JP2011133031A - Fluid seal type vibration control device - Google Patents

Fluid seal type vibration control device Download PDF

Info

Publication number
JP2011133031A
JP2011133031A JP2009292912A JP2009292912A JP2011133031A JP 2011133031 A JP2011133031 A JP 2011133031A JP 2009292912 A JP2009292912 A JP 2009292912A JP 2009292912 A JP2009292912 A JP 2009292912A JP 2011133031 A JP2011133031 A JP 2011133031A
Authority
JP
Japan
Prior art keywords
rubber elastic
elastic plate
outer peripheral
annular
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009292912A
Other languages
Japanese (ja)
Other versions
JP5377272B2 (en
Inventor
Noriaki Yoshii
教明 吉井
Hiroki Mizukawa
弘樹 水川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2009292912A priority Critical patent/JP5377272B2/en
Publication of JP2011133031A publication Critical patent/JP2011133031A/en
Application granted granted Critical
Publication of JP5377272B2 publication Critical patent/JP5377272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid seal type vibration control device in a simple and compact structure, which exhibits excellent vibration control performance in any of three frequency zones different from one another, without requiring an actuator-driven change-over valve or the like. <P>SOLUTION: The radial-directional intermediate portion of a rubber elastic plate 32 is clamped in the plate thickness direction and is positioned radial-directionally to be supported, by a partitioning member 22 for partitioning a pressure receiving chamber 76 and a balancing chamber 78 communicated with each other through the first orifice passage 80, a liquid pressure absorbing mechanism 86 is constituted in the central part 64 on the inner circumferential side of an annular support part, and the second orifice passage 84 extended to be turned in around an outer circumferential portion 68 is formed by storage-positioning the outer circumferential portion 68 in an outer circumferential side of the annular support part, in an annular storage part 60 of the partitioning member 22. Thereby, a vibration control effect against low-frequency vibration is obtained by the first orifice passage 80, a vibration control effect against medium-frequency vibration is obtained by the second orifice passage 84, and a vibration control effect against high-frequency vibration is obtained by the liquid pressure absorbing mechanism 86. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば自動車用エンジンマウント等として用いられる防振装置に係り、特に内部に封入された非圧縮性流体の流動作用を利用して防振効果を得るようにした流体封入式防振装置に関するものである。   The present invention relates to an anti-vibration device used as, for example, an automobile engine mount and the like, and more particularly, a fluid-filled anti-vibration device that obtains an anti-vibration effect by utilizing the flow action of an incompressible fluid enclosed therein. It is about.

従来から、振動伝達系を構成する部材間に装着される防振連結体や防振支持体の一種として、ゴム弾性体による防振効果に加えて、封入した非圧縮性流体の共振作用を利用して防振効果を得るようにした流体封入式の防振装置が知られている。このような防振装置は、一般に、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめた防振装置において、本体ゴム弾性体で壁部の一部が構成された受圧室と、変形容易な可撓性膜で壁部の一部が構成された平衡室を設けて、それら受圧室と平衡室に非圧縮性流体を封入した構造とされている。そして、第一の取付部材と第二の取付部材の間への振動入力時に受圧室と平衡室の間に惹起される相対的な圧力変動に基づいて、それら受圧室と平衡室を相互に連通するオリフィス通路を流動せしめられる流体の共振作用を利用して防振効果を得るようになっている。   Conventionally, as a kind of anti-vibration coupling body and anti-vibration support body mounted between members constituting the vibration transmission system, in addition to the anti-vibration effect of the rubber elastic body, the resonance action of the enclosed incompressible fluid has been used. Thus, there is known a fluid-filled vibration isolator that obtains a vibration isolating effect. Such a vibration isolator is generally a vibration isolator in which a first mounting member and a second mounting member are connected by a main rubber elastic body, and a pressure receiving portion in which a part of a wall portion is configured by the main rubber elastic body. A chamber and an equilibrium chamber in which a part of the wall portion is formed of an easily deformable flexible film are provided, and an incompressible fluid is enclosed in the pressure receiving chamber and the equilibrium chamber. The pressure receiving chamber and the equilibrium chamber are communicated with each other based on a relative pressure fluctuation caused between the pressure receiving chamber and the equilibrium chamber when vibration is input between the first mounting member and the second mounting member. An anti-vibration effect is obtained by utilizing the resonance action of the fluid that is caused to flow through the orifice passage.

ところで、オリフィス通路を通じて流動せしめられる非圧縮性流体の共振作用に基づく防振効果は、予めチューニングされた特定の周波数域でしか有効に発揮され難い。特にオリフィス通路のチューニング周波数よりも高周波数域の振動入力時における高動ばね化に伴う防振性能の低下が問題となり易い。そこで、本出願人は、先に特開2006−97824号公報(特許文献1)において、受圧室と平衡室を仕切る仕切部材で支持せしめた可動ゴム板を利用して、高周波域の防振性能を向上させた構造を提案した。   By the way, the anti-vibration effect based on the resonance action of the incompressible fluid that is caused to flow through the orifice passage can hardly be exhibited effectively only in a specific frequency range that has been tuned in advance. In particular, a decrease in vibration-proof performance due to the high dynamic spring at the time of vibration input in a frequency range higher than the tuning frequency of the orifice passage tends to be a problem. Therefore, the applicant of the present invention previously disclosed in Japanese Patent Application Laid-Open No. 2006-97824 (Patent Document 1) uses a movable rubber plate supported by a partition member that partitions the pressure receiving chamber and the equilibrium chamber, thereby preventing vibration at high frequencies. A structure with improved performance was proposed.

ところが、上記の特許文献1で提案した流体封入式防振装置では、特定形状とされた可動ゴム板を採用することで、仕切部材に対するゴム弾性板の当接打音を抑えつつ、前記オリフィス通路のチューニング周波数よりも高周波数域の低動ばね化を或る程度は低減できるものの、要求される防振特性よっては未だ充分でないことがあった。例えば、自動車用エンジンマウントにおいて、シェイク振動等の低周波大振幅振動と、アイドリング振動等の中周波中振幅振動に加えて、走行こもり音等の高周波小振幅振動に対して、それぞれ高度な防振性能が要求されるような場合に、それら3つの異なる周波数域の振動に対して充分な防振性能を実現することが難しかったのである。   However, in the fluid-filled vibration isolator proposed in Patent Document 1 described above, by adopting a movable rubber plate having a specific shape, the orifice passage is suppressed while suppressing the contact sound of the rubber elastic plate against the partition member. Although the reduction of the dynamic spring in the frequency range higher than the tuning frequency can be reduced to some extent, depending on the required anti-vibration characteristics, it is still not sufficient. For example, in automobile engine mounts, in addition to low-frequency large-amplitude vibrations such as shake vibrations and medium-frequency medium-amplitude vibrations such as idling vibrations, advanced anti-vibration methods are also provided for high-frequency small-amplitude vibrations such as running noise. When performance is required, it has been difficult to achieve sufficient anti-vibration performance against vibrations in these three different frequency ranges.

なお、このような3つの周波数域の振動に対して優れた防振性能を実現するために、例えば各別にチューニングした3つのオリフィス通路を形成すると共に、それら3つのオリフィス通路を切り換える切換弁を設けることも考えられるが、それでは切換弁を切換作動するアクチュエータが必要となり、構造の複雑化と装置の大形化及び重量化が避けられない。   In order to realize excellent anti-vibration performance against vibrations in these three frequency ranges, for example, three orifice passages that are individually tuned are formed, and a switching valve that switches the three orifice passages is provided. However, this requires an actuator for switching the switching valve, which complicates the structure and increases the size and weight of the apparatus.

特開2006−97824号公報JP 2006-97824 A

本発明は上述の如き事情を背景として為されたものであり、その解決課題とするところは、3つの周波数域の振動に対して何れも優れた防振性能が発揮され得る流体封入式防振装置を、アクチュエータ駆動される切換弁等を必要とすることなく簡単で且つコンパクトな構造をもって実現することにある。   The present invention has been made in the background as described above, and the problem to be solved is a fluid-filled vibration proofing that can exhibit excellent vibration proofing performance against vibrations in three frequency ranges. An object of the present invention is to realize a device with a simple and compact structure without requiring a switching valve or the like driven by an actuator.

本発明の特徴とするところは、(a)第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめ、該本体ゴム弾性体で壁部の一部が構成された受圧室と、壁部の一部が可撓性膜で構成された平衡室を、該第二の取付部材で支持された仕切部材を挟んだ両側に形成して、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を連通する第一のオリフィス通路を形成した流体封入式防振装置において、(b)円板形状のゴム弾性板に対して径方向中間部分の表裏両面に突出して周方向に延びる環状シールリップを一体形成し、前記仕切部材によって該ゴム弾性板の該環状シールリップを表裏両側から挟んで且つ径方向に係止して支持せしめ、該仕切部材に設けた透孔を通じて前記受圧室と前記平衡室の圧力が該ゴム弾性板の該環状シールリップで囲まれた中央部分の各一方の面に及ぼされるようにして液圧吸収機構を構成する一方、(c)該ゴム弾性板における該環状シールリップの外周側に環状薄肉部を形成し、該環状薄肉部の径方向外方に位置する該ゴム弾性板の外周部分を板厚方向に波うった湾曲形状とすると共に、該仕切部材において該ゴム弾性板の該外周部分を収容する環状収容部を形成して、該環状収容部に設けた連通孔を通じて該環状収容部を該受圧室と該平衡室に連通させることにより、該環状収容部内で該ゴム弾性板の該外周部分を回り込んで該受圧室と該平衡室を連通する第二のオリフィス通路を形成した流体封入式防振装置にある。   A feature of the present invention is that (a) a pressure receiving chamber in which a first mounting member and a second mounting member are connected by a main rubber elastic body, and a part of the wall portion is configured by the main rubber elastic body; , Forming equilibrium chambers with part of the wall made of a flexible membrane on both sides of the partition member supported by the second mounting member, so that the pressure receiving chamber and the equilibrium chamber are incompressible In a fluid-filled vibration isolator that encloses a fluid and forms a first orifice passage that communicates the pressure receiving chamber and the equilibrium chamber, (b) the front and back surfaces of the intermediate portion in the radial direction with respect to the disc-shaped rubber elastic plate An annular seal lip that protrudes on both sides and extends in the circumferential direction is integrally formed, and the annular seal lip of the rubber elastic plate is sandwiched from both the front and back sides and supported in a radial direction by the partition member, and is supported by the partition member. The pressure in the pressure receiving chamber and the equilibrium chamber is controlled through the through hole provided. The hydraulic pressure absorbing mechanism is configured so as to be exerted on each surface of the central portion surrounded by the annular seal lip of the elastic plate, while (c) annular on the outer peripheral side of the annular seal lip in the rubber elastic plate A thin-walled portion is formed, and an outer peripheral portion of the rubber elastic plate positioned radially outward of the annular thin-walled portion is curved in a plate thickness direction, and the outer periphery of the rubber elastic plate in the partition member Forming an annular accommodating portion for accommodating the portion, and communicating the annular accommodating portion with the pressure receiving chamber and the equilibrium chamber through a communication hole provided in the annular accommodating portion; The fluid-filled vibration isolator has a second orifice passage that goes around the outer peripheral portion and communicates the pressure receiving chamber and the equilibrium chamber.

