JP4039827B2 - Liquid seal mount - Google Patents

Liquid seal mount Download PDF

Info

Publication number
JP4039827B2
JP4039827B2 JP2001230548A JP2001230548A JP4039827B2 JP 4039827 B2 JP4039827 B2 JP 4039827B2 JP 2001230548 A JP2001230548 A JP 2001230548A JP 2001230548 A JP2001230548 A JP 2001230548A JP 4039827 B2 JP4039827 B2 JP 4039827B2
Authority
JP
Japan
Prior art keywords
liquid
chamber
partition wall
support member
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001230548A
Other languages
Japanese (ja)
Other versions
JP2002115740A (en
Inventor
和俊 佐鳥
修 蜷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2001230548A priority Critical patent/JP4039827B2/en
Publication of JP2002115740A publication Critical patent/JP2002115740A/en
Application granted granted Critical
Publication of JP4039827B2 publication Critical patent/JP4039827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車用エンジンマウント等に使用される液封マウントに関する。
【0002】
【従来の技術】
特公昭62−23178号には、振動源側へ取付けられる第1の支持部材と、車体側へ取付けられる筒型の第2の支持部材と、これら両支持部材間に設けられる円錐形のゴム体とにより内部に緩衝液を収容する液室を形成し、このゴム体の一部に薄肉部を設け、さらに第1の支持部材から第2の支持部材内へ突出する円板状部材を設け、その外周部と第2の支持部材内壁との間に環状の通路を形成しながら第2の支持部材内を2室に区画し、かつ第2の支持部材底部にダイヤフラムを設けた液封マウントが示されている。
【0003】
【発明が解決しようとする課題】
上記構造によれば、流動抵抗による振動の減衰を目的とするため、せいぜい数10Hz程度の振動に対応できるだけであり、100〜500Hz程度の中周波領域及び高周波領域(500〜1000Hz)においては逆に高動バネになってしまう。
【0004】
一方、液室のゴム壁にこのような薄肉部を設けず、周方向へ一様な肉厚に形成し、かつ振動入力側に接続して液室内へ突出する円板状の部材を設けることにより、中周波領域における低動バネ化を実現するものも知られている。図3で従来例として示すものはこのような構造における動バネ特性の周波数に対する変化を示している。このような液封マウントにおいては、円板状の部材が中周波デバイスとして作用し、周囲のゴム壁との間隙における液体の流動によって、中周波領域の特定周波数で液柱共振し、これによって極小値aを生じる。
【0005】
しかし、この液柱共振により中周波領域では低動バネになるが、その後の反動によるピークbに見られるように高周波領域側では高動バネになってしまう。一方、近年は中周波領域のみならず高周波領域においても、動バネ特性を低くして幅広い周波数域で低動バネを実現することが望まれている。
【0006】
【課題を解決するための手段】
上記課題を解決するため本願の液封マウントに係る第1の発明は、振動源側へ取付けられる第1の支持部材と、車体側へ取付けられる第2の支持部材と、これらの間に設けられる略円錘状の弾性部材とにより、弾性部材を壁の一部とする液室を形成し、この液室内を仕切壁により主室と副室に区画するとともに、これら主室と副室を常時連通するオリフィス通路とを仕切壁に形成した液封マウントにおいて、第1の支持部材へ取付けられて主液室内へ突出し、弾性部材の円錐部内壁との間に流動空間を形成することにより中高周波成分を吸収するための中高周波デバイスを備えるとともに、
弾性部材における円錐部の一部に中高周波領域の振動入力で膜共振を発生することにより動バネ特性に極小値を与えるための薄肉部を形成したことを特徴とする。
【0007】
ここで、膜共振とは、弾性部材の薄肉部が液室内の液体流動によってばね性をもって弾性変形する際に生じる弾性膜としての共振現象をいう。また、本願発明における中周波領域とは、一般的な中周波領域(40〜500Hz)のうち特に100〜500Hzの範囲をいうものとする。
【0008】
このとき、前記薄肉部を複数設けるとともにそれぞれを対称位置に同一形状で設けることもできる。
【0009】
また、前記薄肉部を複数設けるとともにそれぞれを対称位置に異なる形状で設けることもできる。
【0010】
第2の発明は上記第1の発明において、前記仕切壁を液室の内圧変化に応じて動バネ特性が変化する弾性仕切壁とすることもできる。
【0011】
【発明の効果】
第1の発明によれば、図3の特性曲線▲1▼に示すように、中高周波領域の振動入力に対し、まず中周波領域で弾性部材の薄肉部が膜共振を生じ、動バネ特性の極小値Aを与える。また、中高周波デバイスは、高周波領域で中高周波デバイスと薄肉部との間隙における液体流動に伴う液柱共振により動バネ特性の極小値Bを与える。
【0012】
したがって、中周波領域及び高周波領域のそれぞれで動バネ特性を低下させることができ、中高周波領域の広範囲で低動バネを実現できる。
【0013】
このとき、薄肉部を複数設けるとともにそれぞれを対称位置に同一形状で設けると、特性曲線▲1▼で示すように、極小値Aを単一に与えることができる。
【0014】
また、薄肉部を複数設けるとともにそれぞれを対称位置に異なる形状で設けると、特性曲線▲2▼で示すように、膜共振の極小値を複数のC,Dとして与えることもできる。
【0015】
第2の発明によれば、仕切壁を液室の内圧変化に応じて動バネ特性が変化する弾性仕切壁で構成することにより、弾性仕切壁の弾性変形による内圧吸収に加えて、弾性仕切壁自体も周波数に対して動バネ特性を変化させかつ固有の共振周波数で膜共振するので、これを第1の発明における弾性部材の薄肉部と中高周波デバイスを有する構造に組合せることにより、弾性仕切壁及び薄肉部における各膜共振と中高周波デバイスによる液柱共振が複合され、図3の特性曲線▲3▼に示すように、各極小値及びピークがならされ、かつ全体の低動バネ化がより一層顕著になる。
【0016】
【発明の実施の形態】
図1は本願発明の第1実施例に係るエンジンマウントの全断面図(図2の1−1線方向に沿う断面図)、図2は弾性部材の概略平面図、図3はその動バネ特性を示すため縦軸に動バネ、横軸に周波数にしたグラフである。
【0017】
図1において、このエンジンマウントは、振動源であるエンジン側へ取付けられる第1の支持部材1と、車体側へ取付けられる第2の支持部材2と、これらの間に設けられる弾性部材3を備えている。
【0018】
第1の支持部材1は、主たる振動の入力方向Xと平行に第2の支持部材2の内部へ向って延出する軸状をなしている。弾性部材3は、ゴムやエラストマーなど適宜の弾性材料から形成され、略円錐状をなす円錐部4と筒状部5が一体に形成されている。
【0019】
円錐部4の内壁には軸対称位置に一対の同一形状をなす凹部6が形成され、この凹部6部分の円錐部4が薄肉部7になっている。なお凹部6は筒状部5の内面まで連続して形成されている。
【0020】
筒状部5は、第2の支持部材2の筒状部8内面へ一体化され、かつ筒状部8内に固定されたダイアフラム9と弾性部材3により内部に液室を形成している。
【0021】
この液室はダイアフラム9より内側に設けられた仕切部材10により、第1の支持部材1側の主液室11とダイアフラム9側の副液室12に区画され、仕切部材10とダイアフラム9の周縁部13との間に形成されたオリフィス通路14により連通されている。
【0022】
オリフィス通路14は仕切部材10に形成された入り口15で主液室11と連通し、弾性部材3に形成された出口16で副液室12と連通している。
【0023】
第1の支持部材1は弾性部材3の中心に沿って長く延び、その一端は主液室11内へ突出し、ここに略カップ状の中高周波デバイス17がカシメ固定されている。中高周波デバイス17は第1の支持部材1の軸線方向から見た形状が円形になっている。
【0024】
中高周波デバイス17と円錐部4内面との間には、所定のオリフィス間隙18が形成され、高周波領域の振動入力に対して液柱共振により吸収するようになっている。
【0025】
また、薄肉部7は、凹部6の大きさや深さを調整して、膜厚並びに面積を変化させることにより、特定の中周波領域の振動入力に対して膜共振により振動を吸収するようになっている。
【0026】
次に、本実施例態の作用を説明する。図3において、特性曲線▲1▼として示すように、中周波領域の振動入力があると、薄肉部7が膜共振を生じ、予め設定された特定周波数にて極小値Aとなる。
【0027】
さらに、高周波領域の振動入力があると、薄肉部7と円錐部4の内面間のオリフィス間隙18における液柱共振により特定周波数にて極小値Bとなる。
【0028】
その結果、中高周波領域において、2つの極小値A、Bが形成され、このような配慮を欠く従来例(仮想線)に対して動バネ特性を低くして著しく低動バネを実現させる。なお、両極小値ABの間に膜共振Aの反動による動バネ共振ピークP1が形成される。
【0029】
図中の特性曲線▲2▼は第2実施例に係り、この実施例では図2の薄肉部7の一方のみに破線で示したように、深い凹部19を形成することにより、さらに肉厚を薄くした薄肉強調部19aを設け、凹部6による薄肉部7と、深い凹部19による薄肉強調部19aとを形状が互いに異なる非対称の薄肉部とした例である。このようにすると、薄肉部7と薄肉強調部19aの膜共振周波数が異なるため、中周領域にCDなる2つの極小値が生じ、より低動バネ化を実現できる。
【0030】
図4は第3実施例を示し、第1実施例におけるエンジンマウントの下部に弾性仕切壁を設けたものである。なお、本実施例は、第1実施例の一部を変更しただけのものであるから、共通部には共通符号を用いかつできるだけ重複部分の説明は省略し、説明省略部分は前実施例の相当部に関する説明を援用するものとする。 リング状をなす仕切部材10の中央部に形成された穴30にゴム等の弾性膜からなる弾性仕切壁31を臨ませてある。弾性仕切壁31の底部側周囲は一体の厚肉部32をなし、その底部には弾性仕切壁31の変形に応じて変形する脚部33が一体に形成されている。
【0031】
穴30に臨む弾性仕切壁31の部分は厚肉部32に対して薄肉部となっており、かつばね性を有することにより一種のゴムバネとして機能し、主液室11の内圧変化に応じて弾性変形するとともに、膜共振するようになっている。
【0032】
この脚部33は、下部支持部材34と一体に形成された壁部35へ当接し、弾性仕切壁31の変形に非線形のばね特性を与えている。下部支持部材34は厚肉部32の外周側底部を支持する樹脂製部材であり、その内周側から略直角に上方へ屈曲して壁部35が形成されている。壁部35は厚肉部32の底部に形成されたリング溝36内へ嵌合しており、このリング溝36により脚部33の壁部35へ当接する側が他の厚肉部32から分離されて自由に可動になっている。
【0033】
図中の符号9はダイアフラム、14は厚肉部32の肉厚部内を周方向に形成され、主液室11と副液室12を連通している。1aは鍛造品である第1の支持部材1の周囲へ一体化された樹脂ブラケットである。
【0034】
本実施例によれば、図3の特性曲線▲3▼に示すように、弾性仕切壁31はそれ自体の弾性変形により主液室11の内圧吸収を行うので、中周波領域において動バネ定数が特性曲線▲1▼と比べて△K分だけ下がる。そのうえ、弾性仕切壁31は主液室11内の液体流動により膜共振を行う。
【0035】
この弾性仕切壁31による膜共振が、円錐部4における薄肉部7の膜共振及び中高周波デバイス17による液柱共振と複合されるため、特性曲線▲1▼に見られた極小値AB及びその間の動バネピークがならされてなだらかになり、ほぼ全体をさらに著しく低動バネ化する。
【0036】
なお、図中の動バネピークP2は、本実施例の弾性仕切壁31が本来複数の周波数で膜共振するものであるため、そのうちの一つによって生じ、かつ中高周波デバイス17による液柱共振でなめらかにされずに残った部分であり、特性曲線▲1▼等よりも中周波領域で若干高動バネになるが、この程度は全体の低動バネ化において十分に許容される。
【図面の簡単な説明】
【図1】第1及び第2実施例に係るエンジンマウントの全断面図
【図2】弾性部材の概略平面図
【図3】その動バネ特性を示すグラフ
【図4】第3実施例に係る図1に相当する図
【符号の説明】
1:第1の支持部材、2:第2の支持部材、3:弾性部材、4:円錐部、7:薄肉部、10:仕切部材、14:オリフィス通路、17:中高周波デバイス、21:切り欠き部、31:弾性仕切壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid seal mount used for an engine mount for automobiles and the like.
[0002]
[Prior art]
Japanese Patent Publication No. 62-23178 discloses a first support member attached to the vibration source side, a cylindrical second support member attached to the vehicle body side, and a conical rubber body provided between the two support members. And forming a liquid chamber for containing the buffer solution therein, providing a thin portion in a part of the rubber body, and further providing a disk-like member protruding from the first support member into the second support member, A liquid-sealed mount that divides the inside of the second support member into two chambers while forming an annular passage between the outer peripheral portion and the inner wall of the second support member, and is provided with a diaphragm at the bottom of the second support member. It is shown.
[0003]
[Problems to be solved by the invention]
According to the above structure, since the purpose is to attenuate vibration due to flow resistance, it can only cope with vibration of about several tens of Hz, and conversely in the middle and high frequency regions (500 to 1000 Hz) of about 100 to 500 Hz. It becomes a high dynamic spring.
[0004]
On the other hand, the rubber wall of the liquid chamber is not provided with such a thin portion, but is formed with a uniform thickness in the circumferential direction, and a disk-shaped member that is connected to the vibration input side and protrudes into the liquid chamber is provided. Thus, it is also known to realize a low dynamic spring in the intermediate frequency region. What is shown as a conventional example in FIG. 3 shows the change of the dynamic spring characteristics with respect to the frequency in such a structure. In such a liquid ring mount, a disk-shaped member acts as a medium frequency device, and the liquid column resonates at a specific frequency in the medium frequency region due to the flow of liquid in the gap with the surrounding rubber wall, thereby minimizing the liquid column mount. Produces the value a.
[0005]
However, this liquid column resonance results in a low dynamic spring in the middle frequency range, but as shown in the peak b due to the subsequent reaction, the high frequency spring becomes a high dynamic spring. On the other hand, in recent years, it has been desired to realize a low dynamic spring in a wide frequency range by reducing dynamic spring characteristics not only in the medium frequency range but also in the high frequency range.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, a first invention relating to a liquid seal mount of the present application is provided between a first support member attached to a vibration source side, a second support member attached to a vehicle body side, and the first support member. A liquid chamber having the elastic member as a part of the wall is formed by the substantially conical elastic member, and the liquid chamber is divided into a main chamber and a sub chamber by a partition wall, and the main chamber and the sub chamber are always separated. In a liquid seal mount in which a communicating orifice passage is formed in a partition wall, a medium-high frequency is formed by attaching to the first support member, projecting into the main liquid chamber, and forming a flow space between the inner wall of the conical portion of the elastic member. With medium and high frequency devices to absorb components,
A thin portion for giving a minimum value to the dynamic spring characteristics is formed by generating a membrane resonance in a part of a conical portion of the elastic member by a vibration input in a medium to high frequency region.
[0007]
Here, the membrane resonance means a resonance phenomenon as an elastic membrane that occurs when the thin portion of the elastic member is elastically deformed with a spring property due to the liquid flow in the liquid chamber. In addition, the medium frequency region in the present invention refers to a range of 100 to 500 Hz among general medium frequency regions (40 to 500 Hz).
[0008]
At this time, a plurality of the thin-walled portions can be provided and each can be provided in the same shape at a symmetrical position.
[0009]
In addition, a plurality of the thin portions may be provided, and each may be provided in a different shape at a symmetrical position.
[0010]
In a second aspect based on the first aspect, the partition wall may be an elastic partition wall whose dynamic spring characteristics change according to a change in internal pressure of the liquid chamber.
[0011]
【The invention's effect】
According to the first aspect of the invention, as shown by the characteristic curve (1) in FIG. 3, first, the thin portion of the elastic member causes membrane resonance in the medium frequency region in response to vibration input in the medium and high frequency region, and the dynamic spring characteristic The minimum value A is given. Further, the medium / high frequency device gives the minimum value B of the dynamic spring characteristic by liquid column resonance accompanying the liquid flow in the gap between the medium / high frequency device and the thin portion in the high frequency region.
[0012]
Therefore, the dynamic spring characteristics can be reduced in each of the medium frequency region and the high frequency region, and a low dynamic spring can be realized over a wide range in the medium frequency region.
[0013]
At this time, if a plurality of thin portions are provided and are provided in the same shape at symmetrical positions, the minimum value A can be given singly as shown by the characteristic curve (1).
[0014]
Further, when a plurality of thin portions are provided and are provided in different shapes at symmetrical positions, the minimum value of the membrane resonance can be given as a plurality of C and D as shown by the characteristic curve (2).
[0015]
According to the second invention, the partition wall is constituted by an elastic partition wall whose dynamic spring characteristics change according to the change in the internal pressure of the liquid chamber, so that the elastic partition wall can be used in addition to the internal pressure absorption by the elastic deformation of the elastic partition wall. Since the dynamic spring characteristic itself changes with respect to the frequency and the membrane resonates at a specific resonance frequency, the elastic partition is combined with the structure having the thin portion of the elastic member and the medium-frequency device in the first invention. Each membrane resonance in the wall and thin wall portion and the liquid column resonance by the medium / high frequency device are combined, and as shown in characteristic curve (3) in FIG. It becomes even more prominent.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 is a full sectional view of an engine mount according to a first embodiment of the present invention (a sectional view taken along the direction of line 1-1 in FIG. 2), FIG. 2 is a schematic plan view of an elastic member, and FIG. Is a graph in which the vertical axis represents the dynamic spring and the horizontal axis represents the frequency.
[0017]
In FIG. 1, the engine mount includes a first support member 1 attached to the engine side which is a vibration source, a second support member 2 attached to the vehicle body side, and an elastic member 3 provided therebetween. ing.
[0018]
The first support member 1 has an axial shape extending inward of the second support member 2 in parallel with the input direction X of the main vibration. The elastic member 3 is made of an appropriate elastic material such as rubber or elastomer, and a conical portion 4 and a cylindrical portion 5 having a substantially conical shape are integrally formed.
[0019]
A pair of concave portions 6 having the same shape are formed in the axially symmetrical position on the inner wall of the conical portion 4, and the conical portion 4 of the concave portion 6 is a thin portion 7. The recess 6 is continuously formed up to the inner surface of the cylindrical portion 5.
[0020]
The cylindrical portion 5 is integrated with the inner surface of the cylindrical portion 8 of the second support member 2, and forms a liquid chamber inside the diaphragm 9 and the elastic member 3 fixed in the cylindrical portion 8.
[0021]
This liquid chamber is partitioned into a main liquid chamber 11 on the first support member 1 side and a sub liquid chamber 12 on the diaphragm 9 side by a partition member 10 provided on the inner side of the diaphragm 9, and the periphery of the partition member 10 and the diaphragm 9. The orifice 13 communicates with the portion 13 through an orifice passage 14.
[0022]
The orifice passage 14 communicates with the main liquid chamber 11 at an inlet 15 formed in the partition member 10, and communicates with the sub liquid chamber 12 at an outlet 16 formed in the elastic member 3.
[0023]
The first support member 1 extends long along the center of the elastic member 3, and one end of the first support member 1 projects into the main liquid chamber 11, and a substantially cup-shaped medium / high frequency device 17 is fixed thereto by caulking. The medium-frequency device 17 has a circular shape when viewed from the axial direction of the first support member 1.
[0024]
A predetermined orifice gap 18 is formed between the medium-frequency device 17 and the inner surface of the conical portion 4 so as to absorb vibration input in the high-frequency region by liquid column resonance.
[0025]
Further, the thin-walled portion 7 adjusts the size and depth of the recess 6 to change the film thickness and area, thereby absorbing vibration by membrane resonance with respect to vibration input in a specific medium frequency region. ing.
[0026]
Next, the operation of this embodiment will be described. 3, as shown as a characteristic curve ▲ 1 ▼, when there is input of vibration in the medium frequency region, the thin portion 7 is caused to film resonance, the minimum value A Te in advance the specific frequency set.
[0027]
Furthermore, if there is vibration input of a high frequency region, the liquid column resonance in the orifice gap 18 between the inner surface of the thin portion 7 and the conical portion 4 Te in particular frequency becomes the minimum value B.
[0028]
As a result, two local minimum values A and B are formed in the medium and high frequency region, and the dynamic spring characteristics are lowered and a remarkably low dynamic spring is realized with respect to the conventional example (virtual line) lacking such consideration. Note that a dynamic spring resonance peak P1 due to the reaction of the membrane resonance A is formed between both minimum values AB.
[0029]
The characteristic curve {circle around (2)} in the figure relates to the second embodiment. In this embodiment, as shown by the broken line in only one of the thin portions 7 in FIG. This is an example in which a thinned emphasis portion 19a is provided, and the thin portion 7 formed by the recess 6 and the thin emphasis portion 19a formed by the deep recess 19 are asymmetric thin portions having different shapes. In this case, since the membrane resonance frequencies of the thin portion 7 and the thin portion emphasizing portion 19a are different, two minimum values of CD are generated in the middle peripheral region, and a lower dynamic spring can be realized.
[0030]
FIG. 4 shows a third embodiment in which an elastic partition wall is provided at the lower part of the engine mount in the first embodiment. In addition, since this embodiment is a modification of the first embodiment, a common reference numeral is used for the common part, and description of overlapping parts is omitted as much as possible. The explanation about the equivalent part shall be used. An elastic partition wall 31 made of an elastic film such as rubber faces the hole 30 formed in the center of the ring-shaped partition member 10. The periphery of the elastic partition wall 31 on the bottom side forms an integral thick portion 32, and a leg portion 33 that is deformed in accordance with the deformation of the elastic partition wall 31 is integrally formed at the bottom.
[0031]
The portion of the elastic partition wall 31 that faces the hole 30 is a thin portion with respect to the thick portion 32 and has a spring property so that it functions as a kind of rubber spring, and is elastic according to changes in the internal pressure of the main liquid chamber 11. The film is deformed and resonates.
[0032]
The leg portion 33 abuts on a wall portion 35 formed integrally with the lower support member 34, and gives a non-linear spring characteristic to the deformation of the elastic partition wall 31. The lower support member 34 is a resin member that supports the outer peripheral side bottom of the thick portion 32, and is bent upward at substantially right angles from the inner peripheral side to form a wall portion 35. The wall portion 35 is fitted into a ring groove 36 formed at the bottom of the thick portion 32, and the side of the leg portion 33 that contacts the wall portion 35 is separated from the other thick portion 32 by the ring groove 36. And is freely movable.
[0033]
Reference numeral 9 in the drawing is a diaphragm, and 14 is formed in the circumferential direction in the thick portion of the thick portion 32, and communicates the main liquid chamber 11 and the sub liquid chamber 12. 1a is a resin bracket integrated around the first support member 1 which is a forged product.
[0034]
According to the present embodiment, as shown by the characteristic curve (3) in FIG. 3, the elastic partition wall 31 absorbs the internal pressure of the main liquid chamber 11 by its own elastic deformation, so that the dynamic spring constant in the intermediate frequency region is Compared with the characteristic curve (1), it decreases by ΔK. In addition, the elastic partition wall 31 performs membrane resonance by the liquid flow in the main liquid chamber 11.
[0035]
Since the membrane resonance caused by the elastic partition wall 31 is combined with the membrane resonance of the thin portion 7 in the conical portion 4 and the liquid column resonance caused by the medium-frequency device 17, the minimum value AB seen in the characteristic curve {circle around (1)} The dynamic spring peak is smoothed, and the entire dynamic spring is lowered significantly.
[0036]
Note that the dynamic spring peak P2 in the figure is generated by one of the elastic partition walls 31 of the present embodiment at a plurality of frequencies, and is smooth due to liquid column resonance by the medium-frequency device 17. This is a portion that remains without being made, and becomes a slightly higher dynamic spring in the middle frequency region than the characteristic curve (1), etc., but this degree is sufficiently allowed in reducing the overall dynamic spring.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an engine mount according to first and second embodiments. FIG. 2 is a schematic plan view of an elastic member. FIG. 3 is a graph showing dynamic spring characteristics. Figure corresponding to Figure 1 [Explanation of symbols]
1: 1st support member, 2: 2nd support member, 3: Elastic member, 4: Conical part, 7: Thin part, 10: Partition member, 14: Orifice passage, 17: Medium frequency device, 21: Cutting Notch, 31: elastic partition wall

Claims (4)

振動源側へ取付けられる第1の支持部材と、車体側へ取付けられる第2の支持部材と、これらの間に設けられる略円錘状の弾性部材とにより、弾性部材を壁の一部とする液室を形成し、この液室内を仕切壁により主室と副室に区画するとともに、これら主室と副室を常時連通するオリフィス通路とを仕切壁に形成した液封マウントにおいて、
主液室内へ突出する第1の支持部材へ取付けられて弾性部材の円錐部内壁との間に流動空間を形成することにより中高周波成分を吸収するための中高周波デバイスを備えるとともに、
弾性部材における円錐部の一部に中高周波領域の振動入力で膜共振を発生することにより動バネ特性に極小値を与えるための薄肉部を形成したことを特徴とする液封マウント。
The elastic member is a part of the wall by the first support member attached to the vibration source side, the second support member attached to the vehicle body side, and the substantially conical elastic member provided therebetween. In a liquid seal mount in which a liquid chamber is formed, the liquid chamber is partitioned into a main chamber and a sub chamber by a partition wall, and an orifice passage that always communicates with the main chamber and the sub chamber is formed in the partition wall.
A medium-high frequency device for absorbing a medium-high frequency component by being attached to the first support member protruding into the main liquid chamber and forming a flow space between the inner wall of the conical portion of the elastic member;
A liquid-sealed mount characterized in that a thin portion for giving a minimum value to dynamic spring characteristics is formed in a part of a conical portion of an elastic member by generating a membrane resonance by vibration input in a medium-high frequency region.
前記薄肉部を複数設けるとともにそれぞれを対称位置に同一形状で設けたことを特徴とする請求項1記載の液封マウント。  The liquid seal mount according to claim 1, wherein a plurality of the thin-walled portions are provided and are provided in the same shape at symmetrical positions. 前記薄肉部を複数設けるとともにそれぞれを対称位置に異なる形状で設けたことを特徴とする請求項1記載の液封マウント。
求項1記載の液封マウント。
The liquid seal mount according to claim 1, wherein a plurality of the thin portions are provided and each is provided in a different shape at a symmetrical position.
The liquid seal mount according to claim 1.
前記仕切壁を液室の内圧変化に応じて動バネ特性が変化する弾性仕切壁としたことを特徴とする請求項1記載の液封マウント。  The liquid seal mount according to claim 1, wherein the partition wall is an elastic partition wall whose dynamic spring characteristics change according to a change in internal pressure of the liquid chamber.
JP2001230548A 1997-04-08 2001-07-30 Liquid seal mount Expired - Fee Related JP4039827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001230548A JP4039827B2 (en) 1997-04-08 2001-07-30 Liquid seal mount

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8920397 1997-04-08
JP9-89203 1997-04-08
JP2001230548A JP4039827B2 (en) 1997-04-08 2001-07-30 Liquid seal mount

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13415698A Division JP3542063B2 (en) 1997-04-08 1998-04-08 Liquid ring mount

Publications (2)

Publication Number Publication Date
JP2002115740A JP2002115740A (en) 2002-04-19
JP4039827B2 true JP4039827B2 (en) 2008-01-30

Family

ID=26430632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001230548A Expired - Fee Related JP4039827B2 (en) 1997-04-08 2001-07-30 Liquid seal mount

Country Status (1)

Country Link
JP (1) JP4039827B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474800B2 (en) 2008-10-28 2013-07-02 Tokai Rubber Industries, Ltd. Fluid filled type vibration damping device
CN104421372A (en) * 2013-08-20 2015-03-18 特瑞堡威巴克公司 Hydromount

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203566A (en) * 2009-03-05 2010-09-16 Marugo Rubber Ind Co Ltd Liquid sealing type vibration control device and method of manufacturing the same
JP2012137152A (en) * 2010-12-27 2012-07-19 Bridgestone Corp Vibration control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8474800B2 (en) 2008-10-28 2013-07-02 Tokai Rubber Industries, Ltd. Fluid filled type vibration damping device
CN104421372A (en) * 2013-08-20 2015-03-18 特瑞堡威巴克公司 Hydromount

Also Published As

Publication number Publication date
JP2002115740A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4275791B2 (en) Liquid seal mount
EP0754878B1 (en) Vibration isolating apparatus
JPH08170683A (en) Liquid-sealed type vibration isolating mount
JP3035222B2 (en) Liquid filled type vibration damping device
JPH06307491A (en) Liquid enclosed type vibration proofing mount
US4802658A (en) Vibration isolating apparatus
JP3915531B2 (en) Fluid filled anti-vibration mount
US6131894A (en) Liquid sealed type rubber mount device
JP2002181117A (en) Fluid sealing type vibration control device and its manufacturing method
JP4039827B2 (en) Liquid seal mount
JP3542063B2 (en) Liquid ring mount
JP2002310219A (en) Liquid sealed vibration isolator
JP4544783B2 (en) Liquid seal vibration isolator
JP4358423B2 (en) Liquid seal vibration isolator
JP2001349368A (en) Liquid seal type vibration isolation equipment
JP2003004088A (en) Liquid sealed vibration isolator
JPS58196341A (en) Liquid sealing vibration-proof device
JP2002310222A (en) Liquid sealed vibration isolator
JPS61197836A (en) Vibration preventing device
JP2002310221A (en) Liquid sealed vibration isolator
JP3679961B2 (en) Liquid filled vibration isolator
JP4231980B2 (en) Liquid filled mount
JP2002310223A (en) Structure of elastic diaphragm for liquie sealed vibration isolator
JP3934294B2 (en) Liquid filled vibration isolator
JP3146193B2 (en) Liquid ring mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees