JPH01229132A - Fluid sealed type mount device - Google Patents

Fluid sealed type mount device

Info

Publication number
JPH01229132A
JPH01229132A JP5547088A JP5547088A JPH01229132A JP H01229132 A JPH01229132 A JP H01229132A JP 5547088 A JP5547088 A JP 5547088A JP 5547088 A JP5547088 A JP 5547088A JP H01229132 A JPH01229132 A JP H01229132A
Authority
JP
Japan
Prior art keywords
chamber
fluid
orifice passage
support
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5547088A
Other languages
Japanese (ja)
Inventor
Ryoji Kanda
神田 良二
Kiyohiko Yoshida
清彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP5547088A priority Critical patent/JPH01229132A/en
Publication of JPH01229132A publication Critical patent/JPH01229132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To bring a good vibro-isolating effect into full play over a wide range of frequency by constituting a part of a partition member with an elastic partition film, while forming an intermediate chamber partitively between a movable member and this elastic partition film, and installing an orifice passage which makes this intermediate chamber communicate with a balance chamber. CONSTITUTION:At least a part of a partition member 34 is constituted of an elastic partition film 46 which absorbs a fluid pressure differential between a pressure chamber 36 and a balance chamber 38. Then, a rigid movable member 60 is installed in the partition member 34. An intermediate chamber 62 is formed partitively in an interval between this rigid movable member 60 and the elastic partition film 46. A high damping effect is brought into full play by a first orifice passage 56 which installs a second orifice passage 66, making the intermediate chamber 62 communicate with the balance chamber 38, in the rigid movable member 60 and a low motion spring effect as well by the second orifice passage 66, respectively. Thus, a good vibro-isolating effect can be brought into full play over a wide range of frequency.

Description

【発明の詳細な説明】 (技術分野) 本発明は、流体封入式マウント装置に係り、特に低周波
大振幅の入力振動に対する高減衰特性と共に、中周波小
振幅から高周波微小振幅の広い周波数域に亘る入力振動
に対して優れた低動ばね特性が有利に発揮せしめられ得
る、自動車用エンジンマウント等に用いて好適な流体封
入式マウン[・装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fluid-filled mount device, and in particular has high damping characteristics for input vibrations of low frequency and large amplitude, as well as a wide frequency range from medium frequency and small amplitude to high frequency and minute amplitude. The present invention relates to a fluid-filled mount device suitable for use in automobile engine mounts, etc., which can advantageously exhibit excellent low dynamic spring characteristics against a wide range of input vibrations.

(従来技術) 自動車用エンジンマウント等のマウント装置では、一般
に、低周波大振幅の入力振動に対する(aれた振動減衰
特性が要求されると共に、中周波小振幅から高周波微小
振幅に至る広い周波数域の入力振動に対して、優れた振
動絶縁特性が要求されるが、なかでも、低周波大振幅の
入力振動に対して良好な減衰効果を発揮することが要求
されろ。
(Prior Art) Mounting devices such as automobile engine mounts are generally required to have excellent vibration damping characteristics against input vibrations of low frequency and large amplitude, as well as a wide frequency range from medium frequency small amplitude to high frequency minute amplitude. Excellent vibration isolation characteristics are required for input vibrations, and in particular, a good damping effect is required for low-frequency, large-amplitude input vibrations.

そこで、近年、このようなマウント装置として、主たる
振動入力方向に所定距離を隔てて対向配置された第一の
支持体と第二の支持体とを、それらの間に介装されたゴ
ム弾性体にて弾性的に連結する一方、前記第二の支持体
に対して少なくとも一部が可撓性膜にて構成された隔壁
部祠を配して、該隔壁部+、(と前記第一の支持体との
間に所定の非圧縮性流体が封入された流体収容室を形成
し、更に該流体収容室内に仕切部月を配して、その内部
を第一の支持体側の受圧室と第二の支持体側の平衡室と
に仕切ると共に、それら受圧室と平衡室とを相互に連通
せしめるオリフィス通路を設けでなる、所謂流体封入式
マウントに置が提案されている。
Therefore, in recent years, as such a mounting device, a first support body and a second support body are arranged facing each other at a predetermined distance in the main vibration input direction, and a rubber elastic body interposed between them is used. At the same time, a partition part shrine, at least a part of which is made of a flexible membrane, is disposed with respect to the second support, and the partition part +, (and the first part) are elastically connected to each other. A fluid storage chamber filled with a predetermined incompressible fluid is formed between the support and the fluid storage chamber, and a partition is arranged inside the fluid storage chamber so that the inside thereof can be divided into a pressure receiving chamber on the first support side and a pressure receiving chamber on the first support side. It has been proposed to use a so-called fluid-filled mount which is partitioned into two equilibrium chambers on the support side and is provided with an orifice passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other.

このような構造の流体封入式マウント装置によれば、オ
リフィス通路内を流動される非圧縮性流体の共振周波数
を低周波数域にチューニングすることにより、該オリフ
ィス通路内乙こおげろ流体の液柱共振作用に基づいて、
低周波数域の入力振動に対する優れた減衰特性を得るこ
とができるのである。
According to the fluid-filled mounting device having such a structure, by tuning the resonance frequency of the incompressible fluid flowing in the orifice passage to a low frequency range, the liquid column of the fluid in the orifice passage can be reduced. Based on the resonance effect,
This makes it possible to obtain excellent damping characteristics for input vibrations in the low frequency range.

ところが、かかる構造のマウント装置においては、オリ
フィス通路に対して上述の如きチューニングを施すこと
により、低周波数域の入力振動に対する優れた減衰効果
は得られるものの、中乃至高周波数域の振動入力時には
、非圧縮性流体が、かかるオリフィス通路内を流動し難
くなることに起因して、マウントが高動ばね化し、却っ
て防振機能が低下するといった問題を有していたのであ
一方、これに対して、特開昭57−9340Σ公報等に
おいては、上述の如き構造のマウント装置に対して、そ
の仕切部材に、振動入力方向に所定寸法変形乃至は変位
可能な可動部材を配し、該可動部材の変形乃至は変位に
よって、受圧室と平衡室との間の流体圧差を吸収し、該
受圧室内の流体圧の上昇を回避するようにしたものが提
案されている。
However, in a mounting device having such a structure, although an excellent damping effect on input vibrations in the low frequency range can be obtained by performing the above-mentioned tuning on the orifice passage, when vibrations are input in the medium to high frequency range, Since it becomes difficult for the incompressible fluid to flow through the orifice passage, the mount becomes a highly dynamic spring, which actually reduces the vibration damping function. , Japanese Unexamined Patent Publication No. 57-9340Σ, etc., for a mount device having the above-mentioned structure, a movable member that can be deformed or displaced by a predetermined dimension in the vibration input direction is disposed on the partition member, and the movable member is A device has been proposed in which the fluid pressure difference between the pressure receiving chamber and the equilibrium chamber is absorbed by deformation or displacement to avoid an increase in the fluid pressure within the pressure receiving chamber.

しかしながら、このような可動部材による液圧吸収も、
流体の流動を伴うものであって、その流動流体の共振周
波数付近で、特に優れた振動伝達率の低減効果を発揮し
得る一方、該共振周波数より高周波数域の振動人力時に
は、著しいマウントの高動ばね化が惹起されることとな
る。そこで、通常、かかるマウント動ばねの増大による
防振性能の低下をできるだけ避けるべく、可動部材の変
位に伴う流動流体の共振周波数は、高周波数域に設定さ
れることとなるのであり、そのために中周波数域の入力
振動に対する防振効果が充分に得られ難か一つだのであ
る。
However, the absorption of hydraulic pressure by such movable members also
It is accompanied by fluid flow, and can exhibit a particularly excellent vibration transmissibility reduction effect near the resonance frequency of the flowing fluid. However, when the vibration is manually applied in a frequency range higher than the resonance frequency, the mount height increases significantly. This will cause a dynamic spring. Therefore, in order to avoid deterioration of vibration isolation performance due to the increase in the mount moving spring as much as possible, the resonance frequency of the flowing fluid accompanying the displacement of the movable member is usually set in a high frequency range. One of the reasons is that it is difficult to obtain a sufficient vibration isolation effect against input vibration in the frequency range.

そして、特に、自動車のエンジンマウンI・に対しては
、5〜15 Hz程度のエンジンシェイク等の低周波大
振幅の振動入力時における高減衰能と共に、20〜50
Hz程度のエンジンアイドル振動等の中周波小振幅の振
動入力時およびこもり音等の原因となる100〜300
 Hz程度の高周波微小振幅の振動入力時に、それぞれ
優れた低動ばね特性が要求されるために、上述の如き可
動部材を設けることによっても、未だその要求特性は充
分に満足され得す、特に中周波数域の振動入力時におけ
る高動ばね化が問題となっ°ζいたのである。
In particular, for automobile engine mounts, it has a high damping capacity of 20 to 50 Hz, as well as a high damping capacity when low frequency and large amplitude vibrations such as engine shake of about 5 to 15 Hz are input.
100 to 300, which can cause muffled noise, etc. when inputting medium frequency and small amplitude vibrations such as engine idle vibrations of around Hz.
Since excellent low dynamic spring characteristics are required when vibrations of high frequency and minute amplitude of about Hz are input, the required characteristics can still be fully satisfied even by providing the above-mentioned movable member. The problem was the high dynamic spring when inputting vibrations in the frequency range.

(解決課題) ここにおいて、本発明は、−上述の如き事情を背景とし
て為されたものであっ”ζ、その解決課題とするとごろ
は、低周波大振幅の入力振動に対する高減衰特性と共に
、中周波小振幅及び高周波微小振幅の入力振動に対して
、何れも優れた低動ばね特性が発揮され得、広い周波数
域に亘って良好なる防振特性が実現され得る流体封入式
マウント装置を従供することにある。
(Problem to be solved) Here, the present invention has been made against the background of the above-mentioned circumstances. Provided is a fluid-filled mounting device that can exhibit excellent low dynamic spring characteristics for input vibrations of small frequency amplitude and high frequency minute amplitude, and can realize good vibration isolation characteristics over a wide frequency range. There is a particular thing.

(解決手段) そして、かかる課題を解決するために、本発明は、主た
る振動入力方向に所定距離を隅でて対向配置された第一
の支持体と第二の支持体とを、それらの間に介装された
ゴム弾性体にて弾性的に連結する一方、前記第二の支持
体に対して少なくとも一部が可撓性膜にて構成された隔
壁部材を配して、該隔壁部材と前記第一の支持体との間
に所定の非圧縮性流体が封入された流体収容室を形成し
、更に該流体収容室内に仕切部月を配して、その内部を
第一の支持体側の受圧室と第二の支持体側の平衡室とに
仕切ると共に、それら受圧室と平衡室とを相互に連通せ
しめる第一のオリフィス通路を設りてなる流体封入式マ
うント装置において、前記仕切部材の少なくとも一部を
、前記受圧室と前記平衡室との間の流体圧差を吸収する
ように、内部に補強材が埋設されて前記振動入力方向に
所定量変形可能とされた弾性仕切膜にて構成する一方、
該弾性仕切膜に対して前記受圧室側乃至は前記平衡室側
に所定距離離隔して、前記振動入力方向に所定距離変位
可能な剛性可動部材を、前記仕切部材乃至は前記第二の
支持体に設けて、該剛性可動部材と前記弾性仕切膜との
間に中間室を画成すると共に、かかる剛性可動部材に対
して、該中間室を前記受圧室乃至は平衡室に連通せしめ
る第二のオリフィス通路を設け、前記弾性仕切膜の弾性
変形に基づいて、かかる第二のオリフィス通路内におけ
る流体の流動を許容する一方、該弾性仕切膜の補強材に
よる変形規制に基づいて、かかる第二のオリフィス通路
を通じての流体の自由な流通を阻止するように構成した
ことを、その特徴とするものである。
(Solution Means) In order to solve this problem, the present invention provides a first support body and a second support body that are arranged facing each other at a predetermined distance from each other in the main vibration input direction. A partition member, at least a part of which is made of a flexible membrane, is disposed on the second support, and the partition member is elastically connected to the second support by a rubber elastic body interposed therein. A fluid storage chamber filled with a predetermined incompressible fluid is formed between the first support and the fluid storage chamber. In the fluid-filled mount device, the fluid-filled mount device is partitioned into a pressure receiving chamber and an equilibrium chamber on the side of the second support body, and is provided with a first orifice passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other. at least a portion of the pressure receiving chamber and the equilibrium chamber by an elastic partition membrane having a reinforcing material embedded therein and deformable by a predetermined amount in the vibration input direction so as to absorb the fluid pressure difference between the pressure receiving chamber and the equilibrium chamber. While configuring
A rigid movable member that can be displaced a predetermined distance in the vibration input direction is spaced a predetermined distance from the pressure receiving chamber side or the equilibrium chamber side with respect to the elastic partition membrane, and is connected to the partition member or the second support member. and defining an intermediate chamber between the rigid movable member and the elastic partition membrane, and communicating the intermediate chamber with the pressure receiving chamber or the equilibrium chamber with respect to the rigid movable member. An orifice passage is provided, and based on the elastic deformation of the elastic partition membrane, fluid flow is allowed in the second orifice passage, while the second It is characterized in that it is configured to prevent free flow of fluid through the orifice passage.

(実施例) 以下、本発明を更に具体的に明らかにするために、本発
明の実施例について、図面を参照しつつ、詳細に説明す
ることとする。
(Examples) Hereinafter, in order to clarify the present invention more specifically, examples of the present invention will be described in detail with reference to the drawings.

先ず、第1図には、本発明を自動車用エンジンマウント
に適用したものの一具体例が示されている。この図にお
いて、10及び12は、それぞれ、第−及び第二の支持
体としての第−及び第二の支持金具であって、振動入力
方向(図中、上下方向)に所定距離を隔てて対向するよ
うに配置されている。
First, FIG. 1 shows a specific example of an automobile engine mount to which the present invention is applied. In this figure, reference numerals 10 and 12 denote first and second support fittings as second and second supports, respectively, which face each other at a predetermined distance in the vibration input direction (in the vertical direction in the figure). It is arranged so that

かかる第一の支持金具10は、比較的小径の厚肉円板形
状を呈しており、その軸方向外側面の中央には、軸方向
外方に延びる取付ボルト20が立設されている。また一
方、第二の支持金具12は、有底筒状の底部金具14の
開口部に対して、開口一部金具16が一体的にカシメ固
定された、全体として比較的大径の袋状構造を成してお
り、該底部金具14の底壁部には、軸方向外方に延びる
複数の取付ボルト22が立設されている。
The first support fitting 10 has a thick disk shape with a relatively small diameter, and a mounting bolt 20 that extends axially outward is erected at the center of its axially outer surface. On the other hand, the second support fitting 12 has a bag-like structure having a relatively large diameter as a whole, with an opening part of the fitting 16 being integrally fixed to the opening of the bottom fitting 14 in the shape of a cylinder with a bottom. A plurality of mounting bolts 22 are provided on the bottom wall of the bottom metal fitting 14 and extend axially outward.

そして、かかる第二の支持金具12は、その内側空間が
第一の支持金具10側に開口する状態で、該第−の支持
金具10と同心的に配置されていると共に、かかる配置
状態下において、円環状のゴム弾性体18が、第二の支
持金具12の開口部を流体密に閉塞する状態で、それぞ
れ、内外周部において、第一の支持金具10の外周部及
び第二の支持金具12の開口部内周面に一体加硫接着さ
れて配設されており、それによって、第一の支持金具1
0と第二の支持金具12とが、かかるゴム弾性体18に
て弾性的に連結されている。なお、図中、24は、ゴム
弾性体18内に、該ゴム弾性体18と同心的に埋設され
た環状の補強金具である。
The second support metal fitting 12 is arranged concentrically with the second support metal fitting 10 with its inner space opening toward the first support metal fitting 10, and in this arrangement state, , the annular rubber elastic body 18 fluid-tightly closes the opening of the second support fitting 12, and the outer peripheral portion of the first support fitting 10 and the second support fitting The first support fitting 1 is integrally vulcanized and bonded to the inner peripheral surface of the opening of the first support fitting 1.
0 and the second support fitting 12 are elastically connected by the rubber elastic body 18. In addition, in the figure, 24 is an annular reinforcing metal fitting embedded in the rubber elastic body 18 concentrically with the rubber elastic body 18.

なお、このような本実施例におけるエンジンマウントは
、第一の支持金具10が取付ボルト20によってエンジ
ンユニット側に取り付けられる一方、第二の支持金具1
2が取付ボルト22によって車体側に取り付けられ、そ
れによってかかるエンジンユニットを車体に対して防振
支持せしめることとなる。
In addition, in the engine mount in this embodiment, the first support metal fitting 10 is attached to the engine unit side with the mounting bolt 20, while the second support metal fitting 1 is attached to the engine unit side with the mounting bolt 20.
2 is attached to the vehicle body side with mounting bolts 22, thereby supporting the engine unit against the vehicle body in a vibration-proof manner.

そして、ここにおいて、前記第二の支持金具12の内部
には、可撓性ゴム膜からなる隔壁部材としてのダイヤフ
ラム26が、その外周縁部を、底部金具14と開口部金
具16との間で外周縁部を流体密に挟持されることによ
り、配設されている。
Here, inside the second support fitting 12, a diaphragm 26 as a partition member made of a flexible rubber membrane extends its outer peripheral edge between the bottom fitting 14 and the opening fitting 16. It is disposed by fluid-tightly sandwiching the outer peripheral edge.

そして、それによって、該ダイヤフラム26と前記第一
の支持金具10との間において、一部が前記ゴム弾性体
18にて画成された流体収容室としての密閉空間が形成
されており、この密閉空間内に、水やポリアルキレンゲ
リコール等の所定の非圧縮性流体が封入されている。な
お、ダイヤフラム26と底部金具14との間の空間は、
該ダイヤフラム26の変形を許容するための空気室28
とされている。
As a result, a sealed space as a fluid storage chamber is formed between the diaphragm 26 and the first support fitting 10, and a part of the space is defined by the rubber elastic body 18. A predetermined incompressible fluid such as water or polyalkylene gellicol is sealed within the space. Note that the space between the diaphragm 26 and the bottom metal fitting 14 is
Air chamber 28 for allowing deformation of the diaphragm 26
It is said that

また、かかる第二の支持金具12には、ダイヤフラム2
6と同様に、底部金具14と開口部金具16との間で外
周縁部を流体密に挟持されて、全体として略円盤形状を
呈する仕切部材34が配設されている。そして、該仕切
部材34によって、F記流体収容空間が、ゴム弾性体1
8側に位置して振動人力に際して内圧変動が惹起される
受圧室36と、ダイヤフラム26側に位置して該ダイヤ
プラム26の変形にて内圧変動が回避される平衡室3B
とに仕切られている。
The second support fitting 12 also includes a diaphragm 2.
6, a partition member 34 having an approximately disk shape as a whole is disposed, the outer peripheral edge of which is fluid-tightly held between the bottom metal fitting 14 and the opening metal fitting 16. The partition member 34 divides the fluid storage space F into the rubber elastic body 1.
A pressure receiving chamber 36 is located on the 8 side and causes internal pressure fluctuations when vibrating human power is applied, and an equilibrium chamber 3B is located on the diaphragm 26 side and the internal pressure fluctuations are avoided by deformation of the diaphragm 26.
It is divided into two parts.

ここにおいて、かかる仕切部材34は、流体収容空間の
内周面に沿って配された、略円環盤形状の環状支持部3
0と、該環状支持部30の内部に配された、略円板形状
の仕切壁部32とによって構成され一ζいる。
Here, the partition member 34 includes an annular support portion 3 having a substantially annular disk shape disposed along the inner circumferential surface of the fluid storage space.
0 and a substantially disc-shaped partition wall 32 disposed inside the annular support 30.

より具体的には、かかる環状支持部30は、軸方向に重
ね合わせられた2枚の環状プレート44.46にて構成
されており、その外周縁部を、底部金具14と開口部金
具16との間で流体密に挟持されることによって、第二
の支持金具12に対して位置固定に配設されている。ま
た、かかる環状支持部30内には、周方向に延びる環状
の空間が形成されており、そして該環状空間が、各環状
プレート44.46に形成された連通孔52.54を通
じて、受圧室36および平衡室38に、それぞれ連通せ
しめられることにより、それら受圧室36と平衡室38
とを相互に連通せしめる、所定長さの第一のオリフィス
通路56が形成されている。
More specifically, the annular support portion 30 is composed of two annular plates 44 and 46 superimposed in the axial direction, and the outer peripheral edge thereof is connected to the bottom metal fitting 14 and the opening metal fitting 16. By being fluid-tightly sandwiched therebetween, it is arranged in a fixed position relative to the second support fitting 12. Further, an annular space extending in the circumferential direction is formed within the annular support portion 30, and the annular space is connected to the pressure receiving chamber 36 through communication holes 52.54 formed in each annular plate 44.46. and the equilibrium chamber 38, so that the pressure receiving chamber 36 and the equilibrium chamber 38 are communicated with each other.
A first orifice passage 56 of a predetermined length is formed which allows the two to communicate with each other.

そして、第一の支持金具10と第二の支持金具12との
間に振動が入力されて、受圧室36と平衡室38との間
に流体圧差が惹起されると、それら受圧室36と平衡室
38との間で、かかる第一のオリフィス通路56を通じ
ての流体の流動が生ぜしめられるようになっている。
When vibration is input between the first support fitting 10 and the second support fitting 12 and a fluid pressure difference is induced between the pressure receiving chamber 36 and the equilibrium chamber 38, the pressure receiving chamber 36 and the equilibrium chamber 38 are brought into equilibrium. Fluid flow is created between the chamber 38 and the chamber 38 through the first orifice passage 56.

また、かかる環状支持部30の中央孔40内には、該環
状支持部30と協働して仕切部材34を構成する前記仕
切壁部32が配されており、該仕切壁部32にて中央孔
40が閉塞されている。
Further, the partition wall portion 32 that cooperates with the annular support portion 30 to constitute the partition member 34 is disposed in the center hole 40 of the annular support portion 30, and the partition wall portion 32 is located at the center of the annular support portion 30. Hole 40 is closed.

この仕切壁部32は、所定のゴム材料にて形成された、
略円板状の弾性仕切膜4Gと、該弾性仕切膜46の外周
面に加硫接着せしめられた、薄肉短筒状の取付金具48
とによって構成されCいる。
This partition wall portion 32 is made of a predetermined rubber material.
A substantially disc-shaped elastic partition membrane 4G and a thin-walled short cylindrical mounting fitting 48 vulcanized and bonded to the outer peripheral surface of the elastic partition membrane 46.
It is composed of C.

また、かかる弾性仕切膜46の内部には、その略軸方向
中央部において、帆布等の補強材50が、略全面に亘っ
て埋設されており、それによって該弾性仕切膜46の強
度の向上が図られていると共に、弾性変形量が所定量に
規制されている。そして、このような仕切壁部32は、
前記環状支持部30の中央孔40内に対して、取イマ1
金具48が圧入、固定されることによって、該中央孔4
0内を、受圧室36側部分において軸直角方向に仕切る
状態で、位置固定に組み付けられている。
Further, inside the elastic partition membrane 46, a reinforcing material 50 such as a canvas is embedded over almost the entire surface of the elastic partition membrane 46 at the center in the axial direction, thereby improving the strength of the elastic partition membrane 46. At the same time, the amount of elastic deformation is regulated to a predetermined amount. And, such a partition wall portion 32 is
With respect to the inside of the central hole 40 of the annular support part 30,
By press-fitting and fixing the metal fitting 48, the center hole 4
The inside of the pressure receiving chamber 36 is partitioned in the direction perpendicular to the axis and assembled in a fixed position.

そして、振動の入力に際して、受圧室36と平衡室38
との間に流体圧差が惹起された際、かかる仕切壁部32
を構成する弾性仕IJJ膜46が、その流体圧差を吸収
する方向に、所定量だけ変形し得るようにされているの
であり、この弾性仕切膜46の変形に伴って、環状支持
部30の中央孔40内を、封入流体が実質的に流動せし
められるようになっているのである。
When vibration is input, the pressure receiving chamber 36 and the equilibrium chamber 38
When a fluid pressure difference is caused between the partition wall 32
The elastic partition IJJ membrane 46 constituting the annular support part 30 is deformed by a predetermined amount in the direction of absorbing the fluid pressure difference. The enclosed fluid is substantially allowed to flow within the bore 40.

更にまた、このような構造とされた仕切部材34にあっ
ては、その環状支持部30の中央孔40内における、上
記仕切壁部32の配設位置よりも平衡室38側に位置し
て、該中央孔40の内周面上に周方向全周心こ亘って延
びる2条の支持片58.58が、軸方向に互いに所定距
離を隔てて形成されており、そして、それらの支持片5
8.58間に、外周縁部が入り込まされた状態で、略円
板形状の可動部材60が配設されている。そして、それ
によって、かかる可動部材60か、上記仕切壁部32に
対して振動入力方向に所定距離を晒でて、互いに略平行
に配設されているのであり、それら仕切壁部32と可動
部材60との間において、受圧室36及び平衡室38に
対してそれら両部材32.60にて画された中間室62
が形成されているのである。
Furthermore, in the partition member 34 having such a structure, the partition member 34 is located within the central hole 40 of the annular support portion 30 closer to the equilibrium chamber 38 than the position where the partition wall portion 32 is disposed, Two supporting pieces 58 and 58 are formed on the inner circumferential surface of the central hole 40, extending over the entire circumference in the circumferential direction and spaced apart from each other by a predetermined distance in the axial direction.
A substantially disk-shaped movable member 60 is disposed with the outer peripheral edge inserted between the two ends. As a result, the movable member 60 is exposed a predetermined distance from the partition wall 32 in the vibration input direction and is disposed substantially parallel to each other, and the partition wall 32 and the movable member 60, there is an intermediate chamber 62 defined between the pressure receiving chamber 36 and the equilibrium chamber 38 by the two members 32 and 60.
is being formed.

ところで、かかる可動部材60は、金属等の剛性材料に
て形成されており、且つその外周縁部の肉厚が、支持片
58.58の対向面間距離よりも薄くされていることに
よって、それら支持片58.58に対する当接にて規制
される所定寸法、振動入力方向たる軸方向に変位可能に
支持されている。
By the way, the movable member 60 is made of a rigid material such as metal, and the thickness of its outer peripheral edge is thinner than the distance between the opposing surfaces of the support pieces 58 and 58. It is supported to be movable in the axial direction, which is the vibration input direction, by a predetermined dimension regulated by contact with the support pieces 58 and 58.

なお、該可動部材60の外周縁部の両面には、それぞれ
、支持片58.51Hこ対する当接時の衝撃を緩和して
異音の発生を防止するために、緩衝ゴム層68が設けら
れている。
Note that buffer rubber layers 68 are provided on both sides of the outer peripheral edge of the movable member 60, respectively, in order to reduce the impact when the movable member 60 comes into contact with the support pieces 58 and 51H and prevent the generation of abnormal noise. ing.

また、かかる可動部材60には、その中央部分において
、軸方向一方の側に向かって延びる筒状部64が所定長
さで形成されており、そして該筒状部64の内部に、か
かる可動部材6oの両側部分、即ら中間室62と平衡室
38とを連通せしめる第二のオリフィス通路66が形成
されているのである。
Further, the movable member 60 has a cylindrical portion 64 having a predetermined length extending toward one side in the axial direction at its central portion, and inside the cylindrical portion 64, the movable member A second orifice passage 66 is formed to connect both sides of 6o, that is, the intermediate chamber 62 and the equilibrium chamber 38.

そして、このような可動部材60にあっては、支持片5
8.58間での移動に基づき、前記弾性仕切膜46の所
定量までの変形に際して、中間室62内の液圧上昇を回
避せしめて、該弾性仕切膜46の変形による中央孔40
を通じての、受圧室36と平衡室38との間における実
質的な流体の流動を許容する一方、かかる弾性仕切膜4
6の変形が過大となった場合には、該弾性仕切膜46の
変形に基づく、受圧室36内の液圧変動に対応した中間
室62内の液圧変動によって、該中間室62と平衡室3
8との間で、第二のオリフィス通路66を通じての流体
の流動が生ぜしめられることとなる。
In such a movable member 60, the support piece 5
8.58, when the elastic partition membrane 46 is deformed to a predetermined amount, an increase in the hydraulic pressure in the intermediate chamber 62 is avoided, and the central hole 40 due to the deformation of the elastic partition membrane
The elastic partition membrane 4 allows substantial fluid flow between the pressure receiving chamber 36 and the equilibrium chamber 38 through the
If the deformation of the elastic partition membrane 6 becomes excessive, the fluid pressure fluctuation in the intermediate chamber 62 corresponding to the fluid pressure fluctuation in the pressure receiving chamber 36 based on the deformation of the elastic partition membrane 46 causes the intermediate chamber 62 and the equilibrium chamber to 3
8 through the second orifice passage 66.

すなわち、上述の如き構造とされた、本実施例における
エンジンマウントにあっては、振動の入力に際しての受
圧室36の液圧変動に基づいて、封入流体の流動が生ぜ
しめられる流体流路として、受圧室36と平衡室38と
の間に設けられた第一のオリフィス通路56及び中央孔
40と、中間室62と平衡室38との間に設けられた第
二のオリフィス通路56とが設けられており、且つ中央
孔40は弾性仕切膜46及び可動部材6oによって、ま
た第二のオリフィス通路56は弾性仕切B!46によっ
て、それぞれ、流体の自由な流通が阻止されているので
ある。
That is, in the engine mount of the present embodiment having the above-described structure, the fluid flow path in which the enclosed fluid is caused to flow based on the fluid pressure fluctuation of the pressure receiving chamber 36 upon input of vibration; A first orifice passage 56 and a central hole 40 are provided between the pressure receiving chamber 36 and the equilibrium chamber 38, and a second orifice passage 56 is provided between the intermediate chamber 62 and the equilibrium chamber 38. The central hole 40 is defined by an elastic partition membrane 46 and the movable member 6o, and the second orifice passage 56 is defined by an elastic partition B! 46 respectively prevent free flow of fluid.

そして、ここにおいて、かがる第一のオリフィス通路5
6は、その内部を流動される流体の液柱共振作用によっ
て、エンジンシェイクやバウンス等に相当する、周波数
:5〜15)Iz、振幅:±111程度の低周波大振幅
の入力振動に対して、優れた振動減衰性能が発揮され得
るように、その長さや流通断面積がチューニングされて
いるのである。そしてまた、弾性仕切膜46の変形量は
、その変形によっては、かがる低周波大振幅の振動入力
時における受圧室36内の液圧変動が吸収しきれず、該
受圧室36内に充分な内圧変動が生ぜしめられ得るだけ
の大きさに設定されており、それによって低周波大振幅
の振動入力時において、第一のオリフィス通路56を通
じて流動せしめられる流体量が充分るこ確保され得るよ
うになっている。
And here, the first orifice passage 5
6 is able to withstand input vibrations of low frequency and large amplitude with frequency: 5 to 15) Iz and amplitude: ±111, which corresponds to engine shake, bounce, etc., due to the liquid column resonance of the fluid flowing inside. Its length and cross-sectional area are tuned to provide excellent vibration damping performance. Furthermore, depending on the amount of deformation of the elastic partition membrane 46, the fluid pressure fluctuations within the pressure receiving chamber 36 at the time of low frequency, large amplitude vibration input may not be fully absorbed, and the pressure receiving chamber 36 may not have sufficient capacity. The first orifice passage 56 is set to a size large enough to cause internal pressure fluctuations, thereby ensuring a sufficient amount of fluid flowing through the first orifice passage 56 when low frequency and large amplitude vibrations are input. It has become.

また、第二のオリフィス通路66は、アイドル振動等に
相当する、周波数:20〜50 Hz 、振幅:±Q、
 2 ml程度の中周波小振幅の入力振動に対して、そ
の内部を流動される流体の液柱共振作用によって優れた
低動ばね特性が発揮され得るように、その長さや流通断
面積がチューニングされているのである。そしてまた、
弾性仕切膜46の変形量は、かかる中周波小振幅の振動
入力時に生ぜしめられる受圧室36内の液圧変動が、そ
の変形によって充分に吸収され得るだけの大きさに設定
されている一方、可動部材60の変位量は、その変位に
よっては、かかる中周波小振幅の振動入力時に、弾性仕
切膜46の変形にて生ぜしめられる中間室62内の液圧
変動が吸収しきれず、咳中間室62内に充分な内圧変動
が生ぜしめられ得るだけの大きさに設定されており、そ
れによって中周波小振幅の振動入力時において、第二の
オリフィス通路66を通じて流動せしめられる流体量が
充分に確保され得るようになっている。なお、第一のオ
リフィス通路56は、かかる中周波小振幅の振動入力時
には実質的に閉塞状態となり、9?iど機能しなくなる
Further, the second orifice passage 66 has a frequency of 20 to 50 Hz, an amplitude of ±Q, which corresponds to idle vibration, etc.
Its length and flow cross-sectional area are tuned so that it can exhibit excellent low dynamic spring characteristics due to the liquid column resonance effect of the fluid flowing inside it in response to medium-frequency, small-amplitude input vibrations of about 2 ml. -ing and again,
The amount of deformation of the elastic partition membrane 46 is set to be large enough to sufficiently absorb fluid pressure fluctuations within the pressure receiving chamber 36 that occur when such medium-frequency, small-amplitude vibrations are input. Depending on the amount of displacement of the movable member 60, the fluid pressure fluctuations in the intermediate chamber 62 caused by the deformation of the elastic partition membrane 46 cannot be fully absorbed when such medium-frequency, small-amplitude vibrations are input. The size is set to be large enough to generate sufficient internal pressure fluctuations within the second orifice passage 62, thereby ensuring a sufficient amount of fluid flowing through the second orifice passage 66 when medium frequency and small amplitude vibrations are input. It is now possible to do so. It should be noted that the first orifice passage 56 is substantially closed when such medium-frequency, small-amplitude vibration is input, and 9? It stops functioning.

さらに、仕切部材34を構成する環状支持部30に設け
られた中央孔40は、こもり音等の発仕原因となる、周
波数:100−300112.振幅:±0.051m程
度の高周波微小振幅の入力振動に対して、弾性仕切膜4
6の変形及び可動部材60の変位に基づいてその内部を
流動される流体の液柱共振作用によって、優れた低動ば
ね特性が発揮され得るように、その長さや流通断面積が
チューニングされているのである。そしてまた、可動部
材60の変位量は、かかる高周波微小振幅の振動入力時
に、弾性仕切11N46の変形にて住ぜしめられる中間
室62内の液圧変動が、その変位によって充分に吸収さ
れ得るだけの大きさに設定されており、それによって高
周波微小振幅の振動入力時において、中央孔40を通じ
Cの実質的な゛流体の流動が生ぜしめられるようになっ
ている。なお、かかる高周波微小振幅の振動入力時には
、第一のオリフィス通路56と共に、第二のオリフィス
通路66も閉塞状態となり、殆ど機能しなくなる。
Furthermore, the central hole 40 provided in the annular support part 30 constituting the partition member 34 has a frequency of 100-300112. Amplitude: The elastic partition membrane 4
The length and flow cross-sectional area of the movable member 60 are tuned so that excellent low dynamic spring characteristics can be exhibited by the liquid column resonance effect of the fluid flowing inside the movable member 60 based on the deformation of the movable member 60 and the displacement of the movable member 60. It is. Furthermore, the amount of displacement of the movable member 60 is such that when such high-frequency, small-amplitude vibrations are input, fluid pressure fluctuations in the intermediate chamber 62, which is occupied by the deformation of the elastic partition 11N46, can be sufficiently absorbed by the displacement. The size is set to , so that a substantial fluid flow of C is caused through the central hole 40 when vibrations of high frequency and minute amplitude are input. It should be noted that when such high-frequency, minute-amplitude vibrations are input, the second orifice passage 66 as well as the first orifice passage 56 become closed, and almost no longer function.

従って、このような本実施例るこおけるエンジンマウン
トにあっては、第一のオリフィス通路56を通じて流動
せしめられる流体の液柱共振作用むこ基づいて、低周波
大振幅の入力振動を良好に減衰することができると共に
、第二のオリフィス通路66及び環状支持部30の中央
孔40を通して流動せしめられる流体の液柱共振作用に
基づいて、中周波小振幅乃至高周波微小振幅の人力振動
を良好に遮断することができるのである。
Therefore, in the engine mount of this embodiment, low-frequency, large-amplitude input vibrations can be well damped based on the liquid column resonance effect of the fluid flowing through the first orifice passage 56. In addition, based on the liquid column resonance effect of the fluid flowing through the second orifice passage 66 and the central hole 40 of the annular support section 30, human vibrations of medium frequency and small amplitude to high frequency and minute amplitude can be effectively blocked. It is possible.

そして、それによって、かかる本実施例におけるエンジ
ンマウントにあっては、前述の如き従来の流体封入弐マ
ウント装置に比して、低周波大振幅の入力振動に対する
高減衰能及び高周波微小振幅の入力振動に対する低動ば
ね特性を確保しつつ、中j月波小振幅の入力振動に対す
る低動ばね特性の向上が、極めて有利に達成され得るの
であり、またこのようなエンジンマウンI・を用いるこ
とによって、特に、アイ1−ル振動に対する防振効果の
向上が極めて効果的に図られ得ることとなるのである。
As a result, the engine mount of this embodiment has a high damping ability for low frequency, large amplitude input vibrations, and a high damping ability for high frequency, small amplitude input vibrations, compared to the conventional fluid-filled second mount device as described above. By using such an engine mount I, it is possible to extremely advantageously achieve an improvement in the low dynamic spring characteristic against small amplitude input vibrations while ensuring low dynamic spring characteristic against the input vibration of medium-sized waves with small amplitude. In particular, the vibration damping effect against eye vibration can be extremely effectively improved.

また、本実施例におりるエンジンマウンI・にあっては
、弾性仕切膜46が、外周部に取付金具48が一体加硫
接着されてなる仕切部材34として構成され、環状支持
部30に対する取付けが、該取付金具40の中央孔40
内への圧入にて行′t)れるようになっていることから
、その組付けが容易であり、また該弾性仕切膜46を環
状支持部30に対して直接に一体加硫接着する場合に比
べて、製造が容易であるといった利点をも有しているの
である。
In addition, in the engine mount I according to this embodiment, the elastic partition membrane 46 is configured as a partition member 34 with a mounting fitting 48 integrally vulcanized and bonded to the outer circumference, and the elastic partition membrane 46 is configured as a partition member 34 that is integrally vulcanized and bonded to the outer circumferential portion, and is attached to the annular support portion 30. However, the center hole 40 of the mounting bracket 40
Since the elastic partition membrane 46 is press-fitted into the annular support part 30, it is easy to assemble it. It also has the advantage of being easier to manufacture.

以上、本発明の実施例について詳述してきたが、これら
は文字通りの例示であって、本発明は、かかる具体例に
のみ限定しで解釈されるものではない。
Although the embodiments of the present invention have been described above in detail, these are literal illustrations, and the present invention is not to be construed as being limited only to these specific examples.

例えば、第2図に示されているように、可動部材60を
、仕切壁部32よりも受圧室36側に位置するように、
仕切部材34の中央孔40内に配することも可能であり
、そのような配置形態のもの乙こおいても、第一のオリ
フィス通路56、第二のオリフィス通路66及び中央孔
40等に対して、前記実施例と同様なチューニングを施
すことによって、本発明の効果が有効に奏せしめられ得
ることとなる。なお、かかる第2図るこおいては、その
理解を容易とするために、前記第一の実施例と同様な構
造とされた部材については、それぞれ、同一の符号を付
しておくこととする。
For example, as shown in FIG. 2, the movable member 60 is positioned closer to the pressure receiving chamber 36 than the partition wall 32,
It is also possible to arrange it within the center hole 40 of the partition member 34, and even in such an arrangement, the first orifice passage 56, the second orifice passage 66, the center hole 40, etc. Therefore, by performing the same tuning as in the above embodiment, the effects of the present invention can be effectively exhibited. In addition, in this second drawing, in order to facilitate understanding, the same reference numerals are given to the members having the same structure as in the first embodiment. .

また、前記実施例においては、弾性仕切膜46と可動部
材60とが、略同面積にて形成されていたが、それらは
必ずしも同面積に設定する必要はない。
Further, in the embodiment described above, the elastic partition membrane 46 and the movable member 60 were formed to have approximately the same area, but they do not necessarily need to be set to have the same area.

更にまた、第一のオリフィス通路56は、必ずしも仕切
部材34に設ける必要はなく、例えば第二の支持金具1
2の外側等において形成することも可能である。
Furthermore, the first orifice passage 56 does not necessarily need to be provided in the partition member 34; for example, the first orifice passage 56
It is also possible to form it on the outside of 2 or the like.

また、かかる第一のオリフィス通路56の形態等によっ
ては、可動部材60を第二の支持金具12に対して配設
することも可能である。
Further, depending on the form of the first orifice passage 56, the movable member 60 may be disposed relative to the second support fitting 12.

さらに、第二のオリフィス通路56の具体的形熊は、例
示の如き直線状のものに限定されるものではなく、例え
ば螺旋状等の種々なる形態にて形成することが可能であ
る。
Further, the specific shape of the second orifice passage 56 is not limited to the linear shape shown in the example, but can be formed in various shapes, such as a spiral shape, for example.

加えて、前記実施例では、自動車用エンジンマウントに
対して本発明を適用したものの具体例について述べたが
、本発明は、それ以外の他の装置等における防振支持マ
ウントや連結マウント等に対しても、有効に適用され得
るものであることは、勿論である。
In addition, in the above embodiment, a specific example was described in which the present invention was applied to an automobile engine mount, but the present invention can also be applied to vibration-proof support mounts, connection mounts, etc. in other devices. Of course, it can also be effectively applied.

その他、−々列挙はしないか、本発明は当業者の知識に
基づいて種々なる変更、修正、改良等を加えた態様にお
いて実施され得るものであり、またそのような実施態様
が、本発明の趣旨を逸脱しない限り、何れも本発明の範
囲内に含まれるものであることは、言うまでもないとこ
ろである。
In addition, the present invention may be implemented in various changes, modifications, improvements, etc. based on the knowledge of those skilled in the art, and such embodiments may be incorporated into the present invention. It goes without saying that any of these are included within the scope of the present invention as long as they do not deviate from the spirit.

(発明の効果) 上述の説明から明らかなように、このような本発明に従
う構造とされたマウント装置にあっては、第一のオリフ
ィス通路を通じての流体の流動に基づいて、低周波大振
幅の入力振動に対する高減衰効果が、また第二のオリフ
ィス通路を通じての流体の流動に基づいて、中周波小振
幅の入力振動に対する低動ばね効果が、更に弾性仕切膜
の変形及び可動部材の変位に伴う流体の流動に基づいて
、高周波微小振幅の入力振動に対する低動ばね効果が、
それぞれ、有効に発揮せしめられ得るのである。
(Effects of the Invention) As is clear from the above description, in the mounting device structured according to the present invention, low-frequency, large-amplitude A high damping effect on input vibrations, and also a low dynamic spring effect on medium frequency and small amplitude input vibrations due to the fluid flow through the second orifice passage, further accompanied by the deformation of the elastic partition membrane and the displacement of the movable member. Based on the fluid flow, the low dynamic spring effect on high frequency small amplitude input vibration is
Each can be put to effective use.

そして、それ故、かかる本発明に従えば、従来の流体封
入式マウント装置に比して、低周波大振幅の入力振動に
対する高減衰能及び高周波微小振幅の入力振動に対する
低動ばね特性を確保しつつ、中周波小振′幅の入力振動
に対する低動ばね特性の向上が、極めて有利に達成され
得るのであり、例えば、自動車用のエンジンマウントに
適用することによって、特に、アイドル振動の防振効果
の向上が極めて効果的に図られ得ることとなるのである
Therefore, according to the present invention, compared to conventional fluid-filled mounting devices, it is possible to ensure high damping ability against low frequency, large amplitude input vibrations, and low dynamic spring characteristics against high frequency, minute amplitude input vibrations. At the same time, it is possible to extremely advantageously improve the low dynamic spring characteristics against input vibrations of medium frequency and small amplitude. This means that improvements in the quality of life can be achieved extremely effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例たる自動車用エンジンマウン
トを示す縦断面図であり、第2図は不発明の別の実施例
としての自動車用エンジンマウントを示す縦断面図であ
る。 10・第一の支持金具 12.第二の支持金具13 :
 ::(J、、弾性体   26・ダイヤフラノ、34
:仕切部材    36・受圧室 38:平衡室     40:中央孔 46:弾性仕切膜   48二取付金具50、補強材 56:第一のオリフィス通路 58:支持片     60:可動部材62:中間室 66:第二のオリフィス通路 出願人  東海ゴム工業株式会社 第1図 2/              //2′2゜ 2″2
FIG. 1 is a longitudinal cross-sectional view showing an automobile engine mount according to one embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view showing an automobile engine mount according to another embodiment of the invention. 10. First support fitting 12. Second support fitting 13:
::(J,, elastic body 26, diaphragm, 34
: Partition member 36/Pressure receiving chamber 38: Equilibrium chamber 40: Central hole 46: Elastic partition membrane 48 Second mounting bracket 50, reinforcing material 56: First orifice passage 58: Support piece 60: Movable member 62: Intermediate chamber 66: First Second Orifice Passage Applicant Tokai Rubber Industries Co., Ltd. Figure 1 2 //2'2゜2''2

Claims (1)

【特許請求の範囲】[Claims] 主たる振動入力方向に所定距離を隔てて対向配置された
第一の支持体と第二の支持体とを、それらの間に介装さ
れたゴム弾性体にて弾性的に連結する一方、前記第二の
支持体に対して少なくとも一部が可撓性膜にて構成され
た隔壁部材を配して、該隔壁部材と前記第一の支持体と
の間に所定の非圧縮性流体が封入された流体収容室を形
成し、更に該流体収容室内に仕切部材を配して、その内
部を第一の支持体側の受圧室と第二の支持体側の平衡室
とに仕切ると共に、それら受圧室と平衡室とを相互に連
通せしめる第一のオリフィス通路を設けてなる流体封入
式マウント装置において、前記仕切部材の少なくとも一
部を、前記受圧室と前記平衡室との間の流体圧差を吸収
するように、内部に補強材が埋設されて前記振動入力方
向に所定量変形可能とされた弾性仕切膜にて構成する一
方、該弾性仕切膜に対して前記受圧室側乃至は前記平衡
室側に所定距離離隔して、前記振動入力方向に所定距離
変位可能な剛性可動部材を、前記仕切部材乃至は前記第
二の支持体に設けて、該剛性可動部材と前記弾性仕切膜
との間に中間室を画成すると共に、かかる剛性可動部材
に対して、該中間室を前記受圧室乃至は平衡室に連通せ
しめる第二のオリフィス通路を設け、前記弾性仕切膜の
弾性変形に基づいて、かかる第二のオリフィス通路内に
おける流体の流動を許容する一方、該弾性仕切膜の補強
材による変形規制に基づいて、かかる第二のオリフィス
通路を通じての流体の自由な流通を阻止するように構成
したことを特徴とする流体封入式マウント装置。
A first support body and a second support body, which are disposed facing each other at a predetermined distance in the main vibration input direction, are elastically connected by a rubber elastic body interposed between them, while the first support body and the second support body are A partition member, at least a part of which is made of a flexible membrane, is disposed on the second support, and a predetermined incompressible fluid is sealed between the partition member and the first support. Further, a partition member is disposed within the fluid storage chamber to partition the interior into a pressure receiving chamber on the first support side and an equilibrium chamber on the second support side, and to separate the pressure receiving chambers from each other. In a fluid-filled mounting device comprising a first orifice passage that communicates with an equilibrium chamber, at least a portion of the partition member is configured to absorb a fluid pressure difference between the pressure receiving chamber and the equilibrium chamber. The elastic partition membrane has a reinforcing material embedded therein and is deformable by a predetermined amount in the vibration input direction. A rigid movable member that is spaced apart and capable of displacing a predetermined distance in the vibration input direction is provided on the partition member or the second support, and an intermediate chamber is provided between the rigid movable member and the elastic partition membrane. A second orifice passage is provided for the rigid movable member to communicate the intermediate chamber with the pressure-receiving chamber or the equilibrium chamber, and the second The second orifice passage is characterized by allowing fluid to flow within the second orifice passage, while preventing free flow of fluid through the second orifice passage based on deformation restriction by the reinforcing material of the elastic partition membrane. Fluid-filled mounting device.
JP5547088A 1988-03-09 1988-03-09 Fluid sealed type mount device Pending JPH01229132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5547088A JPH01229132A (en) 1988-03-09 1988-03-09 Fluid sealed type mount device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5547088A JPH01229132A (en) 1988-03-09 1988-03-09 Fluid sealed type mount device

Publications (1)

Publication Number Publication Date
JPH01229132A true JPH01229132A (en) 1989-09-12

Family

ID=12999490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5547088A Pending JPH01229132A (en) 1988-03-09 1988-03-09 Fluid sealed type mount device

Country Status (1)

Country Link
JP (1) JPH01229132A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848183A3 (en) * 1996-12-04 2000-12-20 ContiTech Vibration Control GmbH Multi-chamber hydraulic mounting
EP1614930A1 (en) * 2004-07-07 2006-01-11 Hutchinson Hydraulic antivibration support with pneumatic control
US7210674B2 (en) 2003-12-12 2007-05-01 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
JP2009210050A (en) * 2008-03-05 2009-09-17 Bridgestone Corp Vibration absorbing device
JP2010151256A (en) * 2008-12-25 2010-07-08 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2010174998A (en) * 2009-01-30 2010-08-12 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2011133031A (en) * 2009-12-24 2011-07-07 Tokai Rubber Ind Ltd Fluid seal type vibration control device
US8573570B2 (en) 2009-02-23 2013-11-05 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
JP2016003726A (en) * 2014-06-18 2016-01-12 株式会社ブリヂストン Vibration isolating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220731A (en) * 1986-03-19 1987-09-28 Kinugawa Rubber Ind Co Ltd Vibration isolator encapsulating liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220731A (en) * 1986-03-19 1987-09-28 Kinugawa Rubber Ind Co Ltd Vibration isolator encapsulating liquid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848183A3 (en) * 1996-12-04 2000-12-20 ContiTech Vibration Control GmbH Multi-chamber hydraulic mounting
US7210674B2 (en) 2003-12-12 2007-05-01 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
EP1614930A1 (en) * 2004-07-07 2006-01-11 Hutchinson Hydraulic antivibration support with pneumatic control
FR2872879A1 (en) * 2004-07-07 2006-01-13 Hutchinson Sa HYDRAULIC ANTIVIBRATORY SUPPORT WITH PNEUMATIC CONTROL
US7040607B2 (en) 2004-07-07 2006-05-09 Hutchinson Pneumatically-controlled hydraulic vibration-damping support
JP2009210050A (en) * 2008-03-05 2009-09-17 Bridgestone Corp Vibration absorbing device
JP2010151256A (en) * 2008-12-25 2010-07-08 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2010174998A (en) * 2009-01-30 2010-08-12 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
US8573570B2 (en) 2009-02-23 2013-11-05 Tokai Rubber Industries, Ltd. Fluid-filled vibration damping device
JP2011133031A (en) * 2009-12-24 2011-07-07 Tokai Rubber Ind Ltd Fluid seal type vibration control device
JP2016003726A (en) * 2014-06-18 2016-01-12 株式会社ブリヂストン Vibration isolating device

Similar Documents

Publication Publication Date Title
JPH0221633Y2 (en)
JP4110567B2 (en) Fluid filled cylindrical vibration isolator
JPH04277338A (en) Liquid-filled type mount device
JPH033088B2 (en)
JP2598987B2 (en) Fluid-filled mounting device
JPH03121327A (en) Fluid sealed type cylindrical mount apparatus
JPH028529A (en) Fluid-sealed cylindrical mount device
JPH06100242B2 (en) Fluid-filled mounting device
US5887844A (en) Fluid-sealed vibration isolating device
JPH0193640A (en) Liquid enclosed cylindrical mount device
JPH0534535B2 (en)
JPH01238730A (en) Fluid seal type mount device
JPH01193426A (en) Liquid-in type mounting device
JPH06100243B2 (en) Fluid-filled mounting device
JPH01229132A (en) Fluid sealed type mount device
JP2002327788A (en) Vibrationproof device sealed with fluid
JPH05584Y2 (en)
JPH01193425A (en) Liquid-in type mounting device
JPH05272575A (en) Fluid-sealed mounting device
JP4075066B2 (en) Fluid filled engine mount
JPH02129426A (en) Fluid enclosed type mount device
JPS63266242A (en) Fluid-sealed type mount device
JPH01164831A (en) Fluid-filled type cylinder type mount
JPH03288036A (en) Fluid filled-type mount device
JPH02240430A (en) Fluid sealed type tubular mount device