このような本発明に従う構造とされた流体封入式防振装置においては、特定構造のゴム弾性板を採用し、該ゴム弾性板の径方向中間部分に形成した環状シールリップを仕切部材で挟んで径方向に係止して支持せしめた。これにより、ゴム弾性板は、その径方向中間部分において、(i)仕切部材によって周上の全周に亘って流体密にシールされた状態で支持されていると共に、(ii)仕切部材によって径方向に位置決めされた状態で支持されている。その結果、ゴム弾性板の中央部分を利用する液圧吸収機構と、ゴム弾性板の外周部分を利用する第二のオリフィス通路とを、相互間での流体の漏れや短絡等を防止して、且つ単一のゴム弾性板を巧く利用して、各別に構成し得たのである。しかも、ゴム弾性体の径方向中間部分が、環状シールリップを利用して径方向で位置決めされて仕切部材に組み付けられていることから、環状収容部内においてゴム弾性板の外周部分を回り込んで形成された第二のオリフィス通路の通路断面が安定して且つ精度良く設定され得て、第二のオリフィス通路による目的とする防振効果が安定して発揮され得ることとなる。   In such a fluid-filled vibration isolator having a structure according to the present invention, a rubber elastic plate having a specific structure is adopted, and an annular seal lip formed at a radially intermediate portion of the rubber elastic plate is sandwiched between partition members. Locked and supported in the radial direction. As a result, the rubber elastic plate is supported in a state in which the rubber elastic plate is fluid-tightly sealed over the entire circumference by the partition member at the radial intermediate portion thereof, and (ii) the diameter by the partition member. It is supported in a state positioned in the direction. As a result, the fluid pressure absorption mechanism that uses the central portion of the rubber elastic plate and the second orifice passage that uses the outer peripheral portion of the rubber elastic plate prevent fluid leakage or short circuit between them, In addition, each single rubber elastic plate can be skillfully used to be configured separately. In addition, since the intermediate portion in the radial direction of the rubber elastic body is positioned in the radial direction using the annular seal lip and assembled to the partition member, it is formed around the outer peripheral portion of the rubber elastic plate in the annular accommodating portion. The passage section of the second orifice passage thus made can be set stably and accurately, and the intended vibration-proofing effect by the second orifice passage can be stably exhibited.

それ故、本発明に係る流体封入式防振装置では、第一のオリフィス通路により低周波数域の防振性能が発揮されることに加えて、中周波数域と高周波数域においても、第二のオリフィス通路による防振効果と液圧吸収機構による防振効果とが、それぞれ効果的に発揮され得るのである。   Therefore, in the fluid-filled vibration isolator according to the present invention, in addition to exhibiting the vibration isolating performance in the low frequency range by the first orifice passage, the second frequency also in the middle frequency range and the high frequency range. The anti-vibration effect by the orifice passage and the anti-vibration effect by the hydraulic pressure absorption mechanism can be exhibited effectively.

しかも、第二のオリフィス通路では、大振幅振動の入力時にゴム弾性板の外周部分が変位して環状収容部に開口する連通孔を覆蓋又は狭窄することで流体流動量が制限されることから、低周波大振幅振動の入力時における第一のオリフィス通路を通じての流体流動量が確保され得て、第一のオリフィス通路による防振性能が充分に発揮され得る。また、液圧吸収機構では、中〜大振幅振動の入力時にゴム弾性板の中央部分の弾性変形量がそれ自体の弾性等によって制限されることから、低周波大振幅振動や中周波中振幅振動の入力時における第一のオリフィス通路や第二のオリフィス通路を通じての流体流動量が確保され得て、それら第一のオリフィス通路や第二のオリフィス通路による防振性能が充分に発揮され得る。   Moreover, in the second orifice passage, the fluid flow amount is limited by displacing or constricting the communication hole opened in the annular housing portion by displacing the outer peripheral portion of the rubber elastic plate when large amplitude vibration is input, The amount of fluid flow through the first orifice passage at the time of inputting the low frequency large amplitude vibration can be ensured, and the vibration isolation performance by the first orifice passage can be sufficiently exhibited. Also, in the hydraulic pressure absorption mechanism, the amount of elastic deformation of the central part of the rubber elastic plate is limited by its own elasticity etc. when medium to large amplitude vibration is input, so low frequency large amplitude vibration and medium frequency medium amplitude vibration The amount of fluid flow through the first orifice passage and the second orifice passage at the time of the input can be ensured, and the vibration-proof performance by the first orifice passage and the second orifice passage can be sufficiently exhibited.

従って、本発明に従えば、オリフィス通路を切り換えるための切換弁やそれを作動させるアクチュエータ等も必要とされることがなく、簡単で且つコンパクトな構造をもって、上述のとおり3つの異なる周波数域の振動に対して何れも優れた防振効果を発揮し得る流体封入式防振装置が実現され得るのである。   Therefore, according to the present invention, there is no need for a switching valve for switching the orifice passage, an actuator for operating the orifice passage, etc., and a simple and compact structure, and vibrations in three different frequency ranges as described above. In contrast, a fluid-filled vibration isolator capable of exhibiting an excellent vibration isolating effect can be realized.

ところで、本発明に係る流体封入式防振装置では、例えば、前記ゴム弾性板の前記外周部分における内周縁部と外周縁部において、それぞれ表裏両面に突出して周方向に延びる緩衝突起が一体形成された態様が、採用され得る。   By the way, in the fluid filled type vibration damping device according to the present invention, for example, at the inner peripheral edge portion and the outer peripheral edge portion of the outer peripheral portion of the rubber elastic plate, buffer protrusions that protrude on both the front and back surfaces and extend in the circumferential direction are integrally formed. Embodiments may be employed.

このような緩衝突起を設けることにより、環状収容部の内面に対する打ち当り衝撃が更に軽減されると共に、前述の如き大振幅振動の入力時における連通孔の覆蓋又は狭窄がより安定して発現され得る。   By providing such a buffering protrusion, the impact on the inner surface of the annular housing portion is further reduced, and the cover hole or constriction of the communication hole at the time of inputting the large amplitude vibration as described above can be expressed more stably. .

また、そのような緩衝突起を形成するに際しては、振動が入力されていない初期状態において、かかるゴム弾性体板の外周部分における表裏両面の内周縁部と外周縁部にそれぞれ形成された緩衝突起を、何れも、前記環状収容部の内面に対して、周方向で波うった該外周部分における少なくとも頂部において当接されるように設定することが、更に好適である。   Further, when forming such buffer protrusions, in the initial state where no vibration is input, the buffer protrusions respectively formed on the inner peripheral edge portion and the outer peripheral edge portion of the front and back surfaces of the outer peripheral portion of the rubber elastic plate are used. In any case, it is more preferable that the inner surface of the annular housing portion is set so as to be in contact with at least the top portion of the outer circumferential portion that undulates in the circumferential direction.

このように初期状態で緩衝突起を環状収容部の内面に当接させておくことにより、振動入力時における環状収容部の内面に対するゴム弾性板の打ち当り衝撃が一層効果的に軽減され得る。   In this way, by making the buffer protrusion contact the inner surface of the annular housing portion in the initial state, the impact of the rubber elastic plate against the inner surface of the annular housing portion during vibration input can be further effectively reduced.

さらに、本発明に係る流体封入式防振装置では、例えば、その仕切部材において、ゴム弾性板の表裏両面に形成された前記環状シールリップの少なくとも一方に対して内周面に当接して径方向内方への変位を規制する状態で係止される係止突起を形成せしめた態様が、好適に採用される。   Further, in the fluid filled type vibration damping device according to the present invention, for example, in the partition member, at least one of the annular seal lips formed on both the front and back surfaces of the rubber elastic plate is in contact with the inner peripheral surface in the radial direction. The aspect which formed the latching protrusion latched in the state which controls the displacement to an inward is employ | adopted suitably.

すなわち、本発明では、ゴム弾性板の径方向中間部分が、そこに形成された環状シールリップに対する仕切部材の係止作用に基づいて、仕切部材に対する径方向内方への変位を規制されている。それ故、例えば段差乗り超えやクランキング時等に衝撃的な大荷重振動が入力される等して受圧室にキャビテーションが発生することでゴム弾性板の中央部分に過大な圧力が及ぼされた場合などであっても、仕切部材によるゴム弾性板の支持位置がずれてしまう等の不具合が効果的に防止される。これにより、ゴム弾性板の中央部分と外周部分を利用して構成された前述の液圧吸収機構と第二のオリフィス通路によって発揮される防振効果が、何れも、より高い信頼性をもって一層安定して発揮されるのである。   That is, in the present invention, the radially inward intermediate portion of the rubber elastic plate is regulated in the radially inward displacement with respect to the partition member based on the locking action of the partition member with the annular seal lip formed therein. . Therefore, for example, when excessive pressure is applied to the central part of the rubber elastic plate due to cavitation occurring in the pressure receiving chamber due to input of shocking heavy load vibration when climbing over a step or cranking, etc. Even if it is etc., malfunctions, such as the support position of the rubber elastic board by a partition member shifting, are prevented effectively. As a result, the anti-vibration effect exhibited by the above-described hydraulic pressure absorbing mechanism and the second orifice passage configured using the central portion and the outer peripheral portion of the rubber elastic plate are both more stable and more stable. It is demonstrated.

また、本発明に係る流体封入式防振装置では、例えば、そのゴム弾性板の中央部分に対して受圧室の圧力を及ぼす透孔と平衡室の圧力を及ぼす透孔との少なくとも一方の透孔によって、第一のオリフィス通路と第二のオリフィス通路の何れよりも高周波数域にチューニングされた第三のオリフィス通路が形成されている態様が、好適に採用される。   In the fluid-filled vibration isolator according to the present invention, for example, at least one of a through hole that exerts a pressure in the pressure receiving chamber and a through hole that exerts a pressure in the equilibrium chamber with respect to the central portion of the rubber elastic plate Thus, a mode in which a third orifice passage tuned in a higher frequency range than any of the first orifice passage and the second orifice passage is formed is preferably employed.

このような第三のオリフィス通路を形成することにより、液圧吸収機構によって発揮される高周波振動に対する防振効果を、より特定された周波数域において一層効果的に得ることが可能となる。   By forming such a third orifice passage, it is possible to more effectively obtain a vibration-proofing effect against high-frequency vibration exhibited by the hydraulic pressure absorbing mechanism in a more specific frequency range.

さらに、本発明に係る流体封入式防振装置では、例えば、その仕切部材において、環状収容部よりも外周側を周方向に延びるようにして第一のオリフィス通路を形成した態様が、好適に採用される。   Furthermore, in the fluid filled type vibration damping device according to the present invention, for example, a mode in which the first orifice passage is formed in the partition member so as to extend in the circumferential direction on the outer circumferential side from the annular housing portion is preferably employed. Is done.

このような態様においては、第一のオリフィス通路の流路長さが効率的に確保され得て、低周波数域へのチューニングを容易に行なうことが出来ると共に、流路断面積を確保して防振特性の更なる向上も図られ得る。しかも、ゴム弾性板および環状収容部の外周側に並ぶようにして、軸方向で略同じ位置でオーバーラップするように第一のオリフィス通路を形成することが可能になることから、防振装置全体の軸方向サイズのコンパクト化も図られ得る。   In such an aspect, the flow path length of the first orifice passage can be ensured efficiently, tuning to the low frequency range can be easily performed, and the cross-sectional area of the flow path can be secured and prevented. The vibration characteristics can be further improved. In addition, since the first orifice passage can be formed so as to be overlapped at substantially the same position in the axial direction so as to be arranged on the outer peripheral side of the rubber elastic plate and the annular housing portion, the vibration isolator as a whole It is also possible to reduce the axial size.

本発明に従う構造とされた流体封入式防振装置では、特定構造のゴム弾性板の径方向中間部分を仕切部材によってシール位置決め状態で支持せしめたことにより、該ゴム弾性体の中央部分を利用して構成される液圧吸収機構による高周波数域の防振効果と、ゴム弾性体の外周部分を利用して構成される第二のオリフィス通路による中周波数域の防振効果とを、何れも高度に両立して発揮せしめ得ることを可能と為し得た。   In the fluid-filled vibration isolator constructed according to the present invention, the central portion of the rubber elastic body is utilized by supporting the radially intermediate portion of the rubber elastic plate having a specific structure in the seal positioning state by the partition member. The anti-vibration effect in the high frequency range by the hydraulic pressure absorption mechanism constructed in the same way, and the anti-vibration effect in the mid-frequency range by the second orifice passage that uses the outer periphery of the rubber elastic body It was possible to make it possible to achieve both of them.

これにより、本発明の流体封入式防振装置は、オリフィス通路を切り換えるための切換弁やそれを作動させるアクチュエータ等も必要とすることなく、簡単で且つコンパクトな構造をもって、3つの異なる周波数域の振動に対して何れも優れた防振性能を高い信頼性のもとで安定して達成し得たのである。   As a result, the fluid filled type vibration damping device of the present invention does not require a switching valve for switching the orifice passage or an actuator for operating the same, and has a simple and compact structure with three different frequency ranges. All of them were able to stably achieve excellent vibration isolation performance with high reliability against vibration.

本発明の一実施形態としてのエンジンマウントを示す、図2におけるI−I断面に相当する縦断面図。The longitudinal cross-sectional view equivalent to the II cross section in FIG. 2 which shows the engine mount as one Embodiment of this invention. 図1に示したエンジンマウントの底面図。The bottom view of the engine mount shown in FIG. 図1に示したエンジンマウントを構成する仕切部材の平面図。The top view of the partition member which comprises the engine mount shown in FIG. 図3におけるIV−IV断面図。IV-IV sectional drawing in FIG. 図3に示した仕切部材の斜め下方からの分解斜視図。FIG. 4 is an exploded perspective view of the partition member shown in FIG. 3 from obliquely below. 図3に示した仕切部材の斜め上方からの分解斜視図。The disassembled perspective view from diagonally upward of the partition member shown in FIG. 図3に示した仕切部材を構成するオリフィス部材の平面図。The top view of the orifice member which comprises the partition member shown in FIG. 図7に示した仕切部材の底面図。The bottom view of the partition member shown in FIG. 図7におけるIX−IX断面図。IX-IX sectional drawing in FIG. 図7におけるX−X断面の拡大説明図。Expansive explanatory drawing of the XX cross section in FIG. 図3に示した仕切部材を構成する蓋板金具の平面図。FIG. 4 is a plan view of a lid plate metal fitting constituting the partition member shown in FIG. 3. 図11におけるXII−XII断面図。XII-XII sectional drawing in FIG. 図3に示した仕切部材を構成するゴム弾性板の平面図。The top view of the rubber elastic board which comprises the partition member shown in FIG. 図13におけるXIV−XIV断面図。XIV-XIV sectional drawing in FIG. 図14における左端の拡大説明図。Expansive explanatory drawing of the left end in FIG. 図13に示されたゴム弾性板の領域αにおける外周端面の展開説明図。Explanatory drawing of the outer periphery end surface in area | region (alpha) of the rubber elastic board shown by FIG. 図1に示したエンジンマウントの低周波防振特性を示すグラフ。The graph which shows the low frequency vibration proof characteristic of the engine mount shown in FIG. 図1に示したエンジンマウントの中周波防振特性を示すグラフ。The graph which shows the medium frequency vibration proof characteristic of the engine mount shown in FIG. 図1に示したエンジンマウントの高周波防振特性を示すグラフ。The graph which shows the high frequency vibration proof characteristic of the engine mount shown in FIG.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について図面を参照しつつ説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described with reference to the drawings.

先ず、図1〜2には、本発明に係る流体封入式防振装置の一実施形態としての自動車用の流体封入式エンジンマウント10が示されている。このエンジンマウント10は、本体ゴム弾性体12で弾性連結された第一の取付部材たる第一の取付金具14と第二の取付部材たる第二の取付金具16を備えており、第一の取付金具14に取り付けられるパワーユニットを、第二の取付金具16に取り付けられる車両ボデーに対して、吊り下げ状態で弾性支持するようになっている。なお、図1は、外力が及ぼされていない装着前であり、図1中の上下方向が略鉛直上下方向となるようにして車両に装着される。   1 and 2 show a fluid-filled engine mount 10 for an automobile as an embodiment of a fluid-filled vibration isolator according to the present invention. The engine mount 10 includes a first mounting bracket 14 as a first mounting member and a second mounting bracket 16 as a second mounting member, which are elastically connected by a main rubber elastic body 12. The power unit attached to the metal fitting 14 is elastically supported in a suspended state with respect to the vehicle body attached to the second attachment metal fitting 16. Note that FIG. 1 shows a state in which the external force is not applied, and is attached to the vehicle such that the vertical direction in FIG. 1 is a substantially vertical vertical direction.

より詳細には、第一の取付金具14は、上方に開口するカップ金具18の底壁に対して下方に突出するナット金具20が溶着された構造とされている。一方、第二の取付金具16は、大径の略円筒形状とされており、第一の取付金具14の外周に離隔して外挿配置されている。また、本体ゴム弾性体12は、厚肉の略テーパ筒形状乃至は中空円錐台形状とされており、その内周面が第一の取付金具14の外周面に加硫接着されていると共に、外周面が第二の取付金具16の内周面に加硫接着されている。これにより、本体ゴム弾性体12は、第一の取付金具14の軸方向上端部と第二の取付金具16の軸方向下端部との間に跨がって配されている。   More specifically, the first mounting member 14 has a structure in which a nut member 20 protruding downward is welded to the bottom wall of the cup member 18 that opens upward. On the other hand, the second mounting bracket 16 has a large-diameter, generally cylindrical shape, and is arranged on the outer periphery of the first mounting bracket 14 so as to be spaced apart. The main rubber elastic body 12 has a thick, generally tapered cylindrical shape or a hollow truncated cone shape, and its inner peripheral surface is vulcanized and bonded to the outer peripheral surface of the first mounting bracket 14, The outer peripheral surface is vulcanized and bonded to the inner peripheral surface of the second mounting bracket 16. As a result, the main rubber elastic body 12 is disposed between the upper end in the axial direction of the first mounting bracket 14 and the lower end in the axial direction of the second mounting bracket 16.

すなわち、本実施形態では、本体ゴム弾性体12が、第一の取付金具14と第二の取付金具16を備えた一体加硫成形品として形成されており、第二の取付金具16の下側開口部が本体ゴム弾性体12と第一の取付金具14とによって流体密に覆蓋されている。   That is, in the present embodiment, the main rubber elastic body 12 is formed as an integrally vulcanized molded product including the first mounting bracket 14 and the second mounting bracket 16, and the lower side of the second mounting bracket 16. The opening is covered fluid-tightly by the main rubber elastic body 12 and the first mounting bracket 14.

一方、第二の取付金具16の上側開口部には、仕切部材22とダイヤフラム24が、重ね合わされるようにして組み付けられている。   On the other hand, the partition member 22 and the diaphragm 24 are assembled in the upper opening of the second mounting bracket 16 so as to overlap each other.

ダイヤフラム24は、薄肉のゴム弾性膜によって、所定の弛みをもって弾性変形容易に形成されている。また、ダイヤフラム24の外周縁部には円環形状の固定金具26が加硫接着されている。そして、この固定金具26が、第二の取付金具16の上側開口部に対してかしめ固定されることにより、第二の取付金具16の上側開口部がダイヤフラム24で流体密に覆蓋されている。   The diaphragm 24 is formed of a thin rubber elastic film so as to be easily elastically deformed with a predetermined slack. Further, an annular fixing metal fitting 26 is vulcanized and bonded to the outer peripheral edge of the diaphragm 24. The fixing bracket 26 is caulked and fixed to the upper opening of the second mounting bracket 16 so that the upper opening of the second mounting bracket 16 is covered with a diaphragm 24 in a fluid-tight manner.

これにより、第二の取付金具16の軸方向両側の開口部をそれぞれ覆蓋する本体ゴム弾性体12とダイヤフラム24の対向面間は、外部空間から流体密に遮断されており、そこに非圧縮性流体が封入された流体室が形成されている。この流体室には、水やアルキレングリコール等の非圧縮性流体が充填されている。   Thereby, the space between the opposing surfaces of the main rubber elastic body 12 and the diaphragm 24 that covers the openings on both sides in the axial direction of the second mounting bracket 16 is isolated from the external space in a fluid-tight manner, and is incompressible there. A fluid chamber in which a fluid is enclosed is formed. This fluid chamber is filled with incompressible fluid such as water or alkylene glycol.

また一方、仕切部材22は、図3〜6に示されているように、オリフィス部材28の下面に蓋板金具30が重ね合わされていると共に、それらオリフィス部材28と蓋板金具30の間にゴム弾性板32が挟まれるようにして組み付けられている。   On the other hand, as shown in FIGS. 3 to 6, the partition member 22 has a cover plate metal 30 superimposed on the lower surface of the orifice member 28, and a rubber between the orifice member 28 and the cover plate metal 30. The elastic plate 32 is assembled so as to be sandwiched.

オリフィス部材28は、図7〜10にも示されているように、厚肉の略円環板形状を有しており、その中央に大径の上側透孔33が設けられていると共に、その外周縁部には外周壁部34が一体形成されている。また、この外周壁部34の外周面には、周上の一箇所で仕切壁36が突設されていると共に、該仕切壁36の周方向一方の側に位置して切欠窓38が形成されている。更に、オリフィス部材28の下面には、内周部分を周方向に延びる環状凹所40が形成されており、この環状凹所40が、オリフィス部材28の下面及び内周面に開口している。なお、環状凹所40の上底部42には、上側連通孔44が複数形成されていると共に、かかる上底部42の内周縁部には、下方に向かって環状凹所40内に突出する係止突起46が形成されている。本実施形態では、かかる係止突起46が、周方向に連続して延びる円環形状とされているが、周方向で分断されていても良い。   As shown in FIGS. 7 to 10, the orifice member 28 has a thick, substantially annular plate shape, and a large-diameter upper through hole 33 is provided at the center thereof. An outer peripheral wall 34 is formed integrally with the outer peripheral edge. A partition wall 36 projects from the outer peripheral surface of the outer peripheral wall portion 34 at one location on the periphery, and a notch window 38 is formed on one side in the circumferential direction of the partition wall 36. ing. Furthermore, an annular recess 40 extending in the circumferential direction is formed on the lower surface of the orifice member 28, and the annular recess 40 opens on the lower surface and the inner peripheral surface of the orifice member 28. A plurality of upper communication holes 44 are formed in the upper bottom portion 42 of the annular recess 40, and the inner peripheral edge of the upper bottom portion 42 is locked to protrude downward into the annular recess 40. A protrusion 46 is formed. In the present embodiment, the locking projections 46 have an annular shape extending continuously in the circumferential direction, but may be divided in the circumferential direction.

一方、蓋板金具30は、図11〜12にも示されているように、薄肉の略円環板形状を有しており、その中央には、上側透孔33よりも小径の下側透孔48が設けられている。なお、下側透孔48の外周側には、蓋板金具30から下方に突出した環状段差部50が形成されており、この環状段差部50の外径寸法が、オリフィス部材28の上側透孔33の内径と略同じとされている。そして、環状段差部50の内周縁部から下方に向かって突出する円筒部52が形成されており、この円筒部52の内孔によって上述の下側透孔48が形成されている。なお、蓋板金具30の径方向中間部分(環状段差部50を外周側に外れた位置)には、下側連通孔54が複数形成されている。また、蓋板金具30の外径寸法は、オリフィス部材28の外径寸法よりも大きくされている。なお、本実施形態では、上側透孔33の内径寸法が下側透孔48の内径寸法よりも大きくされているが、上側透孔33と下側透孔48の径寸法の関係は目的とする防振特性に応じて適宜チューニングされてもよい。即ち、上側透孔33の内径寸法が下側透孔48の内径寸法よりも小さくされていても良いし、これら上側透孔33と下側透孔48の内径寸法が等しくされていても良い。ただし、これら上側透孔33と下側透孔48の内径寸法は、後述する環状シールリップ62をシール可能とするために、環状シールリップ62の内径寸法よりも小さくされる。   On the other hand, as shown in FIGS. 11 to 12, the lid plate metal fitting 30 has a thin, generally annular plate shape, and has a lower transparent portion having a smaller diameter than the upper through hole 33 at the center thereof. A hole 48 is provided. An annular step 50 protruding downward from the lid plate 30 is formed on the outer peripheral side of the lower through-hole 48, and the outer diameter of the annular step 50 is determined by the upper through-hole of the orifice member 28. The inner diameter of 33 is substantially the same. A cylindrical portion 52 that protrudes downward from the inner peripheral edge of the annular stepped portion 50 is formed, and the lower through-hole 48 described above is formed by the inner hole of the cylindrical portion 52. Note that a plurality of lower communication holes 54 are formed in the radial intermediate portion of the cover plate metal fitting 30 (a position where the annular stepped portion 50 is displaced to the outer peripheral side). Further, the outer diameter dimension of the lid plate metal 30 is larger than the outer diameter dimension of the orifice member 28. In the present embodiment, the inner diameter of the upper through-hole 33 is larger than the inner diameter of the lower through-hole 48, but the relationship between the diameters of the upper through-hole 33 and the lower through-hole 48 is an object. You may tune suitably according to a vibration proof characteristic. That is, the inner diameter of the upper through-hole 33 may be smaller than the inner diameter of the lower through-hole 48, or the inner diameter of the upper through-hole 33 and the lower through-hole 48 may be made equal. However, the inner diameter dimensions of the upper and lower through holes 33 and 48 are made smaller than the inner diameter dimension of the annular seal lip 62 so that the annular seal lip 62 described later can be sealed.

そして、この蓋板金具30が、オリフィス部材28に対して、同一中心軸上で下方から重ね合わされており、径方向中間部分の各対応する位置に設けた固定穴56,57を利用して固定ビス58等で相互に固定されている。そして、オリフィス部材28の環状凹所40における下面への開口部が蓋板金具30で覆われており、それによって、仕切部材22において内周側に向かって開口する環状収容部60が形成されている。   And this cover plate metal fitting 30 is piled up from the lower part on the same central axis with respect to the orifice member 28, and it fixes using the fixing holes 56 and 57 provided in each corresponding position of a radial direction intermediate part. They are fixed to each other with screws 58 or the like. And the opening part to the lower surface in the annular recess 40 of the orifice member 28 is covered with the cover plate metal fitting 30, thereby forming the annular housing part 60 that opens toward the inner peripheral side in the partition member 22. Yes.

さらに、これらオリフィス部材28と蓋板金具30の重ね合わせ面間には、その中央部分において、前記ゴム弾性板32が配設されている。このゴム弾性板32は、図13〜16にも示されているように、略円板形状を有しており、その外径寸法が、オリフィス部材28に形成された環状凹所40の外周壁部の内径寸法よりも所定寸法だけ小さくされている。そして、ゴム弾性板32は、その外周の所定幅領域が環状凹所40に収容されて、オリフィス部材28と蓋板金具30で挟まれて支持されることにより組み付けられている。   Further, the rubber elastic plate 32 is disposed between the overlapping surfaces of the orifice member 28 and the cover plate fitting 30 in the central portion thereof. As shown in FIGS. 13 to 16, the rubber elastic plate 32 has a substantially disk shape, and its outer diameter dimension is the outer peripheral wall of the annular recess 40 formed in the orifice member 28. The inner diameter dimension of the portion is made smaller by a predetermined dimension. The rubber elastic plate 32 is assembled by accommodating a predetermined width region on the outer periphery thereof in the annular recess 40 and sandwiching and supporting the orifice member 28 and the cover plate metal fitting 30.

また、かかるゴム弾性板32には、径方向の中間部分において、上下両面でそれぞれ突出して周方向の全周に亘って連続して延びる環状シールリップ62,62が形成されている。そして、これら上下の環状シールリップ62,62の突出先端部分が、環状収容部60を画成するオリフィス部材28と蓋板金具30の上下対向面に対して押し付けられており、これによって、ゴム弾性板32が、環状シールリップ62,62の形成された径方向の中間部分において、仕切部材22によって板厚方向に挟まれて支持されている。即ち、ゴム弾性板32は、環状シールリップ62,62の形成部位よりも外周側が、環状収容部60に収容配置されている。   Also, the rubber elastic plate 32 is formed with annular seal lips 62, 62 that protrude from both the upper and lower surfaces and extend continuously over the entire circumference in the circumferential direction in the intermediate portion in the radial direction. The projecting tip portions of the upper and lower annular seal lips 62, 62 are pressed against the upper and lower opposing surfaces of the orifice member 28 and the lid plate metal 30 that define the annular accommodating portion 60. The plate 32 is sandwiched and supported by the partition member 22 in the plate thickness direction at the radial intermediate portion where the annular seal lips 62, 62 are formed. That is, the rubber elastic plate 32 is housed and disposed in the annular housing portion 60 on the outer peripheral side of the formation site of the annular seal lips 62 and 62.

しかも、ゴム弾性板32の上側の環状シールリップ62は、環状収容部60の開口周縁部に突設された係止突起46に径方向で係止されている。上側の環状シールリップ62は、環状収容部60の係止突起46に対して外嵌状態で組み付けられており、それによって、オリフィス部材28及び蓋板金具30に対して、環状シールリップ62ひいてはゴム弾性板32の径方向の相対変位が阻止されて同一中心軸上に位置決めされている。即ち、上側の環状シールリップ62の内周面が係止突起46に当接することにより、ゴム弾性板32が径方向で係止されると共に、ゴム弾性板32の径方向内方への変位が規制されるようになっている。   In addition, the annular seal lip 62 on the upper side of the rubber elastic plate 32 is engaged in a radial direction with an engaging projection 46 protruding from the peripheral edge of the opening of the annular accommodating portion 60. The upper annular seal lip 62 is assembled with the engaging projection 46 of the annular accommodating portion 60 in an externally fitted state, and thereby the annular seal lip 62 and then the rubber with respect to the orifice member 28 and the cover plate metal fitting 30. The elastic plate 32 is positioned on the same central axis while preventing relative displacement in the radial direction. That is, when the inner peripheral surface of the upper annular seal lip 62 abuts against the locking projection 46, the rubber elastic plate 32 is locked in the radial direction, and the rubber elastic plate 32 is displaced radially inward. Being regulated.

そして、ゴム弾性板32において環状シールリップ62よりも内周側に位置する中央部分64は、仕切部材22の中央部分において、その上面がオリフィス部材28の上側透孔33を通じて外部に露出されている。一方、中央部分64の下面は、蓋板金具30の環状段差部50で覆われているものの該環状段差部50から離隔されている。これにより、かかるゴム弾性板32の中央部分64は、オリフィス部材28と蓋板金具30の何れによっても拘束されることなく、厚さ方向への弾性変形が許容された状態で組み付けられている。なお、本実施形態では、中央部分64が、更に厚肉の円板状の中央部とそれより薄肉の円環状の外周部とから構成されており、厚肉の中央部の上下両面には適当な形状のリブ突起が形成されることによって、ばね特性の調節等が施されている。   The central portion 64 located on the inner peripheral side of the annular elastic lip 62 in the rubber elastic plate 32 is exposed to the outside through the upper through hole 33 of the orifice member 28 at the central portion of the partition member 22. . On the other hand, the lower surface of the central portion 64 is covered with the annular step portion 50 of the lid plate metal 30, but is separated from the annular step portion 50. Accordingly, the central portion 64 of the rubber elastic plate 32 is assembled in a state in which elastic deformation in the thickness direction is allowed without being restricted by either the orifice member 28 or the cover plate metal fitting 30. In the present embodiment, the central portion 64 is further composed of a thick disc-shaped central portion and a thinner annular outer peripheral portion, and is appropriate for both the upper and lower surfaces of the thick central portion. The spring characteristics are adjusted by forming the rib protrusions having various shapes.

さらに、ゴム弾性板32には、上下の環状シールリップ62,62の外周側に隣接して周方向に環状に延びる環状薄肉部66が形成されている。この環状薄肉部66は、ゴム弾性板32の上下(表裏)両面から抉られるようにして薄肉とされており、かかる環状薄肉部66において、ゴム弾性板32が最も薄肉とされている。   Further, the rubber elastic plate 32 is formed with an annular thin portion 66 adjacent to the outer peripheral sides of the upper and lower annular seal lips 62, 62 and extending annularly in the circumferential direction. The annular thin portion 66 is thinned so as to be rolled from both the upper and lower (front and back) surfaces of the rubber elastic plate 32, and the rubber elastic plate 32 is the thinnest in the annular thin portion 66.

そして、ゴム弾性板32において、この環状薄肉部66よりも外周側に位置する外周部分68が、環状薄肉部66において屈曲する様な弾性変形に基づいて厚さ方向(上下方向)両側に向かって容易に首振り状に変形変位し得るようにされている。なお、かかる外周部分68は、その厚さ寸法が、全体に亘って、環状収容部60の高さ寸法よりも小さくされており、環状収容部60内で首振り状に変形変位可能とされている。また、外周部分68は、径方向外方に行くに従って厚さ方向両側から次第に薄肉化された略台形の断面形状とされている。特に本実施形態では、外周部分68の内周縁部と外周縁部において、それぞれ表裏両面に突出して周方向に延びる緩衝突起70,72が一体形成されている。   In the rubber elastic plate 32, the outer peripheral portion 68 located on the outer peripheral side of the annular thin portion 66 is directed toward both sides in the thickness direction (vertical direction) based on elastic deformation such that the annular thin portion 66 is bent. It can be easily deformed and displaced in a swinging manner. The outer peripheral portion 68 has a thickness dimension that is smaller than the height dimension of the annular housing portion 60 throughout, and can be deformed and displaced in a swinging manner within the annular housing portion 60. Yes. Further, the outer peripheral portion 68 has a substantially trapezoidal cross-sectional shape that is gradually thinned from both sides in the thickness direction as going outward in the radial direction. In particular, in the present embodiment, buffer protrusions 70 and 72 are formed integrally on the inner peripheral edge and the outer peripheral edge of the outer peripheral portion 68 so as to protrude from both the front and back surfaces and extend in the circumferential direction.

これにより、環状薄肉部66を支点とした首振り状に外周部分68が変形変位せしめられた際、外周縁部だけが当接することなく、内周縁部と外周縁部において、それらの各部位に形成された緩衝突起70,72が、何れも略同時に或いは多少の前後をもって、環状収容部60の内面に対して当接されるようになっている。   Thus, when the outer peripheral portion 68 is deformed and displaced in a swinging manner with the thin annular portion 66 as a fulcrum, only the outer peripheral portion does not come into contact with each other in the inner peripheral portion and the outer peripheral portion. The formed buffer protrusions 70 and 72 are brought into contact with the inner surface of the annular housing portion 60 at substantially the same time or slightly before and after.

また、外周部分68は、周方向において厚さ方向両側にうねるような形状で形成されて、波板状で周方向に延びている。即ち、この外周部分68は、その断面の形状や大きさは実質的に変化しないで一定で、厚さ方向の中心位置が周方向で上下に振れるように変化せしめられている。図16に、図13に示す領域αにおけるゴム弾性板32の外周端面の展開説明図を示す。特に本実施形態では、図16に示されているように、外周部分68の中心線や上下面が略サイン波状に一定周期で周方向に波うった形状とされており、その一周期が90度とされて、上下面が全体的に滑らかな湾曲面とされている。   The outer peripheral portion 68 is formed in a shape that swells on both sides in the thickness direction in the circumferential direction, and extends in the circumferential direction in a corrugated shape. In other words, the outer peripheral portion 68 is constant so that the cross-sectional shape and size thereof are not substantially changed, and the center position in the thickness direction is changed so as to swing up and down in the circumferential direction. FIG. 16 is a development explanatory view of the outer peripheral end face of the rubber elastic plate 32 in the region α shown in FIG. In particular, in the present embodiment, as shown in FIG. 16, the center line and upper and lower surfaces of the outer peripheral portion 68 have a substantially sine wave shape that undulates in the circumferential direction at a constant cycle, and one cycle is 90 °. The upper and lower surfaces are curved surfaces that are smooth as a whole.

そして、ゴム弾性板32の外周部分68が環状収容部60に収容状態で組み付けられており、図15に示されているように、かかる外周部分68における内外の緩衝突起70,72は、波状うねりの上死点となる図16中の中央位置において何れもオリフィス部材28に当接されている一方、波状うねりの下死点となる図16中の左右両端位置において何れも蓋板金具30に当接されている。また、波状うねりの上死点では、少なくとも外周側の緩衝突起72が蓋板金具30から離隔している一方、波状うねりの下死点では、少なくとも外周側の緩衝突起72がオリフィス部材28から離隔している。更に、外周部分68の外周面は、環状収容部60の外周壁面に対して径方向に所定距離を隔てて対向位置しており、外周部分68の径方向外方において全周に亘って広がる環状の連通隙間74が形成されている。   And the outer peripheral part 68 of the rubber elastic board 32 is assembled | attached to the cyclic | annular accommodation part 60 in the accommodation state, and as FIG. 15 shows, the inner and outer buffer protrusions 70 and 72 in this outer peripheral part 68 are wavy undulations. 16 are in contact with the orifice member 28 at the center position in FIG. 16 which is the top dead center, while they are in contact with the lid plate 30 at both the left and right positions in FIG. It is touched. Further, at the top dead center of the wavy undulation, at least the outer peripheral buffer projection 72 is separated from the lid plate 30, while at the bottom dead center of the wavy undulation, at least the outer peripheral buffer projection 72 is separated from the orifice member 28. is doing. Furthermore, the outer peripheral surface of the outer peripheral portion 68 is opposed to the outer peripheral wall surface of the annular housing portion 60 at a predetermined distance in the radial direction, and is an annular shape that extends over the entire circumference radially outward of the outer peripheral portion 68. The communication gap 74 is formed.

また、かかる環状収容部60の上側壁部であるオリフィス部材28に形成された上側連通孔44と、環状収容部60の下側壁部である蓋板金具30に形成された下側連通孔54は、何れも、環状収容部60に収容された外周部分68の収容位置に開口せしめられている。特に本実施形態では、これら上下の連通孔44,54が、何れも、内周側の緩衝突起70を挟んで径方向両側に跨がる位置と大きさで開口形成されている。また、環状収容部60は、これら上下の連通孔44,54によって、後述する平衡室78と受圧室76に対してそれぞれ連通されるようになっている。   Further, an upper communication hole 44 formed in the orifice member 28 that is the upper side wall portion of the annular housing portion 60 and a lower communication hole 54 formed in the cover plate metal fitting 30 that is the lower side wall portion of the annular housing portion 60 are In any case, the outer peripheral portion 68 accommodated in the annular accommodating portion 60 is opened at the accommodating position. In particular, in the present embodiment, the upper and lower communication holes 44 and 54 are each formed with an opening at a position and a size that straddle both radial sides with the buffer protrusion 70 on the inner peripheral side interposed therebetween. Further, the annular housing portion 60 is communicated with an equilibrium chamber 78 and a pressure receiving chamber 76, which will be described later, through the upper and lower communication holes 44 and 54, respectively.

而して、このような構造とされた仕切部材22は、図1に示されているように、その蓋板金具30の外周縁部が、第二の取付金具16の上側開口部に重ね合わされて、ダイヤフラム24の固定金具26の外周縁部と共に、第二の取付金具16の上側開口部に対してかしめ固定されることによって組み付けられている。かかる組付状態下、オリフィス部材28の上側には、ダイヤフラム24の固定金具26が重ね合わされており、オリフィス部材28が蓋板金具30と固定金具26の間で挟まれている。   Thus, as shown in FIG. 1, the partition member 22 having such a structure has the outer peripheral edge portion of the cover plate metal fitting 30 overlapped with the upper opening of the second mounting metal fitting 16. In addition, it is assembled by being caulked and fixed to the upper opening of the second mounting bracket 16 together with the outer peripheral edge portion of the fixing bracket 26 of the diaphragm 24. Under such an assembled state, the fixing member 26 of the diaphragm 24 is overlaid on the upper side of the orifice member 28, and the orifice member 28 is sandwiched between the cover plate member 30 and the fixing member 26.

これにより、本体ゴム弾性体12とダイヤフラム24の対向面間に形成された前述の流体室が仕切部材22で二分されており、仕切部材22の下方には、壁部の一部が本体ゴム弾性体12で構成された受圧室76が形成されている。一方、仕切部材22の上方には、壁部の一部がダイヤフラム24で構成された平衡室78が形成されている。即ち、第二の取付金具16に支持された仕切部材22を挟んだ両側において、非圧縮性流体が充填された受圧室76と平衡室78とがそれぞれ形成されている。そして、第一の取付金具14と第二の取付金具16との間に、主として軸方向の振動が入力されると、本体ゴム弾性体12の弾性変形に伴って受圧室76に圧力変動が生ぜしめられるようになっている。なお、平衡室78は、ダイヤフラム24の変形に基づいて容積変化が容易に許容されるようになっている。   As a result, the fluid chamber formed between the opposing surfaces of the main rubber elastic body 12 and the diaphragm 24 is divided into two by the partition member 22, and a part of the wall portion below the partition member 22 has the main rubber elasticity. A pressure receiving chamber 76 constituted by the body 12 is formed. On the other hand, above the partition member 22, an equilibrium chamber 78 in which a part of the wall portion is configured by the diaphragm 24 is formed. That is, a pressure receiving chamber 76 and an equilibrium chamber 78 filled with an incompressible fluid are formed on both sides of the partition member 22 supported by the second mounting bracket 16. When mainly axial vibration is input between the first mounting bracket 14 and the second mounting bracket 16, pressure fluctuation occurs in the pressure receiving chamber 76 due to elastic deformation of the main rubber elastic body 12. It can be tightened. The equilibrium chamber 78 is easily allowed to change its volume based on the deformation of the diaphragm 24.

また、オリフィス部材28の外周側には、蓋板金具30と固定金具26で覆われた領域によって、周方向に延びる第一のオリフィス通路80が形成されている。この第一のオリフィス通路80は、オリフィス部材28に突設された仕切壁36によって周上の一箇所で仕切られることにより一周弱の長さで延びており、その周方向一方の端部が、蓋板金具30に形成された貫通窓82を通じて受圧室76に連通されていると共に、その他方の端部が、オリフィス部材28に形成された切欠窓38を通じて平衡室78に連通されている。これにより、第一のオリフィス通路80によって受圧室76と平衡室78が連通されており、第一のオリフィス通路80を通じて流動せしめられる流体の共振作用に基づいて低周波振動に対する防振効果が発揮されるようになっている。特に本実施形態では、エンジンシェイクに相当する10Hz前後の低周波大振幅振動に対して高減衰効果が発揮されるように、第一のオリフィス通路80の通路断面積と通路長さが設定されている。また、第一のオリフィス通路80は、図1に示されるように、ゴム弾性板32及び環状収容部60と軸方向で略同じ位置にオーバーラップするようにして環状収容部60の外周側を周方向に延びるように形成されている。これにより、エンジンマウント10の軸方向におけるサイズの大型化を抑制しつつ、第一のオリフィス通路80の流路長さが充分に確保されるようになっている。   Further, a first orifice passage 80 extending in the circumferential direction is formed on the outer peripheral side of the orifice member 28 by a region covered with the cover plate fitting 30 and the fixing fitting 26. The first orifice passage 80 is divided by a partition wall 36 projecting from the orifice member 28 at one place on the circumference, so that the length of the first orifice passage 80 is less than one round. The pressure receiving chamber 76 communicates with the pressure receiving chamber 76 through the through window 82 formed in the lid plate 30, and the other end communicates with the equilibrium chamber 78 through the cutout window 38 formed in the orifice member 28. As a result, the pressure receiving chamber 76 and the equilibrium chamber 78 are communicated with each other by the first orifice passage 80, and an anti-vibration effect against low-frequency vibration is exhibited based on the resonance action of the fluid that flows through the first orifice passage 80. It has become so. In particular, in the present embodiment, the passage cross-sectional area and the passage length of the first orifice passage 80 are set so that a high damping effect is exhibited against a low-frequency large-amplitude vibration of about 10 Hz corresponding to an engine shake. Yes. Further, as shown in FIG. 1, the first orifice passage 80 surrounds the outer peripheral side of the annular housing portion 60 so as to overlap the rubber elastic plate 32 and the annular housing portion 60 at substantially the same position in the axial direction. It is formed to extend in the direction. Thereby, the flow path length of the 1st orifice channel | path 80 is fully ensured, suppressing the enlargement of the size in the axial direction of the engine mount 10. FIG.

更にまた、仕切部材22の環状収容部60にも、受圧室76と平衡室78を連通する第二のオリフィス通路84が、上記第一のオリフィス通路80から独立して形成されている。即ち、この第二のオリフィス通路84は、受圧室76に開口する上側連通孔44と、平衡室78に開口する下側連通孔54とが、環状収容部60内においてゴム弾性板32の外周部分68を外周側に回り込んで形成された流体通路(連通隙間74を含む)で相互に連通されることによって構成されている。そして、この第二のオリフィス通路84を通じて流動せしめられる流体の共振作用に基づいて中周波振動に対する防振効果が発揮されるようになっている。特に本実施形態では、アイドリング振動に相当する40Hz前後の中周波小振幅振動に対して高減衰効果が発揮されるように、第二のオリフィス通路84の通路断面積と通路長さが設定されている。   Furthermore, a second orifice passage 84 communicating with the pressure receiving chamber 76 and the equilibrium chamber 78 is also formed in the annular housing portion 60 of the partition member 22 independently from the first orifice passage 80. That is, the second orifice passage 84 has an upper communication hole 44 opened in the pressure receiving chamber 76 and a lower communication hole 54 opened in the equilibrium chamber 78 in the outer peripheral portion of the rubber elastic plate 32 in the annular housing portion 60. It is constituted by communicating with each other through a fluid passage (including a communication gap 74) formed by wrapping 68 around the outer peripheral side. Then, based on the resonance action of the fluid flowing through the second orifice passage 84, an anti-vibration effect against the medium frequency vibration is exhibited. In particular, in the present embodiment, the passage cross-sectional area and the passage length of the second orifice passage 84 are set so that a high damping effect is exhibited with respect to a medium frequency small amplitude vibration around 40 Hz corresponding to idling vibration. Yes.

なお、アイドリング振動の小振幅入力時には、流動抵抗が小さい第二のオリフィス通路84に流体が流れる。これにより、流動抵抗が大きい低周波数域の第一のオリフィス通路80を通じての圧力の逃げが抑えられると共に、第二のオリフィス通路84の流体流動量が確保されて目的とする中周波防振効果が有効に発揮される。一方、エンジンシェイクの振動入力時には、アイドリング振動に比して大振幅の振動が入力されることから、ゴム弾性板32の外周部分68の首振り変形変位量が大きくなって環状収容部60の内面に当接して連通孔44,54が覆蓋されることにより第二のオリフィス通路84が実質的に遮断状態とされて第二のオリフィス通路84を通じての圧力の逃げが回避されることとなり、それ故、第一のオリフィス通路80の流体流動量が確保されて目的とする低周波防振効果が有効に発揮される。   When a small amplitude of idling vibration is input, the fluid flows through the second orifice passage 84 having a small flow resistance. As a result, the escape of pressure through the first orifice passage 80 in the low frequency region where the flow resistance is large is suppressed, and the amount of fluid flow in the second orifice passage 84 is ensured, and the intended medium frequency vibration isolation effect is obtained. Effectively demonstrated. On the other hand, when an engine shake vibration is input, a vibration having a larger amplitude than that of the idling vibration is input. Therefore, the amount of swing deformation displacement of the outer peripheral portion 68 of the rubber elastic plate 32 is increased, and the inner surface of the annular housing portion 60 is And the communication holes 44 and 54 are covered so that the second orifice passage 84 is substantially cut off and pressure escape through the second orifice passage 84 is avoided. The fluid flow rate of the first orifice passage 80 is ensured and the intended low frequency vibration isolation effect is effectively exhibited.

さらに、仕切部材22の中央部分には、ゴム弾性板32を利用した液圧吸収機構86が構成されている。即ち、ゴム弾性板32の中央部分64には、下側透孔48と上側透孔33を通じて、受圧室76と平衡室78の各一方の圧力が及ぼされるようになっている。それ故、走行こもり音等の高周波振動の入力時には、第一のオリフィス通路80だけでなく第二のオリフィス通路84も流体流動抵抗が著しく大きくなって実質的に遮断状態となった状態下で、受圧室76に惹起される大きな圧力変動により当該中央部分64が弾性変形せしめられ、かかる弾性変形によって受圧室76の圧力変動が平衡室78に逃がされることにより、防振性能の向上効果が発揮されるようになっている。   Furthermore, a hydraulic pressure absorbing mechanism 86 using the rubber elastic plate 32 is configured at the central portion of the partition member 22. That is, the pressure of one of the pressure receiving chamber 76 and the equilibrium chamber 78 is applied to the central portion 64 of the rubber elastic plate 32 through the lower through hole 48 and the upper through hole 33. Therefore, at the time of inputting high-frequency vibration such as traveling booming noise, not only the first orifice passage 80 but also the second orifice passage 84 has a significantly increased fluid flow resistance and is in a substantially cut-off state. The central portion 64 is elastically deformed by a large pressure fluctuation induced in the pressure receiving chamber 76, and the pressure fluctuation of the pressure receiving chamber 76 is released to the equilibrium chamber 78 by the elastic deformation, thereby improving the vibration isolation performance. It has become so.

特に本実施形態では、かかるゴム弾性板32の中央部分64の弾性変形に伴って受圧室76側に生ぜしめられる流体流路上に円筒部52からなる特定流路形態をもって下側透孔48が形成されている。そして、この円筒部52の長さと断面積が適当に設定されることにより、防振を目的とする走行こもり音に相当する100Hz前後の振動に対して流体共振作用に基づく防振効果が発揮し得る第三のオリフィス通路88が、かかる下側透孔48によって構成されている。即ち、本実施形態では、下側透孔48により構成される第三のオリフィス通路88が、第一及び第二のオリフィス通路80,84の何れよりも高周波数域にチューニングされている。   In particular, in the present embodiment, the lower through-hole 48 is formed with a specific flow path configuration including the cylindrical portion 52 on the fluid flow path generated on the pressure receiving chamber 76 side with the elastic deformation of the central portion 64 of the rubber elastic plate 32. Has been. Then, by appropriately setting the length and the cross-sectional area of the cylindrical portion 52, a vibration isolation effect based on the fluid resonance action is exerted with respect to vibration around 100 Hz corresponding to a traveling booming noise intended for vibration isolation. The resulting third orifice passage 88 is constituted by such a lower through-hole 48. That is, in the present embodiment, the third orifice passage 88 constituted by the lower through-hole 48 is tuned in a higher frequency region than any of the first and second orifice passages 80 and 84.

なお、このゴム弾性板32の中央部分64は、充分な厚さ寸法をもって展張状態で配設されており、適当な大きさの変形剛性(動的ばね定数)が設定されていることから、かかる中央部分64による防振効果が期待される走行こもり音に比して、振幅が充分に大きい前述のエンジンシェイクやアイドリング振動の入力時には、該中央部分64の弾性変形に基づく圧力の逃げが防止されるようになっている。即ち、中央部分64の弾性変形による液圧吸収機能は、このような振幅の大きなエンジンシェイク等の振動に対しては実質的に機能しない。それ故、前述の第一及び第二のオリフィス通路80,84による各防振効果も、第三のオリフィス通路88による防振効果と共に、有効に発揮され得る。   The central portion 64 of the rubber elastic plate 32 is disposed in a stretched state with a sufficient thickness dimension, and has an appropriate size of deformation rigidity (dynamic spring constant). When the engine shake or idling vibration described above, which has a sufficiently large amplitude as compared with a traveling boom sound that is expected to have an anti-vibration effect by the central portion 64, pressure escape due to elastic deformation of the central portion 64 is prevented. It has become so. That is, the hydraulic pressure absorbing function by the elastic deformation of the central portion 64 does not substantially function for such vibrations such as an engine shake having a large amplitude. Therefore, each vibration isolation effect by the first and second orifice passages 80 and 84 can be effectively exhibited together with the vibration isolation effect by the third orifice passage 88.

また、ゴム弾性板32は、径方向中間部分に突設された上下のシールリップ62,62において仕切部材22で挟持されていることに加えて、上側のシールリップ62が係止突起46で径方向に係止されていることにより、ゴム弾性板32の仕切部材22に対する径方向の位置ずれが強固に防止されている。これにより、仕切部材22の環状収容部60内でゴム弾性板32の外周部分68の回りに形成された第二のオリフィス通路84における通路断面が、優れた精度と安定性をもって設定され得ることとなり、目的とする防振効果が一層安定して発揮され浮る。特に本実施形態では、ゴム弾性板32における上側のシールリップ62が係止突起46で内周側から係止されていることから、例えばクランキング時等に衝撃的な大荷重が及ぼされてキャビテーションなどによる過大圧力が作用し、ゴム弾性板32が大きく受圧室76側又は平衡室78側に膨出変形した場合でも、ゴム弾性板32の径方向中間部分の位置決め状態が確実に維持され得る。それ故、ゴム弾性板32の外周部分68が環状収容部60内から引きずり出されるような不具合が防止されて、一層の信頼性及び性能安定性の向上が図られ得るのである。   The rubber elastic plate 32 is sandwiched between the upper and lower seal lips 62, 62 projecting from the radially intermediate portion by the partition member 22, and the upper seal lip 62 has a diameter at the locking projection 46. By being locked in the direction, the radial displacement of the rubber elastic plate 32 with respect to the partition member 22 is firmly prevented. Thereby, the passage cross section in the second orifice passage 84 formed around the outer peripheral portion 68 of the rubber elastic plate 32 in the annular housing portion 60 of the partition member 22 can be set with excellent accuracy and stability. The target vibration-proofing effect is exhibited more stably and floats. In particular, in the present embodiment, since the upper seal lip 62 of the rubber elastic plate 32 is locked from the inner peripheral side by the locking projection 46, a shocking heavy load is applied, for example, during cranking, and cavitation. Even when an excessive pressure due to the above acts and the rubber elastic plate 32 bulges and deforms toward the pressure receiving chamber 76 or the equilibrium chamber 78, the positioning state of the intermediate portion in the radial direction of the rubber elastic plate 32 can be reliably maintained. Therefore, a problem that the outer peripheral portion 68 of the rubber elastic plate 32 is dragged out from the annular housing portion 60 can be prevented, and the reliability and performance stability can be further improved.

更にまた、本実施形態では、ゴム弾性板32の外周部分68が、環状収容部60の上下内面に対して、周上で部分的に当初から当接状態とされている。それ故、振動入力時における外周部分68の弾性的な変形変位により、その当接領域が増減したり当接/離隔を繰り返したりすることで発生する外周部分68の環状収容部60の内面への打ち当たりに伴う衝撃や振動の発生が効果的に抑えられ得る。   Furthermore, in the present embodiment, the outer peripheral portion 68 of the rubber elastic plate 32 is partially in contact with the upper and lower inner surfaces of the annular housing portion 60 on the periphery from the beginning. Therefore, the elastic deformation displacement of the outer peripheral portion 68 at the time of vibration input causes the contact area to increase / decrease or repeat contact / separation to the inner surface of the annular housing portion 60 of the outer peripheral portion 68. Generation of impact and vibration associated with hitting can be effectively suppressed.

因みに、本実施形態に従う構造とされたエンジンマウント10の試作品について、その防振特性を実測した結果を、図17〜18に示す。即ち、図17に示すグラフから、エンジンシェイクに相当する低周波大振幅振動に対して、第一のオリフィス通路80による防振効果(高減衰効果)が有効に発揮されることが認められる。また、図18に示すグラフから、アイドリング振動に相当する中周波中振幅振動に対して、第二のオリフィス通路84による防振効果(低動ばね効果)が有効に発揮されることが認められる。また、図19に示すグラフから、走行こもり音に相当する高周波小振幅振動に対して、第三のオリフィス通路88を含む液圧吸収機構86による防振効果(低動ばね効果)が有効に発揮されることが認められる。   Incidentally, the results of actual measurement of the anti-vibration characteristics of the prototype of the engine mount 10 having the structure according to the present embodiment are shown in FIGS. That is, it can be seen from the graph shown in FIG. 17 that the anti-vibration effect (high damping effect) by the first orifice passage 80 is effectively exhibited against low-frequency large-amplitude vibration corresponding to engine shake. Further, it can be seen from the graph shown in FIG. 18 that the anti-vibration effect (low dynamic spring effect) by the second orifice passage 84 is effectively exhibited against medium-frequency medium amplitude vibration corresponding to idling vibration. Further, from the graph shown in FIG. 19, the anti-vibration effect (low dynamic spring effect) by the hydraulic pressure absorbing mechanism 86 including the third orifice passage 88 is effectively exhibited against high-frequency small-amplitude vibration corresponding to traveling noise. It is recognized that

10:エンジンマウント,12:本体ゴム弾性体,14:第一の取付金具,16:第二の取付金具,22:仕切部材,24:ダイヤフラム,26:固定金具,28:オリフィス部材,30:蓋板金具,32:ゴム弾性板,33:上側透孔,34:外周壁部,36:仕切壁,38:切欠窓,40:環状凹所,44:上側連通孔,46:係止突起,48:下側透孔,50:環状段差部,52:円筒部,54:下側連通孔,60:環状収容部,62:シールリップ,64:中央部分,66:環状薄肉部,68:外周部分,70:緩衝突起(内周),72:緩衝突起(外周),74:連通隙間,76:受圧室,78:平衡室,80:第一のオリフィス通路,82:貫通窓,84:第二のオリフィス通路,86:液圧吸収機構,88:第三のオリフィス通路 10: engine mount, 12: rubber elastic body, 14: first mounting bracket, 16: second mounting bracket, 22: partition member, 24: diaphragm, 26: fixing bracket, 28: orifice member, 30: lid Metal plate, 32: Rubber elastic plate, 33: Upper through hole, 34: Outer wall, 36: Partition wall, 38: Notch window, 40: Annular recess, 44: Upper communication hole, 46: Locking projection, 48 : Lower side through hole, 50: annular stepped part, 52: cylindrical part, 54: lower communication hole, 60: annular accommodating part, 62: seal lip, 64: central part, 66: annular thin part, 68: outer peripheral part , 70: buffer projection (inner circumference), 72: buffer projection (outer circumference), 74: communication gap, 76: pressure receiving chamber, 78: equilibrium chamber, 80: first orifice passage, 82: through window, 84: second Orifice passage, 86: hydraulic absorption mechanism, 88: third orifice A road

Claims (6)

第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめ、該本体ゴム弾性体で壁部の一部が構成された受圧室と、壁部の一部が可撓性膜で構成された平衡室を、該第二の取付部材で支持された仕切部材を挟んだ両側に形成して、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を連通する第一のオリフィス通路を形成した流体封入式防振装置において、
円板形状のゴム弾性板に対して径方向中間部分の表裏両面に突出して周方向に延びる環状シールリップを一体形成し、前記仕切部材によって該ゴム弾性板の該環状シールリップを表裏両側から挟んで且つ径方向に係止して支持せしめ、該仕切部材に設けた透孔を通じて前記受圧室と前記平衡室の圧力が該ゴム弾性板の該環状シールリップで囲まれた中央部分の各一方の面に及ぼされるようにして液圧吸収機構を構成する一方、
該ゴム弾性板における該環状シールリップの外周側に環状薄肉部を形成し、該環状薄肉部の径方向外方に位置する該ゴム弾性板の外周部分を板厚方向に波うった湾曲形状とすると共に、該仕切部材において該ゴム弾性板の該外周部分を収容する環状収容部を形成して、該環状収容部に設けた連通孔を通じて該環状収容部を該受圧室と該平衡室に連通させることにより、該環状収容部内で該ゴム弾性板の該外周部分を回り込んで該受圧室と該平衡室を連通する第二のオリフィス通路を形成したことを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member are connected by a main rubber elastic body, a pressure receiving chamber in which a part of the wall portion is configured by the main rubber elastic body, and a part of the wall portion is a flexible film. The formed equilibrium chambers are formed on both sides of the partition member supported by the second mounting member, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber In the fluid-filled vibration isolator that forms the first orifice passage communicating with
An annular seal lip that protrudes on both the front and back surfaces of the intermediate portion in the radial direction and extends in the circumferential direction is formed integrally with the disc-shaped rubber elastic plate, and the annular seal lip of the rubber elastic plate is sandwiched from the front and back sides by the partition member. In addition, the pressure in the pressure receiving chamber and the equilibrium chamber is surrounded by the annular seal lip of the rubber elastic plate through a through hole provided in the partition member. While constituting the hydraulic pressure absorption mechanism to be exerted on the surface,
An annular thin portion is formed on the outer peripheral side of the annular seal lip in the rubber elastic plate, and the outer peripheral portion of the rubber elastic plate located radially outward of the annular thin portion is curved in the thickness direction. In addition, an annular accommodating portion that accommodates the outer peripheral portion of the rubber elastic plate is formed in the partition member, and the annular accommodating portion communicates with the pressure receiving chamber and the equilibrium chamber through a communication hole provided in the annular accommodating portion. A fluid-filled vibration isolating device characterized in that a second orifice passage is formed in the annular housing portion so as to go around the outer peripheral portion of the rubber elastic plate and communicate the pressure receiving chamber and the equilibrium chamber. .
前記ゴム弾性板の前記外周部分には、内周縁部と外周縁部においてそれぞれ表裏両面に突出して周方向に延びる緩衝突起が一体形成されている請求項1に記載の流体封入式防振装置。   The fluid-filled type vibration damping device according to claim 1, wherein the outer peripheral portion of the rubber elastic plate is integrally formed with buffer protrusions extending in the circumferential direction so as to protrude from both the front and back surfaces at the inner peripheral edge and the outer peripheral edge. 前記ゴム弾性体板の前記外周部分における表裏両面の内周縁部と外周縁部にそれぞれ形成された前記緩衝突起が、何れも、前記環状収容部の内面に対して、周方向で波うった該外周部分における少なくとも頂部において当接されている請求項2に記載の流体封入式防振装置。   The buffer protrusions respectively formed on the inner and outer peripheral edge portions of the front and back surfaces of the outer peripheral portion of the rubber elastic plate are both undulated in the circumferential direction with respect to the inner surface of the annular housing portion. The fluid-filled vibration isolator according to claim 2, which is in contact with at least the top of the outer peripheral portion. 前記仕切部材において、前記ゴム弾性板の表裏両面に形成された前記環状シールリップの少なくとも一方に対して内周面に当接して径方向内方への変位を規制する状態で係止される係止突起が形成されている請求項1〜3の何れか1項に記載の流体封入式防振装置。   In the partition member, the engagement member is engaged with at least one of the annular seal lips formed on the front and back surfaces of the rubber elastic plate in a state of contacting the inner peripheral surface and restricting the radially inward displacement. The fluid-filled vibration isolator according to any one of claims 1 to 3, wherein a stop protrusion is formed. 前記ゴム弾性板の前記中央部分に対して前記受圧室の圧力を及ぼす前記透孔と前記平衡室の圧力を及ぼす前記透孔との少なくとも一方の透孔によって、前記第一のオリフィス通路と前記第二のオリフィス通路の何れよりも高周波数域にチューニングされた第三のオリフィス通路が形成されている請求項1〜4の何れか1項に記載の流体封入式防振装置。   The first orifice passage and the first through hole are formed by at least one of the through hole that exerts the pressure of the pressure receiving chamber on the central portion of the rubber elastic plate and the through hole that exerts the pressure of the equilibrium chamber. The fluid-filled vibration isolator according to any one of claims 1 to 4, wherein a third orifice passage tuned to a frequency region higher than any of the two orifice passages is formed. 前記仕切部材において、前記環状収容部よりも外周側を周方向に延びるようにして前記第一のオリフィス通路が形成されている請求項1〜5の何れか1項に記載の流体封入式防振装置。   6. The fluid-filled vibration isolating device according to claim 1, wherein the first orifice passage is formed in the partition member so as to extend in an outer circumferential side from the annular housing portion in a circumferential direction. apparatus.
JP2009292912A 2009-12-24 2009-12-24 Fluid filled vibration isolator Expired - Fee Related JP5377272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292912A JP5377272B2 (en) 2009-12-24 2009-12-24 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292912A JP5377272B2 (en) 2009-12-24 2009-12-24 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2011133031A true JP2011133031A (en) 2011-07-07
JP5377272B2 JP5377272B2 (en) 2013-12-25

Family

ID=44345986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292912A Expired - Fee Related JP5377272B2 (en) 2009-12-24 2009-12-24 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5377272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036513A (en) * 2011-08-05 2013-02-21 Toyo Tire & Rubber Co Ltd Liquid-filled vibration isolator
JP2013228004A (en) * 2012-04-24 2013-11-07 Toyo Tire & Rubber Co Ltd Liquid-sealed type vibration control device
JP2013228003A (en) * 2012-04-24 2013-11-07 Toyo Tire & Rubber Co Ltd Liquid-sealed type vibration proofing device
JP2013231483A (en) * 2012-04-27 2013-11-14 Toyo Tire & Rubber Co Ltd Liquid-filled antivibration device
WO2018193670A1 (en) * 2017-04-17 2018-10-25 株式会社ブリヂストン Vibration damping device
CN113494556A (en) * 2020-04-08 2021-10-12 通伊欧轮胎株式会社 Liquid-filled vibration-proof device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229132A (en) * 1988-03-09 1989-09-12 Tokai Rubber Ind Ltd Fluid sealed type mount device
JP2006097824A (en) * 2004-09-30 2006-04-13 Tokai Rubber Ind Ltd Fluid sealing type vibration control device
JP2007139024A (en) * 2005-11-16 2007-06-07 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2007218420A (en) * 2006-01-20 2007-08-30 Toyo Tire & Rubber Co Ltd Liquid-sealed vibration control device
JP2008002618A (en) * 2006-06-23 2008-01-10 Tokai Rubber Ind Ltd Fluid filled vibration isolating device
JP2009243543A (en) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd Fluid sealed type vibration isolator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229132A (en) * 1988-03-09 1989-09-12 Tokai Rubber Ind Ltd Fluid sealed type mount device
JP2006097824A (en) * 2004-09-30 2006-04-13 Tokai Rubber Ind Ltd Fluid sealing type vibration control device
JP2007139024A (en) * 2005-11-16 2007-06-07 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2007218420A (en) * 2006-01-20 2007-08-30 Toyo Tire & Rubber Co Ltd Liquid-sealed vibration control device
JP2008002618A (en) * 2006-06-23 2008-01-10 Tokai Rubber Ind Ltd Fluid filled vibration isolating device
JP2009243543A (en) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd Fluid sealed type vibration isolator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036513A (en) * 2011-08-05 2013-02-21 Toyo Tire & Rubber Co Ltd Liquid-filled vibration isolator
JP2013228004A (en) * 2012-04-24 2013-11-07 Toyo Tire & Rubber Co Ltd Liquid-sealed type vibration control device
JP2013228003A (en) * 2012-04-24 2013-11-07 Toyo Tire & Rubber Co Ltd Liquid-sealed type vibration proofing device
JP2013231483A (en) * 2012-04-27 2013-11-14 Toyo Tire & Rubber Co Ltd Liquid-filled antivibration device
WO2018193670A1 (en) * 2017-04-17 2018-10-25 株式会社ブリヂストン Vibration damping device
JP2018179186A (en) * 2017-04-17 2018-11-15 株式会社ブリヂストン Vibration control device
US11446999B2 (en) 2017-04-17 2022-09-20 Prospira Corporation Vibration-damping device
CN113494556A (en) * 2020-04-08 2021-10-12 通伊欧轮胎株式会社 Liquid-filled vibration-proof device
CN113494556B (en) * 2020-04-08 2022-11-18 通伊欧轮胎株式会社 Liquid-filled vibration-proof device

Also Published As

Publication number Publication date
JP5377272B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5198605B2 (en) Liquid-filled vibration isolator
JP4228219B2 (en) Fluid filled vibration isolator
JP5095763B2 (en) Liquid-filled vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
WO2010032344A1 (en) Liquid-sealed type vibration isolator
JP2006112608A (en) Fluid-sealed vibration absorbing device
JP5882125B2 (en) Liquid-filled vibration isolator
JP5377272B2 (en) Fluid filled vibration isolator
JP2007271001A (en) Fluid-sealed vibration isolating device
JP3729107B2 (en) Fluid filled vibration isolator
JP5431982B2 (en) Liquid-filled vibration isolator
JP5801134B2 (en) Liquid-filled vibration isolator
JP5184276B2 (en) Liquid-filled vibration isolator
JP5184272B2 (en) Liquid-filled vibration isolator
JP5184273B2 (en) Liquid-filled vibration isolator
JP5510713B2 (en) Liquid-filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JPH05272575A (en) Fluid-sealed mounting device
JP2013194848A (en) Liquid sealed type vibration control device
JP5668231B2 (en) Liquid-filled vibration isolator
JP2010169121A (en) Fluid filled vibration control device
JP5010564B2 (en) Liquid-filled vibration isolator
JP2005233242A (en) Pneumatic switch-over type fluid-filled engine mount
JP5893482B2 (en) Liquid-filled vibration isolator
JP5108704B2 (en) Fluid filled engine mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees