer cylinder type fluid filled power unit mount
JPH01238730A (en) Fluid seal type mount device
JP4544783B2 (en) Liquid seal vibration isolator
JPH01229132A (en) Fluid sealed type mount device
JPS60179540A (en) Liquid charged damper device
JPS6040841A (en) Vibration-proof device
JPH0237497B2 (en)
JPS63266242A (en) Fluid-sealed type mount device
JPH0771506A (en) Ff type automobile engine supporting device
JP2004036713A (en) Active liquid-sealed vibration control device
JPH0226337A (en) Inner-outer cylinder type fluid sealed vibration isolator
JP4169228B2 (en) Liquid filled vibration isolator
JP3716869B2 (en) Liquid filled mount
JPH053791Y2 (en)
JPS5845135Y2 (en) engine support device
JPH0349317Y2 (en)
JPH0242226A (en) Vibration damping device
JPS6262034A (en) Vibro-isolating supporter
JPS60231040A (en) Liquid-seal vibro-isolating device
JPH032089B2 (en)