JPS62220731A - Vibration isolator encapsulating liquid - Google Patents

Vibration isolator encapsulating liquid

Info

Publication number
JPS62220731A
JPS62220731A JP6115686A JP6115686A JPS62220731A JP S62220731 A JPS62220731 A JP S62220731A JP 6115686 A JP6115686 A JP 6115686A JP 6115686 A JP6115686 A JP 6115686A JP S62220731 A JPS62220731 A JP S62220731A
Authority
JP
Japan
Prior art keywords
diaphragm
orifice
chamber
liquid
loss factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6115686A
Other languages
Japanese (ja)
Inventor
Yoshiya Fujiwara
義也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP6115686A priority Critical patent/JPS62220731A/en
Publication of JPS62220731A publication Critical patent/JPS62220731A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To damp the vibration of loss factor frequency which is different from orifice to orifice effectively by providing a diaphragm chamber dedicated for each orifice. CONSTITUTION:The low frequency components in the vibration of a power unit are damped sufficiently by means of the first and second diaphragm chambers 31, 32. In other word, the low frequency components are damped when the working liquid in a liquid chamber 25 moved through the first and second orifices 34, 35 between the liquid chamber 25 and the first and second diaphragm chambers 31, 32 as a rubber member 24 deforms. Consequently, respective loss factor peaks can be set at high levels without influence of other orifices.

Description

【発明の詳細な説明】 産業上の利用分野 この発明に1液体封入式防感体に関し、とりわけオリフ
イスケ複数設けることにエリ項数の振動減衰域會持つよ
うになった液体封入式防振体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a liquid-filled vibration isolator, and more particularly to a liquid-filled vibration isolator that has a vibration damping range of an elliptical number by providing a plurality of orifices. .

従来の技術 この種、従来の液体封入式防振体としては、例えば特開
昭fi8−72741号公報に示さ1したものがある。
2. Description of the Related Art As a conventional liquid-filled vibration isolator of this kind, for example, there is one disclosed in Japanese Patent Application Laid-open No. 72741/1998.

しかし、この液体封入式防振体にあっては、複数のオリ
フィスが夫々に共通する1つのダイヤフラム室に設けら
nている友め、このオリフィスのうち液体通過低抗の大
きな側のオリフィスでロスファクタ會発生し二うとして
も液体通過抵抗が小さな側のオリフィスを弁して容易に
液体#動してしまう。したがって、1fl過抵抗の大き
な側のオリフィスで受けもつ周波数帯のロスファクタピ
ークl+1は、通過抵抗の小さな側のオリフィスで受け
もつ周波数帯のロスファクタピーク値に比較して著しく
小さくなる(第8図の■参照)。この結果、オリフィス
′+r複数設けたことによる効果が十分に発揮さCず、
1つのオリフィスのみケ設は友ものと差異が僅んどなく
なってしまう。
However, in this liquid-filled vibration isolator, a plurality of orifices are provided in one common diaphragm chamber, and among these orifices, there is a loss in the orifice on the side with a large liquid passage resistance. Even if a factor encounter occurs, the orifice on the side with smaller liquid passage resistance will be valved and the liquid will easily move. Therefore, the loss factor peak value l+1 in the frequency band served by the orifice on the side with larger 1fl overresistance becomes significantly smaller than the loss factor peak value in the frequency band served by the orifice on the side with smaller passing resistance (Fig. 8). (See ■). As a result, the effect of providing a plurality of orifices'+r was not fully demonstrated,
The configuration of only one orifice is little different from its counterpart.

ところで、上記複数のオリフィスによって、発生する夫
々のロスファクタのピーク値は、略同じ大きさに設定す
るつまりロスファクタ特性が各ビークl11[’(r滑
らかに結ぶ曲線で描かrしるCとに工0゜各ピーク1直
問お工びビーク値近傍の周波数帯のロスファクタも大金
〈設定さnるので最動減衰領域ケ広くとることができる
ことが知ら庇ている、そこで、複数のオリフィスが有す
る個々のロスファクタ発生機能會、他のオリフィスに影
豐さCろことなく十分に発揮させると共に、夫々のロス
ファクタピーク値の高さ?略等しくするようにした液体
封入式防振体が既に開発さCている(特幀昭fly−1
95210号)。
By the way, the peak values of the respective loss factors generated by the plurality of orifices are set to approximately the same magnitude, that is, the loss factor characteristic is It is well known that the loss factor in the frequency band near the peak value can be set to a large value, so the most dynamic attenuation region can be widened. The liquid-filled vibration isolator is designed to fully utilize the loss factor generation function of each orifice without affecting other orifices, and to make the heights of the loss factor peak values of each orifice approximately equal. C has already been developed (Special Fly-1)
No. 95210).

すなわち、この液体封入式防振体1は、8g6図に示す
工うに図外のパワーユニット側及び車体側に芸者さCる
第1枠体2お工び第2枠体8間に。
That is, this liquid-filled vibration isolator 1 is constructed between the first frame 2 and the second frame 8, which are located on the power unit side (not shown) and on the vehicle body side, as shown in Figure 8g6.

弾性体たるゴム体4で液密的に囲繞さ1しる液体室6が
設けらルている。この液体室5の上下端部にa前記第1
枠体2から一体に延設さrLる第1仕切板6お工び前記
第2枠体B下端に配置さnる第2仕切板7が設けらrL
、かつ第1仕切板6の上方は第1ダイヤフラム8で液密
的に覆わlしると共に、第2仕切根7の下方は第2ダイ
ヤフラム9で液密的に覆わnている。そして、第1仕切
板6と第1ダイヤフラム8との間r第1ダイヤフラム室
10とし、第2仕切板7と第2ダイヤフラム9との間會
第2ダイヤフラム室11としている。−万、前記第1仕
切板81CD b液体室5と第1ダイヤフラム室8とケ
連通する迷路状の第1オリフイス12が形成さnている
と共に、前記第2仕切板7には液体室5と第2ダイヤフ
ラム室11とt連通する迷路状の第2オリフイス18が
形成されている。
A liquid chamber 6 is provided which is surrounded in a liquid-tight manner by a rubber body 4 which is an elastic body. At the upper and lower ends of this liquid chamber 5,
A first partition plate 6 is integrally extended from the frame body 2, and a second partition plate 7 is provided at the lower end of the second frame body B.
, and the upper part of the first partition plate 6 is covered with a first diaphragm 8 in a liquid-tight manner, and the lower part of the second partition root 7 is covered with a second diaphragm 9 in a liquid-tight manner. A first diaphragm chamber 10 is formed between the first partition plate 6 and the first diaphragm 8, and a second diaphragm chamber 11 is formed between the second partition plate 7 and the second diaphragm 9. - The first partition plate 81CDb is formed with a labyrinth-shaped first orifice 12 that communicates with the liquid chamber 5 and the first diaphragm chamber 8, and the second partition plate 7 is formed with a first orifice 12 that communicates with the liquid chamber 5 and the first diaphragm chamber 8. A labyrinth-shaped second orifice 18 communicating with the second diaphragm chamber 11 is formed.

また、前記第1ダイヤフラム8の上万會覆う第1MI置
板14の周縁部に、第1ダイヤフラム8の枠板8ai挾
んで第1枠体20周縁がかしめ固ださnている。一方、
前記第2ダイヤフラム9の下方ケ階う第2被覆板16の
周縁部に、第2仕切板7の周縁および第2ダイヤフラム
9の周縁を挾んで第2枠体Hの周縁がかしめ固定さnて
いる。
Further, the peripheral edge of the first frame body 20 is caulked to the peripheral edge of the first MI mounting plate 14 that covers the first diaphragm 8, sandwiching the frame plate 8ai of the first diaphragm 8. on the other hand,
The periphery of the second frame H is caulked and fixed to the periphery of the second covering plate 16 located below the second diaphragm 9, sandwiching the periphery of the second partition plate 7 and the periphery of the second diaphragm 9. There is.

ぞして、十記第1オリフィス12の通路長さ?比較的短
かく形成して、ロスファクターのピーク周波数?大缶〈
設定すると共に、第2オリフイス18の通路長さ?比較
的長く形成して、ロスファクタのピーク周波数?小さく
設定している。−に。
So, what is the passage length of the first orifice 12? Is it formed relatively short and the peak frequency of the loss factor? Large can
In addition to setting the passage length of the second orifice 18? Is the peak frequency of the loss factor formed relatively long? It is set small. −to.

前記第1ダイヤフラム8の肉厚r前記第2ダイヤフラム
9の内厚エリ大きくして剛性?高め、拡張弾性が第2ダ
イヤフラム9エリ高くなる工うに設定さ几ている。こn
によって、全てのオリフィスにエリ得ら1し61つのロ
スファクタ特性ぼ、略等しいピーク値が滑らかな曲線で
結ばnる状態となり、広い範囲に頁って高いロスファク
タIj[k得らrしる工うになっている。
Increase the wall thickness r of the first diaphragm 8 and the inner thickness of the second diaphragm 9 to increase rigidity? The expansion elasticity of the second diaphragm is set to be high. This
As a result, the loss factor characteristics of all the orifices have approximately equal peak values connected by a smooth curve, and a high loss factor Ij[k can be obtained over a wide range It's about to start work.

発明が解決しようとする間呟点 しかしながら、上記特願昭fly−1915210号の
ものは、前記のLうに第lダイヤフラム室10と第2ダ
イヤフラム室11とが液体室6會挾んで上下に分離し良
状態で配置さCており、夫々別個独立に構成さCている
ため、構造がa雑になる。
However, in the above-mentioned Japanese Patent Application No. Sho Fly-1915210, the first diaphragm chamber 10 and the second diaphragm chamber 11 are vertically separated with six liquid chambers in between. Since they are arranged in a good condition and each is constructed separately and independently, the structure becomes rough.

また、各第1・第2枠体2.8ケ夫々用1・第2?!1
Fllf板14.15に別々にかしめ固定しなけnばな
らないなど、製造作業が゛頂雑になり、コストが高くな
るといった問題がある。
In addition, each 1st and 2nd frame for each 2.8 pieces? ! 1
There is a problem in that the manufacturing work becomes complicated and the cost increases, as it has to be separately caulked and fixed to the FLLF plates 14 and 15.

−にまた、上記従来の各液体封入式防娠体にあっては、
エンジンの踊りやこもり音などの中・高周波晧動に対し
て動ばね定数ケ抑制する工うな工夫が全くなさ扛ていな
い友め、車体感動の十分な低減が図nない。
- Also, in each of the above-mentioned conventional liquid-filled protection bodies,
My friend, there has been no effort to suppress the dynamic spring constant against medium and high frequency vibrations such as engine movement and muffled noise, and there is no way to sufficiently reduce the body sensation.

問題点ケ解決するための手段 この発明は、弾性体で囲繞さnた液体室が、ロスファク
タのピーク周波数ケ夫々異にした′41L数のオリフィ
ス専用して該オリフィスに専用の各ダイヤフラム室に連
通し、かつ前記各ダイヤフラム室のダイヤフラム拡張弾
性t、対応するオリフィスのロスファクタビーク周波数
が大白いものほど高く設定した液体封入式防娠体であっ
て、l4IT紀各ダイヤフラム室r1前記所足のダイヤ
フラム室弁して屯曾一体に形成し、ボに、前記液体室側
のダイヤフラム室上部7固成しかつ前記専用オリフィス
か形成さjした仕切&を、ダイヤフラム室の軸方向へ微
動可能に設けtこと?特徴としている。
Means for Solving Problems This invention provides a method in which a liquid chamber surrounded by an elastic body is dedicated to a number of orifices having different peak frequencies of loss factors, and each diaphragm chamber is dedicated to the orifice. A liquid-filled prevention body is provided in which the diaphragm expansion elasticity t of each of the diaphragm chambers and the loss factor peak frequency of the corresponding orifice are set as high as the white ones are, and the diaphragm chambers r1 of each diaphragm chamber are A diaphragm chamber valve is formed integrally with the diaphragm chamber, and a partition & in which the upper part of the diaphragm chamber on the liquid chamber side is fixed and the dedicated orifice is formed is provided at the bottom so as to be able to move slightly in the axial direction of the diaphragm chamber. T? It is a feature.

作用 上記構成のこの発明に工nば、各オリフィス専用のダイ
ヤフラム室?設けることにエリ、各オリフィスにエリ異
なるロスフチフタ周波数の振動?。
Function If this invention with the above structure is constructed, a diaphragm chamber dedicated to each orifice is provided. Does it mean that each orifice has a different frequency of vibration? .

夫々のオリアイス會通して効果的に減哀できる。We can effectively relieve our sorrow through our respective Oriais meetings.

また、各オリフィスにエリ発揮さnるロス7アクタピー
ク値は、このピーク周波数の大きさに比例し、ダイヤフ
ラム室のダイヤフラム眼張弾性の大角さに反比例するこ
とが本出願人にエリ確認さルており、従って、ダイヤフ
ラム拡張弾性管上記のように構成することにエリ、各オ
リフィスのロスファクタビーク[直の扁さ會1略等しく
することかできる。
In addition, the applicant has confirmed that the peak value of the loss 7 actor exerted in each orifice is proportional to the magnitude of this peak frequency, and inversely proportional to the magnitude of the diaphragm tension elasticity of the diaphragm chamber. Therefore, if the diaphragm expandable elastic tube is configured as described above, the loss factor beaks of each orifice can be made substantially equal.

しかも、車体の高周波喘動域において、ダイヤフラム室
の上8(l?画成する仕切板が、ダイヤフラム室の軸方
向へ微動する比め、こlしによって動ばね定数が抑制さ
ル高周波域の振−SV十分に低減することが可能となる
。更に、各ダイヤフラム室會重合一体に形成したため、
構造が簡単となるばかりか、防振体の!Li!造作業能
率の向上全図ることができろ。
Moreover, in the high-frequency wheeze region of the vehicle body, the partition plate defining the upper part of the diaphragm chamber moves slightly in the axial direction of the diaphragm chamber, but the dynamic spring constant is suppressed by straining. It is possible to sufficiently reduce vibration-SV.Furthermore, since each diaphragm chamber is integrally formed,
Not only is the structure simple, but it also has a vibration-proof structure! Li! You can fully improve your manufacturing efficiency.

実施例 以下、この発明の実施例ケ図面に基づいて詳述する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図はこの発明の第1実施例ケ示し、この液体封入式
防振体21に、図外のパワーユニット1lllおよび車
体側に装着さnろ第1支持枠22及び第2支持枠28と
’(rWし、こγしら第1・第2支持枠22.28間に
は、弾性体たるゴム体24で液密的に囲4さγLろ液体
室25が設けら扛ていると共に、大径円板状の第2ダイ
ヤフラム80ケ升して上記液体室25と気密的に隔成さ
nfc、空気室26が設けらnている。ま窺、液体室2
5の下部には。
FIG. 1 shows a first embodiment of the present invention, in which a power unit (not shown), a power unit (not shown), a first support frame 22, a second support frame 28, and a second support frame 28 are attached to the liquid-filled vibration isolator 21. (RW) Between the first and second support frames 22 and 28, a filtrate chamber 25 is provided which is liquid-tightly surrounded by a rubber body 24 which is an elastic body, and has a large diameter. The second diaphragm 80 in the form of a disc is airtightly separated from the liquid chamber 25, and an air chamber 26 is provided.
At the bottom of 5.

上部中央に円形孔27aケ有する便鉢状の隔壁27が設
けらlしており、この隔壁27と第2ダイヤフラム26
との間に、環状板28に固定さルた円盤状の第1ダイヤ
フラム29が固定さルている。そして% 0の第1ダイ
ヤフラム29?弁して上下に第1ダイヤフラム室81と
m2ダイヤフラム室82とが重合一体に形成さnている
A toilet bowl-shaped partition wall 27 having a circular hole 27a is provided at the center of the upper part, and this partition wall 27 and the second diaphragm 26
A disk-shaped first diaphragm 29 fixed to the annular plate 28 is fixed between the annular plate 28 and the annular plate 28. And % 0 first diaphragm 29? A first diaphragm chamber 81 and an m2 diaphragm chamber 82 are integrally formed above and below the valve.

′!た、上記隔壁27i、前記円形孔27aの孔縁に外
周溝83aが遊嵌する比較的肉厚の円板状仕切板88ケ
備えており、この仕切板)telは、上記第1ダイヤフ
ラム室81の上部?液体室25と隔成する工うになって
いると共に、上記外周溝8Ra’i升して上下に微動可
能(0,4RIB程度)に】 1 設けら扛でいろ。更に、前記第1ダイヤフラム室81は
、仕切板38の略中央に穿設さrした短寸の第1オリフ
イス84によって液体室25に連通している。−万1.
J!2ダイヤフラム室B2rI%第1ダイヤフラム29
外周付近の隔壁27と環状板28との11JIに設けら
ni円環状の第2オリフイス85に工ってげ捧呈25に
連通している。この42オリフイス85ば、一端が隔壁
27の端部に、他端が環状板28に夫々穿設さnた開口
85a、Bfibケ有している。そして、上d己第1オ
リフィス84ケ短かく形成して、ロスファクタのピーク
周波数ケ大きく設定する一方、第2オリフィス81Sケ
円環状に長く形成して、ロスファクタのピーク周波数ケ
小さく設定している。
′! In addition, the partition wall 27i is provided with 88 relatively thick disk-shaped partition plates 88 in which an outer circumferential groove 83a is loosely fitted into the hole edge of the circular hole 27a. The top of? It is designed to be separated from the liquid chamber 25, and the outer circumferential groove 8Ra'i can be slightly moved up and down (about 0.4 RIB). Further, the first diaphragm chamber 81 communicates with the liquid chamber 25 through a short first orifice 84 bored approximately in the center of the partition plate 38 . - Just in case.
J! 2 diaphragm chamber B2rI% 1st diaphragm 29
A second annular orifice 85 is provided at 11JI between the partition wall 27 and the annular plate 28 near the outer periphery and communicates with the barb 25. The 42 orifice 85 has openings 85a and 85b, one end of which is formed in the end of the partition wall 27, and the other end formed in the annular plate 28, respectively. Then, the first orifice 84 is formed short and the peak frequency of the loss factor is set high, while the second orifice 81S is formed long in an annular shape and the peak frequency of the loss factor is set small. There is.

Fにまた。前記第1ダイヤフラム29の肉厚は。F again. The thickness of the first diaphragm 29 is as follows.

第2ダイヤフラム80の肉厚エリ人きくして剛性?高め
、第1ダイヤフラム29の拡張弾性が第2ダイヤフラム
80の拡張弾性L ’) 1% くなる工うに設定して
いる。こt’Lは本願発明者らが実験を行なったところ
オリフィスによるロスファクタのピーク周波数はダイヤ
フラムの拡張弾性が高いほど大きくなるという実験結果
に基づいて決定さrしている。
Is the second diaphragm 80 thick and rigid? The expansion elasticity of the first diaphragm 29 is set to be 1% higher than the expansion elasticity L') of the second diaphragm 80. This value t'L was determined based on an experiment conducted by the inventors of the present application, which showed that the peak frequency of the loss factor due to the orifice increases as the expansion elasticity of the diaphragm increases.

そして、上記第2ダイヤフラム80と隔壁27及び環状
板28の重付さ)L足各外周部は、前記第2支持枠2B
の外周縁2Raと前記ゴム体24の外側會被潰する円環
状枠86の外周縁88aとの間に挾持さn7t−形でか
しめにLり一体的に固定さ扛ている。このように、一つ
のかしめ行程で各ダイヤフラム室31,82などケー緒
に形成できるB ので、製造作業能率が向上する。
The outer periphery of each of the second diaphragm 80, the partition wall 27, and the annular plate 28 is connected to the second support frame 2B.
It is clamped between the outer circumferential edge 2Ra of the rubber body 24 and the outer circumferential edge 88a of the annular frame 86 that crushes the outer side of the rubber body 24, and is integrally fixed by caulking in an n7t-shape. In this way, each diaphragm chamber 31, 82, etc. can be formed in one caulking process, thereby improving manufacturing efficiency.

したがって、この実施例にエフ’L ハ、パワーユニッ
ト1最動の低周波成分は第1.第2ダイヤフラム室81
.1(2などにエリ、−刃高周波成分はゴム体24や仕
切板88などの作用に工っで十分に減衰さnろ。すなわ
ち、低周波成分は、ゴム体24の変形に伴って液体室2
5内の作動液体(例えば水)が、第x 、J2オリフィ
スH4,RISQ介して液体室2fiと第1・第2ダイ
ヤフラム室81゜82間で移動することにエリ撮動減衰
さ扛る工うになっている。筐た、良さの短かい第】オリ
フィス84のロスファクタピーク周波数は低周波績のな
かでも商い周波数帯に設定さn、長い第2オリフイスR
6のロスファクタビー2周波数は低周波のなかでも低い
周波数に設定さn、夫々の周波数帯の振動減衰ケ効果的
に行なっている。尚、本実施例では液体封入式防湿体2
1が、パワーユニット支持に用いらnるもので、制感対
象會5〜20H2となるエンジンシェイクに設定し、低
周波側のロスファクタビーフ周波数f、’(5〜8Hz
Therefore, in this embodiment, the lowest frequency component of the power unit 1 is the first. Second diaphragm chamber 81
.. 1 (2, etc.) The high frequency components should be sufficiently attenuated by the action of the rubber body 24, the partition plate 88, etc. 2
The working liquid (e.g., water) in the diaphragm 5 moves between the liquid chamber 2fi and the first and second diaphragm chambers 81 and 82 through the x-th and J2 orifices H4 and RISQ. It has become. The loss factor peak frequency of the orifice 84 is set in a frequency band that is among the lowest in low frequency performance, and the second orifice R is long.
The loss factor bee 2 frequency of 6 is set to one of the lowest frequencies among the low frequencies, and vibration damping of each frequency band is effectively performed. Note that in this embodiment, the liquid-filled moisture proof body 2
1 is used to support the power unit, and is set to an engine shake of 5 to 20 H2, and the loss factor beef frequency f,' (5 to 8 Hz) on the low frequency side is
.

高周波側のロスファクタビーク周波Rf * k I 
R〜18Hz 付近に設定させ、crLら両ピーク周敬
nf、、f、y持つロス7アクタ特性で前記エンジンシ
ェイクの眼動数wi會カバーするようにチニーニングし
である。
Loss factor peak frequency Rf * k I on the high frequency side
It is set around R to 18 Hz, and chinning is performed so as to cover the eye movement frequency of the engine shake with loss 7 actor characteristics having crL and both peak circumferences nf, , f, and y.

第2図は前記第1図と同一構成部分に同一符号を付して
示した液体封入式防湿体21のモデル図で、このモデル
図に基づいて撮動特性の実験結果會述べる。尚、図中に
はゴム体24の陽動入力方向ばねb Ktぼゴム体24
の拡張弾性によるばね。
FIG. 2 is a model diagram of the liquid-filled moisture-proofing body 21 in which the same components as those in FIG. In addition, the positive input direction spring b of the rubber body 24 is shown in the figure.
Spring due to expansion elasticity.

に、は第1ダイヤフラム29のg俵弾性Kd、ばね、K
3ば42ダイヤフラム80の拡張弾性Kd、と空気室2
6の9気ばねとの相によるばね、I” * * In 
mぼ渠1.第2オリフィス84.85内の液体質量。
, is the g bale elasticity Kd of the first diaphragm 29, the spring, K
3, 42, expansion elasticity Kd of diaphragm 80, and air chamber 2.
Spring according to the phase with the 9 air spring of 6, I” * * In
M-bottle 1. Liquid mass in second orifice 84.85.

A、ぼ液体室26内の等揃断面積、A、、A、は第11
第2ダイヤフラム29.80の等揃断面積、S!+81
はIig]、、@’aオリフィス)14.86の開口面
積、it!、it、は第1.第2オリフイスR4゜85
の長さケ示す。
A, equal cross-sectional area in the liquid chamber 26, A, ,A, is the 11th
Equal cross-sectional area of the second diaphragm 29.80, S! +81
Iig],,@'a orifice) 14.86 opening area, it! , it, is the first. 2nd orifice R4゜85
Indicates the length.

次に示す表は1前記モデルに基づいて第1ダイヤフラム
29と第2ダイヤフラム80の拡張弾性Kd++Kdt
?% 目的とするロスファクタ特性が得らγしるLうに
変化させた実験結果である。
The following table shows the expansion elasticity Kd++Kdt of the first diaphragm 29 and the second diaphragm 80 based on the above model.
? % This is the result of an experiment in which L was changed so that the desired loss factor characteristic was obtained.

第8図a前記表のダイヤフラム拡張弾性會夫々変化させ
友場合のロスファクタ特性會示し、図中特性fII l
d s第1ダイヤフラム29の拡張弾性Kd1に46J
c9/m、 第9ダイヤフラムROf l 0tc9/
wbに設定し足場曾で、この場合は低周波側のロスファ
クタビーク(1(約MHz域)が若干低くなっており、
高周波側ではロスファクタビーク賄(約12Hz14)
が比較的高くなっているが、前述の特開昭58−727
41号公報のもの(lnに比較して滑らかな曲線となる
。このため、前記両ピーク値間及び両ビーク唾近傍でカ
バーさIしろエンジンシェイクの感wJ数域のロスファ
クタ(t、anδ)値i 一様に大きく設定さnる。こ
の結果、エンジンシェイクの眼動数稙ば、第1.第2オ
リフイス84゜86及び綱】−■ダイヤフラム室)11
.82で効率工く減衰さnることになる。
Figure 8a shows the loss factor characteristics when the diaphragm expansion elasticity in the table above is changed, and the characteristics fII and l in the figure are shown.
ds Expansion elasticity Kd1 of the first diaphragm 29 is 46J
c9/m, 9th diaphragm ROf l 0tc9/
In this case, the loss factor peak on the low frequency side (1 (approximately MHz range) is slightly lower,
On the high frequency side, loss factor peak compensation (approximately 12Hz14)
is relatively high, but the above-mentioned JP-A-58-727
The one in Publication No. 41 (it is a smooth curve compared to ln. Therefore, the loss factor (t, an δ) in the range of engine shake is covered between both peak values and near both peak values. The value i is uniformly set to a large value n.As a result, the number of eye movements of the engine shake is 11.
.. 82, it is efficiently damped.

また、特性1fl+汀、第1ダイヤフラム29の拡張弾
性に、i、’?20Q/m、第2ダイヤフラムany2
、nkg/nVc般定した場合で、この場合は上記とに
逆に低周波側のロスファクタビークIff (約5Hz
域)が比較的萬〈、−周波側でばロスファクタビーク頃
(約12Hz域)が若干低くなっているが、前記の場合
と同様比較的滑らかな曲線となる。したがって、上記特
性i11の場合とは尚・低周波側のロスファクタ(ta
n )f[が異なるものの5両ピーク値間及び両ビーク
11近傍でカバーさnるエンジンシェイクの陽動数域の
ロスファクターか一様に大きくなる。
In addition, the characteristic 1fl + shore, the expansion elasticity of the first diaphragm 29, i, '? 20Q/m, second diaphragm any2
, nkg/nVc. In this case, conversely to the above, the loss factor peak Iff on the low frequency side (approximately 5 Hz
On the -frequency side, the loss factor peak (approximately 12 Hz range) is slightly lower, but the curve is relatively smooth as in the previous case. Therefore, the loss factor (ta) on the low frequency side is different from the case of the above characteristic i11.
Although n ) f[ is different, the loss factor in the positive number range of the engine shake covered between the peak values of the five peaks and in the vicinity of the peaks 11 becomes uniformly large.

尚、前記いずrしの場合でも第1オリアイスの径i’;
[3,6φ陽、長さは10騙、第2オリフイスの径は4
φ賜、長さは160語に設定さnている。
Incidentally, even in the above case, the diameter i' of the first oriice;
[3.6φ positive, length is 10mm, diameter of second orifice is 4
The length is set to 160 words.

一方、中・高周波数域例えばRO〜2 h OHzで0
、 l IIS以下の部幅の場合a1前記仕切板88が
上下に微動(最大可動約0.44 )するため、動ばね
定数が第4図の特性Iで示すように従来■と比較し約1
 is OHz付近まで十分に抑制さγしる。この結果
、上記ゴム体24の振動吸収作用と相俟って中・高波数
成分の感動が効果的に減衰さルる。
On the other hand, in the medium and high frequency range, for example RO ~ 2 h OHZ, 0
, l When the part width is less than IIS, a1 The partition plate 88 slightly moves up and down (maximum movement of about 0.44), so the dynamic spring constant is about 1 compared to the conventional model (2), as shown by characteristic I in Fig. 4.
It is sufficiently suppressed down to around 0Hz. As a result, together with the vibration absorbing effect of the rubber body 24, the impression of medium and high wave number components is effectively attenuated.

第5図ばこの発明の第2実施例ケ示し、この実施例でぼ
、隔927に有する円形状の仕切板48が、第1オリフ
イス84の形成位置以外の部位がn丙に形成さnており
%また、外周縁4Haが円環状のゴム製支持部41會介
して隔壁27の円形孔27a近傍に上下動可能に固定さ
rしていると共VC%隔壁27と環状板28の夫々上部
に有する7ランク部27b、28hに工って上下可動範
囲が最大04賜となろ工うに規制さ庇ている。し皮がっ
て、この実施例においても、渠】実施例と同様な作用効
果特に仕切板4Bによる動ばね定数の抑制作用が得らn
1中・高周波数の撮動會十分に減衰できる。
FIG. 5 shows a second embodiment of the present invention, and in this embodiment, the circular partition plate 48 provided at the interval 927 is formed in a portion other than the position where the first orifice 84 is formed. Furthermore, when the outer peripheral edge 4Ha is vertically movably fixed near the circular hole 27a of the partition wall 27 through an annular rubber support 41, the upper parts of the partition wall 27 and the annular plate 28 are The 7-rank parts 27b and 28h are designed to limit the vertical movable range to a maximum of 04 degrees. By the way, in this embodiment as well, the same effects and effects as those in the culvert embodiment, especially the effect of suppressing the dynamic spring constant by the partition plate 4B, can be obtained.
1. Can sufficiently attenuate medium and high frequency imaging.

尚、上記各実施例では、主としてエンジンシェイクの娠
動数領域?減衰する場合について説明したが、他の振動
対象?減衰させるCとも可能である。また、この発明ケ
池の撮動減衰体之とえばサスペンションのブツシュ等に
適用するcとも可能である。
Incidentally, in each of the above embodiments, the main movement frequency region of engine shake is mainly discussed. We have explained the case of damping, but what about other vibration objects? It is also possible to use C to attenuate. It is also possible to apply the invention to a motion damping body, such as a bushing for a suspension.

発明の効果 以上の説明で明らかな二うに、この発明の液体封入式防
感体にあってi、sのオリフィスに影−さnることなく
夫々のロスファクタビーク値聖人きく設定で話、かつ各
オリフィスに裏って得らnるロスファクタビークif 
k l@等しくすることができる。従って、広範囲に亘
って高いロスファクタ1iftが得ら1、この結果1つ
の防憑体で(辰動減衰領域r者しく広くとることができ
る。特に、仕切板の微動状態ケ得て動ばね定数會抑制で
きるので、弾性体の感動吸収作用と相俟って中・高周波
数域の車体娠aV十分に低減できる。
Effects of the Invention As is clear from the above explanation, the liquid-filled antisensor of the present invention allows the loss factor beak value to be set at a high level without affecting the i and s orifices, and Loss factor beak if obtained from each orifice
k l@ can be made equal. Therefore, a high loss factor 1ift can be obtained over a wide range1, and as a result, it is possible to obtain a very wide dynamical damping region (r) with one armor body. Since the vibration can be suppressed, the vehicle body tension aV in the medium and high frequency ranges can be sufficiently reduced in combination with the impact absorption effect of the elastic body.

更に、この発明は、複数のダイヤフラム室ケ所定のダイ
ヤフラムケ弁して重合一体に形成しfcたメ、宝体の構
造か極めて簡単となり、こしに工って品質管理が容易と
なる。CVcまた。製造工程の減少にエリ製造作業能率
の向上及びコストの低兼化が図nる。
Further, in this invention, a plurality of diaphragm chambers are integrally formed with predetermined diaphragm valves, so the structure of the body is extremely simple, and quality control is facilitated. CVc again. The reduction in the number of manufacturing steps leads to improved manufacturing efficiency and lower costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例?示す断面図、$、2図
はOの発明のモデル図、第8図はこのモデルに基づく実
験に工って得らnた各櫨ロスフ了りタの態様?示す特性
図、第4図にこの発明の実施例と従来の液体封入式防畿
体の動ばね特性ケ示す比較図、第5図にこの発明の第2
実施例?示す断面図、第6図に先願に係る液体封入式防
振体ケ示す断面図である。 21・・・液体封入式防感体、24・・・ゴム体(弾性
体)、26・・・液室、27・・・隔壁、29・・・第
1ダイヤフラム(所定ダイヤフラム)、8o・・・第2
ダイヤフラA、)11・・・第1ダイヤフラム室、!(
2・・・第2ダイヤフラム室、88・・・仕切板、84
・・・第1オリフィス% 85・・・第2オリフイス。 外2名
Is Figure 1 the first embodiment of this invention? The cross-sectional view shown in Figure 2 is a model diagram of O's invention, and Figure 8 is the mode of each Hashiro loss filter that was obtained through experiments based on this model. FIG. 4 is a comparison diagram showing the dynamic spring characteristics of an embodiment of the present invention and a conventional liquid-filled fence; FIG.
Example? FIG. 6 is a sectional view showing a liquid-filled vibration isolator according to the prior application. 21... Liquid-filled anti-sensor body, 24... Rubber body (elastic body), 26... Liquid chamber, 27... Partition wall, 29... First diaphragm (predetermined diaphragm), 8o...・Second
Diaphragm A,) 11...first diaphragm chamber,! (
2... Second diaphragm chamber, 88... Partition plate, 84
...First orifice% 85...Second orifice. 2 people outside

Claims (1)

【特許請求の範囲】[Claims] (1)弾性体で囲繞された液体室が、ロスファクタのピ
ーク周波数を夫々異にした複数のオリフィスを介して該
オリフィスに専用の各ダイヤフラム室に連通し、かつ前
記各ダイヤフラム室のダイヤフラム拡張弾性を、対応す
るオリフィスのロスファクタピーク周波数が大きいもの
ほど高く設定した液体封入式防振体であって、前記各ダ
イヤフラム室を、前記所定のダイヤフラムを介して重合
一体に形成し、更に、前記液体室側のダイヤフラム室上
部を画成しかつ前記専用オリフィスが形成された仕切板
を、ダイヤフラム室の軸方向へ微動可能に設けたことを
特徴とする液体封入式防振体。
(1) A liquid chamber surrounded by an elastic body communicates with each diaphragm chamber dedicated to the orifice through a plurality of orifices having different peak frequencies of loss factors, and the diaphragm expansion elasticity of each diaphragm chamber is set higher as the loss factor peak frequency of the corresponding orifice is larger, wherein each of the diaphragm chambers is integrally formed with a polymer through the predetermined diaphragm, and the liquid A liquid-filled vibration isolator characterized in that a partition plate defining the upper part of the diaphragm chamber on the chamber side and in which the dedicated orifice is formed is provided so as to be able to move slightly in the axial direction of the diaphragm chamber.
JP6115686A 1986-03-19 1986-03-19 Vibration isolator encapsulating liquid Pending JPS62220731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6115686A JPS62220731A (en) 1986-03-19 1986-03-19 Vibration isolator encapsulating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6115686A JPS62220731A (en) 1986-03-19 1986-03-19 Vibration isolator encapsulating liquid

Publications (1)

Publication Number Publication Date
JPS62220731A true JPS62220731A (en) 1987-09-28

Family

ID=13162990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6115686A Pending JPS62220731A (en) 1986-03-19 1986-03-19 Vibration isolator encapsulating liquid

Country Status (1)

Country Link
JP (1) JPS62220731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229132A (en) * 1988-03-09 1989-09-12 Tokai Rubber Ind Ltd Fluid sealed type mount device
FR2628805A1 (en) * 1988-03-19 1989-09-22 Tokai Rubber Ind Ltd ELASTIC MOUNTING STRUCTURE WITH FLUID FILLING MOBILE ELEMENTS AND ORIFICES
JPH0246139U (en) * 1988-09-26 1990-03-29

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229132A (en) * 1988-03-09 1989-09-12 Tokai Rubber Ind Ltd Fluid sealed type mount device
FR2628805A1 (en) * 1988-03-19 1989-09-22 Tokai Rubber Ind Ltd ELASTIC MOUNTING STRUCTURE WITH FLUID FILLING MOBILE ELEMENTS AND ORIFICES
JPH0246139U (en) * 1988-09-26 1990-03-29

Similar Documents

Publication Publication Date Title
JP2657952B2 (en) Hydraulic damping two-chamber engine mount
JP3461913B2 (en) Anti-vibration device
JPS59110936A (en) Supporter for two-chamber type engine
GB2158182A (en) A hydraulically damped rubber mounting
JPS63158335A (en) Inner and outer cylinder fluid charge type power unit mount
US4779585A (en) Hydraulic-damping engine mount
US4679776A (en) Elastic rubber bearing with hydraulic damping
US7318582B2 (en) Assembly bearing with hydraulic damping
US4673156A (en) Liquid-filled type vibration damping structure
JPS62220731A (en) Vibration isolator encapsulating liquid
JP4563197B2 (en) Vibration isolator
JPH05584Y2 (en)
JPS62215143A (en) Liquid sealed type vibration isolating body
JPS59190531A (en) Engine mount with fluid inside
JPS62220732A (en) Vibration isolator encapsulating liquid
JPS62220730A (en) Vibration isolator encapsulating liquid
JP2007177973A (en) Vibration damper
JP3542063B2 (en) Liquid ring mount
JPS6256643A (en) Vibropreventive element with liquid encapsulated
JP4039827B2 (en) Liquid seal mount
JPS6155429A (en) Vibration isolating supporter
JPS6352260B2 (en)
JPH0249419B2 (en)
JP4162456B2 (en) Liquid-filled vibration isolator
JPH024815B2 (en)