JP2010203566A - Liquid sealing type vibration control device and method of manufacturing the same - Google Patents

Liquid sealing type vibration control device and method of manufacturing the same Download PDF

Info

Publication number
JP2010203566A
JP2010203566A JP2009051817A JP2009051817A JP2010203566A JP 2010203566 A JP2010203566 A JP 2010203566A JP 2009051817 A JP2009051817 A JP 2009051817A JP 2009051817 A JP2009051817 A JP 2009051817A JP 2010203566 A JP2010203566 A JP 2010203566A
Authority
JP
Japan
Prior art keywords
chamber
equilibrium chamber
orifice
equilibrium
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051817A
Other languages
Japanese (ja)
Inventor
Sohei Fujiki
荘平 藤木
Masahiro Miyake
正浩 三宅
Hirotaka Takemoto
浩登 竹本
Mitsuharu Nakata
光晴 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marugo Rubber Industries Ltd
Original Assignee
Marugo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marugo Rubber Industries Ltd filed Critical Marugo Rubber Industries Ltd
Priority to JP2009051817A priority Critical patent/JP2010203566A/en
Publication of JP2010203566A publication Critical patent/JP2010203566A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid sealing type vibration control device effectively absorbing vibrations of not only a low frequency area but also a middle frequency area, saving cost, and having high reliability. <P>SOLUTION: In the liquid sealing type vibration control device 1 wherein a first metallic member 2 and a second metallic member 4 are connected through an elastic member 7, a liquid chamber is constituted by a pressure receiving chamber 8, a first equilibrium chamber 9, and at least one second equilibrium chamber 10. The pressure receiving chamber 8 and the first equilibrium chamber 9 are separated from each other by a partitioning member 11, and communicated by a first orifice 12 which is a damping flow passage detouring the partitioning member 11. The pressure receiving chamber 8 and the second equilibrium chamber 10 are communicated by a second orifice 14, and the second equilibrium chamber 10 and the second orifice 14 are integrally molded by the elastic member 7. The maximum cross-sectional area (S<SB>1</SB>) in the second equilibrium chamber 10 is larger than the minimum cross-sectional area (S<SB>0</SB>) of the second orifice 14. A thin-wall portion 15 is provided on a part of a wall of the second equilibrium chamber 10, and the volume of the second equilibrium chamber 10 can be increased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用エンジンマウントなどに使用することのできる液体封入型防振装置及びその製造方法に関する。   The present invention relates to a liquid-filled vibration isolator that can be used for an engine mount for automobiles and the like, and a manufacturing method thereof.

従来から、内部に封入された非圧縮性流体の共振作用等の流動作用に基づいて防振効果を得るようにした流体封入型防振装置が、自動車用エンジンマウントなどとして用いられている。具体的には、振動源側又は支持体側の一方に接続される第1金属部材と、他方に接続される第2金属部材とを有し、第1金属部材と第2金属部材とがゴム製の弾性部材を介して接続されるとともに、該弾性部材を壁の一部とする液室が設けられ、該液室が非圧縮性流体で液封されている液体封入型防振装置であって、前記液室が受圧室と平衡室とから構成され、前記受圧室と平衡室とが減衰流路であるオリフィスで連通され、平衡室内への流体の流入に伴って平衡室の体積増加が可能である液体封入型防振装置が知られている。(例えば、特許文献1など)。   2. Description of the Related Art Conventionally, a fluid-filled vibration isolator that obtains a vibration-proof effect based on a fluid action such as a resonance action of an incompressible fluid sealed inside has been used as an engine mount for automobiles. Specifically, it has a first metal member connected to one of the vibration source side or the support side and a second metal member connected to the other, and the first metal member and the second metal member are made of rubber. A liquid-filled vibration isolator in which a liquid chamber having the elastic member as a part of a wall is provided and the liquid chamber is sealed with an incompressible fluid. The liquid chamber is composed of a pressure receiving chamber and an equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber are connected by an orifice that is a damping channel, and the volume of the equilibrium chamber can be increased as fluid flows into the equilibrium chamber. There is known a liquid-filled vibration isolator. (For example, patent document 1 etc.).

このような液体封入型防振装置では、前記オリフィス内を流動する液体の共振周波数に相当する周波数領域の振動を効率よく吸収することができる。当該オリフィスは、特許文献1にも示されるように、通常、受圧室と平衡室とを仕切る仕切部材を迂回する減衰流路として構成される。そしてその場合の共振周波数は比較的小さく、低周波数領域の振動を効率よく吸収することができる。しかしながら、例えば自動車用のエンジンマウントとして用いるような場合には、エンジンの回転数やそれに関連して駆動する各種部材から、100〜600Hz程度の中周波数領域の振動が発生するが、そのような周波数領域の振動を、シンプルな構造で効率良く吸収することができなかった。   In such a liquid-filled vibration isolator, vibration in a frequency region corresponding to the resonance frequency of the liquid flowing in the orifice can be efficiently absorbed. As shown in Patent Document 1, the orifice is normally configured as a damping flow path that bypasses a partition member that partitions the pressure receiving chamber and the equilibrium chamber. In this case, the resonance frequency is relatively small, and vibrations in the low frequency region can be absorbed efficiently. However, for example, when used as an engine mount for an automobile, vibrations in the middle frequency range of about 100 to 600 Hz are generated from the rotational speed of the engine and various members that are driven in association with the engine speed. The vibration in the region could not be absorbed efficiently with a simple structure.

これに対し、例えば特許文献2には、液体封入型マウントにおいて、主液室内へ突出する支持部材へ取付けられて弾性部材の円錐部内壁との間に流動空間を形成することにより中高周波成分を吸収するための中高周波デバイスを備えるとともに、弾性部材における円錐部の一部に中高周波領域の振動入力で膜共振を発生することにより動バネ特性に極小値を与えるための薄肉部を形成することが記載されている。特許文献2の実施態様によれば、上記中高周波デバイスは、略カップ状をしていて支持部材に対してカシメ固定されている。しかしながらそれでは、部品点数が増加するとともに製造工程数も増加してしまうので、コストの上昇が避けられない。また、防振装置内にカシメ固定部品を導入するのは、長期使用時の信頼性の面でも問題となるおそれがある。さらに、製品に対応した防振性能の調整も必ずしも容易ではなかった。   On the other hand, for example, in Patent Document 2, in a liquid-sealed mount, a medium-high-frequency component is formed by forming a flow space between a support member protruding into a main liquid chamber and a conical inner wall of an elastic member. A thin-walled portion is provided to provide a minimum value for dynamic spring characteristics by generating a membrane resonance at a portion of the conical portion of the elastic member by vibration input in the medium- and high-frequency region, with a medium-high-frequency device for absorbing Is described. According to the embodiment of Patent Document 2, the above-described medium / high frequency device has a substantially cup shape and is caulked and fixed to the support member. However, this increases the number of parts and the number of manufacturing processes, so an increase in cost is inevitable. Moreover, introducing caulking fixing parts in the vibration isolator may cause a problem in terms of reliability during long-term use. Furthermore, it is not always easy to adjust the anti-vibration performance corresponding to the product.

特開2006−342956号公報JP 2006-34295 A 特開平10−339348号公報JP 10-339348 A

本発明は、上記課題を解決するためになされたものであり、低周波数領域のみならず中周波数領域の振動をも効果的に吸収する、低コストで信頼性の高い液体封入型防振装置を提供することを目的とするものである。また、そのような液体封入型防振装置の好適な製造方法を提供することを目的とするものである。   The present invention has been made to solve the above problems, and provides a low-cost and highly reliable liquid-filled vibration isolator that effectively absorbs vibrations not only in the low frequency region but also in the middle frequency region. It is intended to provide. Moreover, it aims at providing the suitable manufacturing method of such a liquid enclosure type vibration isolator.

上記課題は、振動源側又は支持体側の一方に接続される第1金属部材と、他方に接続される第2金属部材とを有し、第1金属部材と第2金属部材とがゴム製の弾性部材を介して接続されるとともに、該弾性部材を壁の一部とする液室が設けられ、該液室が非圧縮性流体で液封されている液体封入型防振装置において、前記液室が、受圧室と、第1平衡室と、少なくとも1つの第2平衡室とから構成され、上記受圧室と第1平衡室とが仕切部材で隔てられるとともに該仕切部材を迂回する減衰流路である第1オリフィスで連通され、第1平衡室の壁の一部がダイヤフラムを構成していて第1平衡室内への流体の流入に伴って第1平衡室の体積増加が可能であり、上記受圧室と第2平衡室とが第2オリフィスで連通され、第2平衡室と第2オリフィスとがゴム製の弾性部材で一体成形されており、第2平衡室内の最大断面積(S)が第2オリフィスの最小断面積(S)よりも大きく、第2平衡室の壁の一部に薄肉部を有していて第2平衡室内への流体の流入に伴って該薄肉部が変形して第2平衡室の体積増加が可能であることを特徴とする液体封入型防振装置を提供することによって解決される。このとき、第2平衡室内の最大断面積(S)と第2オリフィスの最小断面積(S)の比(S/S)が1.2〜3であることが好ましく、第2平衡室が2〜8個設けられることも好ましい。 The above-described problem has a first metal member connected to one of the vibration source side or the support side and a second metal member connected to the other, and the first metal member and the second metal member are made of rubber. In the liquid-filled vibration isolator, which is connected via an elastic member and has a liquid chamber having the elastic member as a part of a wall, and the liquid chamber is sealed with an incompressible fluid, The chamber is composed of a pressure receiving chamber, a first equilibrium chamber, and at least one second equilibrium chamber. The pressure receiving chamber and the first equilibrium chamber are separated by a partition member, and the damping channel bypasses the partition member. And a part of the wall of the first equilibrium chamber constitutes a diaphragm, and the volume of the first equilibrium chamber can be increased as the fluid flows into the first equilibrium chamber. The pressure receiving chamber and the second equilibrium chamber communicate with each other through the second orifice, and the second equilibrium chamber and the second orifice Graphics and is integrally molded of an elastic member made of rubber, the maximum cross-sectional area of the second balancing chamber (S 1) is greater than the minimum cross-sectional area of the second orifice (S 0), the wall of the second balancing chamber A liquid-filled vibration-proof type having a thin-walled portion in part and capable of increasing the volume of the second balanced chamber by deformation of the thin-walled portion as the fluid flows into the second balanced chamber It is solved by providing a device. At this time, the ratio (S 1 / S 0 ) of the maximum cross-sectional area (S 1 ) in the second equilibrium chamber to the minimum cross-sectional area (S 0 ) of the second orifice is preferably 1.2 to 3, It is also preferable that 2 to 8 equilibration chambers are provided.

また、上記課題は、第1金属部材と第2金属部材とを金型内に装着し、金型内に未加硫ゴムを充填してから加硫して、第1金属部材と第2金属部材とを加硫接着するに際し、第2平衡室と第2オリフィスに対応する金型の凸部を加硫後に加硫ゴム成形品から抜き取る工程を有することを特徴とする、上記液体封入型防振装置の製造方法を提供することによっても解決される。   In addition, the above-described problem is that the first metal member and the second metal member are mounted in a mold, filled with unvulcanized rubber in the mold and vulcanized, and then the first metal member and the second metal In the vulcanization bonding of the member, there is a step of removing the convex portions of the mold corresponding to the second equilibrium chamber and the second orifice from the vulcanized rubber molded product after vulcanization. The problem can also be solved by providing a method of manufacturing a vibration device.

本発明の液体封入型防振装置によれば、低周波数領域のみならず中周波数領域の振動をも効果的に吸収できる、低コストで信頼性の高い液体封入型防振装置が提供される。また、本発明の製造方法によれば、そのような液体封入型防振装置を容易に製造することができる。   According to the liquid-filled vibration isolator of the present invention, a low-cost and highly reliable liquid-filled vibration isolator that can effectively absorb not only the low-frequency region but also the medium-frequency region is provided. Further, according to the manufacturing method of the present invention, such a liquid-filled vibration isolator can be easily manufactured.

本発明の防振装置の一例の側面図である。It is a side view of an example of the vibration isolator of this invention. 本発明の防振装置の一例の縦断面図(形状Y)である。It is a longitudinal cross-sectional view (shape Y) of an example of the vibration isolator of this invention. 本発明の防振装置の一例のA−A断面図(形状Y)である。It is AA sectional drawing (shape Y) of an example of the vibration isolator of this invention. 本発明の防振装置の一例のB−B切断面(形状Y)である。It is a BB cut surface (shape Y) of an example of the vibration isolator of the present invention. 第2オリフィスの形状を変えたときの断面形状を示した部分拡大断面図である。It is the elements on larger scale which showed the section shape when the shape of the 2nd orifice was changed. 第2オリフィスの形状を変えたときの動ばね定数を周波数に対してプロットしたグラフである。It is the graph which plotted the dynamic spring constant when the shape of a 2nd orifice was changed with respect to the frequency.

以下、図面を用いて本発明を詳細に説明する。図1は本発明の防振装置の一例の側面図である。図2は本発明の防振装置の一例の縦断面図(形状Y)である。図3は本発明の防振装置の一例のA−A断面図(形状Y)である。図4は本発明の防振装置の一例のB−B切断面(形状Y)である。図5は第2オリフィスの形状を変えたときの断面形状を示した部分拡大断面図である。図6は第2オリフィスの形状を変えたときの動ばね定数を周波数に対してプロットしたグラフである。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a side view of an example of a vibration isolator according to the present invention. FIG. 2 is a longitudinal sectional view (shape Y) of an example of the vibration isolator of the present invention. FIG. 3 is an AA sectional view (shape Y) of an example of the vibration isolator of the present invention. FIG. 4 is a BB cut surface (shape Y) of an example of the vibration isolator of the present invention. FIG. 5 is a partially enlarged sectional view showing a sectional shape when the shape of the second orifice is changed. FIG. 6 is a graph in which the dynamic spring constant when the shape of the second orifice is changed is plotted against the frequency.

図1〜5に示されている防振装置1は、自動車エンジンマウントの例である。この例では、第1金属部材2はネジ穴3を有していて、振動源であるエンジンにネジ留めされる。また、第2金属部材4は、それに溶接された取付部材5a,5bを介してボルト穴6によって支持体に接続される。第1金属部材2と第2金属部材4とはゴム製の弾性部材7を介して相互に接続されていて、振動源から第1金属部材2に伝わる振動を弾性部材7が吸収することによって、第2金属部材4から取付部材5a,5bを経て支持体へ振動が伝わるのを防ぐ構造である。   The anti-vibration device 1 shown in FIGS. 1 to 5 is an example of an automobile engine mount. In this example, the first metal member 2 has a screw hole 3 and is screwed to an engine that is a vibration source. Moreover, the 2nd metal member 4 is connected to a support body by the bolt hole 6 via the attachment members 5a and 5b welded to it. The first metal member 2 and the second metal member 4 are connected to each other via a rubber elastic member 7, and the elastic member 7 absorbs vibration transmitted from the vibration source to the first metal member 2. This structure prevents vibration from being transmitted from the second metal member 4 to the support through the mounting members 5a and 5b.

防振装置1には、ゴム製の弾性部材7を壁の一部とする液室が設けられており、当該液室は非圧縮性流体が充填されて密封されている。液室は、受圧室8と、第1平衡室9と、少なくとも1つの第2平衡室10とから構成される。第1金属部材2からの力によってゴム製の弾性部材7が変形して、受圧室8の体積が減少する場合には、その減少分に相当する体積の流体が、受圧室8から第1平衡室9又は第2平衡室10に流入する。逆に、受圧室8の体積が増加する場合には、その増加分に相当する体積の流体が、第1平衡室9又は第2平衡室10から受圧室8に流入する。   The vibration isolator 1 is provided with a liquid chamber having a rubber elastic member 7 as a part of the wall, and the liquid chamber is filled with an incompressible fluid and sealed. The liquid chamber includes a pressure receiving chamber 8, a first equilibrium chamber 9, and at least one second equilibrium chamber 10. When the elastic member 7 made of rubber is deformed by the force from the first metal member 2 and the volume of the pressure receiving chamber 8 is reduced, the volume of fluid corresponding to the reduced amount is transferred from the pressure receiving chamber 8 to the first equilibrium. It flows into the chamber 9 or the second equilibrium chamber 10. On the contrary, when the volume of the pressure receiving chamber 8 increases, the fluid of the volume corresponding to the increased amount flows into the pressure receiving chamber 8 from the first equilibrium chamber 9 or the second equilibrium chamber 10.

受圧室8と第1平衡室9とは、仕切部材11で隔てられている。仕切部材11は、強化プラスチックや金属などの硬質の材料で形成されていて、受圧室8の体積が変化しても容易に変形しない。受圧室8と第1平衡室9とは、仕切部材11を迂回する減衰流路である第1オリフィス12で連通されていて、流体が第1オリフィス12内を移動する際の流動抵抗によって振動を減衰させることができる。一般に、振動が加えられた場合のオリフィス内の流体の流動は、液体共振周波数を超える周波数領域においては大きく制限され、動ばね定数が上昇する。また、液体共振周波数付近において損失係数が大きくなる。動ばね定数が小さければ振動の伝達を低減でき、損失係数が大きければショックを緩和することができる。したがって、目的とする周波数の振動やショックを効率よく吸収できる液体共振周波数となるように設計しなければならない。   The pressure receiving chamber 8 and the first equilibrium chamber 9 are separated by a partition member 11. The partition member 11 is formed of a hard material such as reinforced plastic or metal and does not easily deform even when the volume of the pressure receiving chamber 8 changes. The pressure receiving chamber 8 and the first equilibrium chamber 9 are communicated with each other by a first orifice 12 that is a damping flow path that bypasses the partition member 11, and vibration is caused by a flow resistance when the fluid moves in the first orifice 12. Can be attenuated. In general, the flow of fluid in the orifice when vibration is applied is greatly limited in the frequency region exceeding the liquid resonance frequency, and the dynamic spring constant increases. In addition, the loss factor increases near the liquid resonance frequency. If the dynamic spring constant is small, vibration transmission can be reduced, and if the loss coefficient is large, the shock can be reduced. Therefore, it must be designed to have a liquid resonance frequency that can efficiently absorb vibrations and shocks of the target frequency.

ここで、液体共振周波数は、オリフィスの断面積(S)と長さ(L)との比(S/L)により決まるため、例えば自動車エンジンマウントで要求されるような低周波数領域の振動を吸収し、ショックを緩和するためには、比(S/L)を小さくすることが必要であり、オリフィスを細長くすることが必要である。ただし、断面積(S)が小さすぎると流動する液量が少なくなって吸収効果、緩和効果が低下するので、比(S/L)を小さくするためには長さ(L)をある程度大きくする必要がある。本実施例では、第1オリフィス12が仕切部材11の周囲を円形に迂回することで長さ(L)を大きくしている。第1平衡室9の壁の一部はダイヤフラム13で構成されていて、第1平衡室9への流体の流入に伴って、ダイヤフラム13が変形し、第1平衡室9の体積増加が可能となっている。   Here, the liquid resonance frequency is determined by the ratio (S / L) between the cross-sectional area (S) and the length (L) of the orifice, and thus absorbs vibrations in a low frequency region as required by an automobile engine mount, for example. In order to alleviate the shock, it is necessary to reduce the ratio (S / L), and it is necessary to make the orifice elongated. However, if the cross-sectional area (S) is too small, the amount of fluid flowing is reduced and the absorption effect and the relaxation effect are lowered. Therefore, in order to reduce the ratio (S / L), the length (L) is increased to some extent. There is a need. In the present embodiment, the length (L) is increased by the first orifice 12 bypassing the periphery of the partition member 11 in a circular shape. A part of the wall of the first equilibrium chamber 9 is constituted by a diaphragm 13, and the diaphragm 13 is deformed as the fluid flows into the first equilibrium chamber 9, and the volume of the first equilibrium chamber 9 can be increased. It has become.

しかしながら、このような比(S/L)の小さい第1オリフィス12を用いただけでは、低周波数領域の振動を吸収することはできても、それよりも高い周波数領域の振動を効率よく吸収することができない。例えば自動車用のエンジンマウントとして用いられるような場合には、エンジンの回転数やそれに関連して駆動する各種部材から、100〜600Hz程度の中周波数の振動が発生するが、そのような周波数領域の振動を効率良く吸収することができなかった。以下に説明する第2平衡室10と第2オリフィス14は、そのような中周波数領域の振動を効果的に吸収するために設けられているものである。   However, if only the first orifice 12 having such a small ratio (S / L) is used, vibrations in the low frequency region can be absorbed, but vibrations in a higher frequency region can be efficiently absorbed. I can't. For example, when used as an engine mount for automobiles, medium frequency vibrations of about 100 to 600 Hz are generated from the rotational speed of the engine and various members driven in relation to the engine speed. The vibration could not be absorbed efficiently. The second equilibrium chamber 10 and the second orifice 14 described below are provided to effectively absorb such vibrations in the middle frequency range.

本発明の液体封入型防振装置は、第1平衡室9と第1オリフィス12に加え、さらに第2平衡室10と第2オリフィス14を有することを特徴とする。受圧室8と第2平衡室10とは第2オリフィス14を介して連通されている。そして、第2平衡室10の壁の一部には、薄肉部15が形成されていて、受圧室8から第2平衡室10内への流体の流入に伴って薄肉部15が変形して第2平衡室10の体積が増加し、第2平衡室10内から受圧室8への流体の流出に伴って薄肉部15が変形して第2平衡室10の体積が減少する。ここでオリフィスとは、その両側の領域よりも流路が狭くなっている部分のことをいい、第2オリフィス14の最小断面積(S)が、第2平衡室10内の最大断面積(S)と受圧室8の最大断面積のいずれよりも小さければよい。ここで、これらの断面積は、第1金属部材2の中心と第2金属部材4の中心とを結んだ線(図1、図2におけるC−C線)に対して垂直な面(例えば、図3や図4で示される切断面)で切断した時の断面積のことをいう。なお通常、受圧室8の最大断面積は第2平衡室10の最大断面積(S)よりも大きく、受圧室8の体積は第2平衡室10の体積よりも大きい。 The liquid-filled vibration isolator of the present invention is characterized by having a second equilibrium chamber 10 and a second orifice 14 in addition to the first equilibrium chamber 9 and the first orifice 12. The pressure receiving chamber 8 and the second equilibrium chamber 10 are communicated with each other via the second orifice 14. A thin portion 15 is formed in a part of the wall of the second equilibrium chamber 10, and the thin portion 15 is deformed as the fluid flows from the pressure receiving chamber 8 into the second equilibrium chamber 10. The volume of the two equilibrium chambers 10 is increased, and the thin portion 15 is deformed as the fluid flows from the second equilibrium chamber 10 to the pressure receiving chamber 8, and the volume of the second equilibrium chamber 10 is decreased. Here, the orifice means a portion where the flow path is narrower than the regions on both sides thereof, and the minimum cross-sectional area (S 0 ) of the second orifice 14 is the maximum cross-sectional area in the second equilibrium chamber 10 ( It may be smaller than both S 1 ) and the maximum cross-sectional area of the pressure receiving chamber 8. Here, these cross-sectional areas are perpendicular to a line (a CC line in FIGS. 1 and 2) connecting the center of the first metal member 2 and the center of the second metal member 4 (for example, It means a cross-sectional area when cut along the cutting plane shown in FIGS. Normally, the maximum cross-sectional area of the pressure receiving chamber 8 is larger than the maximum cross-sectional area (S 1 ) of the second equilibrium chamber 10, and the volume of the pressure receiving chamber 8 is larger than the volume of the second equilibrium chamber 10.

このような第2オリフィス14を設けることによって、第1オリフィス12によって吸収される振動数とは異なる周波数の振動を効率的に吸収することができ、用途に応じた防振性能を発揮させることができる。特に、共振周波数はオリフィスの断面積(S)と長さ(L)との比(S/L)により決まるので、あまり流路が狭くなり過ぎない程度の短いオリフィスを設けることによって、受圧室8と第2平衡室10の間を行き来する液体の共振周波数が高くなり、比較的高い振動数の振動を効率的に吸収することが可能である。具体的には、第2オリフィスの長さを短く設定した上で、第2平衡室10内の最大断面積(S)と第2オリフィス14の最小断面積(S)の比(S/S)を1.2〜3としたオリフィス構造とすることが好ましい。比(S/S)が1.2未満の場合には、第2オリフィス14の存在による振動吸収効果が不十分になるおそれがある。一方、比(S/S)が3を超える場合には、第2平衡室10と第2オリフィス14とを一体成形することが困難になるおそれがある。 By providing such a second orifice 14, it is possible to efficiently absorb vibrations having a frequency different from the frequency absorbed by the first orifice 12, and to exhibit vibration-proof performance according to the application. it can. In particular, since the resonance frequency is determined by the ratio (S / L) of the cross-sectional area (S) and length (L) of the orifice, the pressure receiving chamber 8 is provided by providing a short orifice that does not make the flow path too narrow. The resonance frequency of the liquid going back and forth between the first and second equilibrium chambers 10 becomes high, and vibrations having a relatively high frequency can be efficiently absorbed. Specifically, after setting the length of the second orifice to be short, the ratio (S 1 ) of the maximum cross-sectional area (S 1 ) in the second equilibrium chamber 10 and the minimum cross-sectional area (S 0 ) of the second orifice 14. / S 0 ) is preferably an orifice structure with 1.2 to 3. When the ratio (S 1 / S 0 ) is less than 1.2, the vibration absorption effect due to the presence of the second orifice 14 may be insufficient. On the other hand, if the ratio (S 1 / S 0 ) exceeds 3, it may be difficult to integrally mold the second equilibrium chamber 10 and the second orifice 14.

本発明の液体封入型防振装置1に設けられる第2平衡室10の数は特に限定されないが、第2オリフィス14の数が多いほど振動吸収効果が大きくなるので、第2平衡室10を2個以上設けることが好ましい。前後および左右のバランスを確保する観点からは、第2平衡室10を4個以上設けることがより好ましく、これによって振動吸収効果もさらに大きくなる。一方、第2平衡室10の数が多すぎると静ばね定数が低下して荷重を支えることが困難になるので、第2平衡室10の数は8個以下であることが好ましい。図1〜5の例では、第2平衡室10を4個設けている。   The number of second equilibrium chambers 10 provided in the liquid-filled vibration isolator 1 of the present invention is not particularly limited. However, as the number of second orifices 14 increases, the vibration absorption effect increases. It is preferable to provide more than one. From the viewpoint of securing the front-rear and left-right balance, it is more preferable to provide four or more second equilibrium chambers 10, thereby further increasing the vibration absorption effect. On the other hand, if the number of second equilibrium chambers 10 is too large, the static spring constant decreases and it becomes difficult to support the load. Therefore, the number of second equilibrium chambers 10 is preferably 8 or less. In the example of FIGS. 1 to 5, four second equilibrium chambers 10 are provided.

図5に示すように第2オリフィス14の形状を変化させた例(X、Y及びZ)、第2平衡室10に対応する空間を有しながらも第2オリフィス14を有さない例(A)、及び第2平衡室10も第2オリフィス14も有さない例(従来品:B)について、周波数を横軸、動ばね定数を縦軸にとってプロットしたグラフを図6に示す。ここで、形状Xのとき、比(S/S)は1.47である。形状Yのとき比(S/S)は1.92であり、形状Zのとき比(S/S)は2.5である。図6からわかるように、第2オリフィス14を有さない例である形状Aや形状Bのときには、中周波数領域に極小値は認められないが、形状X、Y及びZではそれぞれ約450Hz、約350Hz及び約200Hzに極小値が認められ、それぞれの周波数において効率的な振動の吸収が可能であることがわかった。第2オリフィス14の断面積を少し調整して比(S/S)を変化させるだけで、中周波数領域における動ばね定数の極小値周波数を容易にコントロールすることができ、防振性能の設計がきわめて容易である。 As shown in FIG. 5, an example in which the shape of the second orifice 14 is changed (X, Y, and Z), and an example in which the second orifice 14 is not provided while having a space corresponding to the second equilibrium chamber 10 (A ), And an example (conventional product: B) having neither the second equilibrium chamber 10 nor the second orifice 14, a graph plotting the frequency on the horizontal axis and the dynamic spring constant on the vertical axis is shown in FIG. 6. Here, for the shape X, the ratio (S 1 / S 0 ) is 1.47. When the shape is Y, the ratio (S 1 / S 0 ) is 1.92, and when the shape is Z, the ratio (S 1 / S 0 ) is 2.5. As can be seen from FIG. 6, in the case of the shape A and the shape B, which are examples having no second orifice 14, no minimum value is recognized in the middle frequency region, but in the shapes X, Y and Z, about 450 Hz and about Minimal values were observed at 350 Hz and about 200 Hz, and it was found that efficient vibration absorption was possible at each frequency. By simply adjusting the cross-sectional area of the second orifice 14 to change the ratio (S 1 / S 0 ), it is possible to easily control the minimum value frequency of the dynamic spring constant in the middle frequency range, and to improve the vibration proof performance. It is very easy to design.

本発明の液体封入型防振装置1においては、第2平衡室10と第2オリフィス14とがゴム製の弾性部材7で一体成形されている。したがって、部品点数を増加させることなく上述のような中周波数領域での振動吸収効果を得ることができる。しかも複雑な構造の金型を使用しなくても、第2平衡室10内の最大断面積(S)が第2オリフィス14の最小断面積(S)の3倍以下であれば、金型からの型抜きが可能であるから、生産コストもほとんど上昇しない。このように型抜きが可能なほど比(S/S)が小さくても、中周波数領域での効果的な振動吸収効果を得ることができたのは驚きであり、生産性と防振性能とを両立することができることが明らかになった。 In the liquid-filled vibration isolator 1 of the present invention, the second equilibrium chamber 10 and the second orifice 14 are integrally formed with a rubber elastic member 7. Therefore, it is possible to obtain the vibration absorption effect in the medium frequency region as described above without increasing the number of parts. Even if a mold having a complicated structure is not used, if the maximum cross-sectional area (S 1 ) in the second equilibrium chamber 10 is not more than three times the minimum cross-sectional area (S 0 ) of the second orifice 14, the mold Since the mold can be removed from the mold, the production cost hardly increases. Even if the ratio (S 1 / S 0 ) is so small that die cutting can be performed in this way, it is surprising that an effective vibration absorbing effect in the middle frequency range could be obtained. It became clear that it was possible to balance performance.

本発明の液体封入型防振装置1の製造方法は特に限定されるものではないが、第1金属部材2と第2金属部材4とを金型内に装着し、金型内に未加硫ゴムを充填してから加硫して、第1金属部材2と第2金属部材4とを加硫接着する方法が好適に採用される。図1〜5の例では、上金型と、下金型と、2分割可能な中金型とからなる金型セットを用い、その中に第1金属部材2と第2金属部材4とを装着し、金型内の空間に未加硫ゴムを射出成形によって充填し、加熱して加硫することによって製造することができる。このとき、第2平衡室10と第2オリフィス14に対応する金型の凸部を加硫後に加硫ゴム成形品から抜き取る工程を有することが好ましい。すなわち、上型又は下型の一方が第2平衡室10と第2オリフィス14との形状に対応する凸部を有していても、加硫後にゴムが熱いうちに型から外すことが可能であるので、第2平衡室10も第2オリフィス14も有さない従来製品と同じ操作で製造することができる。すなわち、金型の形状を変えるだけで、従来品と同じ操作で製造することができる。   Although the manufacturing method of the liquid enclosure type vibration isolator 1 of this invention is not specifically limited, The 1st metal member 2 and the 2nd metal member 4 are mounted | worn in a metal mold | die, and unvulcanized | cured in a metal mold | die. A method of vulcanizing and bonding the first metal member 2 and the second metal member 4 by vulcanizing after filling with rubber is suitably employed. In the example of FIGS. 1 to 5, a mold set including an upper mold, a lower mold, and a middle mold that can be divided into two is used, and the first metal member 2 and the second metal member 4 are placed therein. It can be manufactured by mounting, filling the space in the mold with unvulcanized rubber by injection molding, and heating and vulcanizing. At this time, it is preferable to have the process of extracting the convex part of the metal mold | die corresponding to the 2nd equilibrium chamber 10 and the 2nd orifice 14 from a vulcanized rubber molded product after vulcanization. That is, even if one of the upper mold and the lower mold has a convex portion corresponding to the shape of the second equilibrium chamber 10 and the second orifice 14, it can be removed from the mold while the rubber is hot after vulcanization. Therefore, it can be manufactured by the same operation as a conventional product that does not have the second equilibrium chamber 10 and the second orifice 14. That is, it can be manufactured by the same operation as a conventional product simply by changing the shape of the mold.

こうして得られた本発明の液体封入型防振装置1は、マウントなど各種用途の防振装置として用いることができる。なかでも静的ばね定数を大きくしながら、中周波数領域での動ばね定数を小さくすることが望まれるエンジンマウント、特に自動車用のエンジンマウントに好適に用いられる。   The liquid filled vibration isolator 1 of the present invention thus obtained can be used as a vibration isolator for various uses such as a mount. In particular, the present invention is suitably used for an engine mount that is desired to reduce the dynamic spring constant in the middle frequency range while increasing the static spring constant, particularly for an automobile engine mount.

1 防振装置
2 第1金属部材
3 ネジ穴
4 第2金属部材
5a,5b 取付部材
6 ボルト穴
7 弾性部材
8 受圧室
9 第1平衡室
10 第2平衡室
11 仕切部材
12 第1オリフィス
13 ダイヤフラム
14 第2オリフィス
15 薄肉部
DESCRIPTION OF SYMBOLS 1 Vibration isolator 2 1st metal member 3 Screw hole 4 2nd metal member 5a, 5b Mounting member 6 Bolt hole 7 Elastic member 8 Pressure receiving chamber 9 1st equilibrium chamber 10 2nd equilibrium chamber 11 Partition member 12 1st orifice 13 Diaphragm 14 Second orifice 15 Thin part

Claims (4)

振動源側又は支持体側の一方に接続される第1金属部材と、他方に接続される第2金属部材とを有し、第1金属部材と第2金属部材とがゴム製の弾性部材を介して接続されるとともに、該弾性部材を壁の一部とする液室が設けられ、該液室が非圧縮性流体で液封されている液体封入型防振装置において、
前記液室が、受圧室と、第1平衡室と、少なくとも1つの第2平衡室とから構成され、
上記受圧室と第1平衡室とが仕切部材で隔てられるとともに該仕切部材を迂回する減衰流路である第1オリフィスで連通され、第1平衡室の壁の一部がダイヤフラムを構成していて第1平衡室内への流体の流入に伴って第1平衡室の体積増加が可能であり、
上記受圧室と第2平衡室とが第2オリフィスで連通され、第2平衡室と第2オリフィスとがゴム製の弾性部材で一体成形されており、第2平衡室内の最大断面積(S)が第2オリフィスの最小断面積(S)よりも大きく、第2平衡室の壁の一部に薄肉部を有していて第2平衡室内への流体の流入に伴って該薄肉部が変形して第2平衡室の体積増加が可能であることを特徴とする液体封入型防振装置。
It has a first metal member connected to one of the vibration source side or the support side and a second metal member connected to the other, and the first metal member and the second metal member are interposed via a rubber elastic member. And a liquid chamber having the elastic member as a part of the wall, and the liquid chamber is sealed with an incompressible fluid.
The liquid chamber includes a pressure receiving chamber, a first equilibrium chamber, and at least one second equilibrium chamber;
The pressure receiving chamber and the first equilibrium chamber are separated by a partition member and communicated by a first orifice that is a damping channel that bypasses the partition member, and a part of the wall of the first equilibrium chamber forms a diaphragm. As the fluid flows into the first equilibrium chamber, the volume of the first equilibrium chamber can be increased,
The pressure receiving chamber and the second equilibrium chamber are communicated with each other by a second orifice, and the second equilibrium chamber and the second orifice are integrally formed of a rubber elastic member, and the maximum sectional area (S 1) in the second equilibrium chamber is obtained. ) Is larger than the minimum cross-sectional area (S 0 ) of the second orifice, and has a thin wall portion in a part of the wall of the second equilibrium chamber, and the thin wall portion becomes smaller as the fluid flows into the second equilibrium chamber. A liquid-filled type vibration damping device, wherein the volume of the second equilibrium chamber can be increased by deformation.
第2平衡室内の最大断面積(S)と第2オリフィスの最小断面積(S)の比(S/S)が1.2〜3である請求項1記載の液体封入型防振装置。 2. The liquid-filled type protection according to claim 1, wherein a ratio (S 1 / S 0 ) of a maximum cross-sectional area (S 1 ) in the second equilibrium chamber to a minimum cross-sectional area (S 0 ) of the second orifice is 1.2 to 3. Shaker. 第2平衡室が2〜8個設けられた請求項1又は2記載の液体封入型防振装置。   The liquid-filled vibration isolator according to claim 1 or 2, wherein 2 to 8 second equilibrium chambers are provided. 第1金属部材と第2金属部材とを金型内に装着し、金型内に未加硫ゴムを充填してから加硫して、第1金属部材と第2金属部材とを加硫接着するに際し、第2平衡室と第2オリフィスに対応する金型の凸部を加硫後に加硫ゴム成形品から抜き取る工程を有することを特徴とする、請求項1〜3のいずれか記載の液体封入型防振装置の製造方法。   The first metal member and the second metal member are mounted in a mold, filled with unvulcanized rubber in the mold and vulcanized, and the first metal member and the second metal member are vulcanized and bonded. In this case, the liquid according to any one of claims 1 to 3, further comprising a step of extracting the convex portions of the mold corresponding to the second equilibrium chamber and the second orifice from the vulcanized rubber molded product after vulcanization. A manufacturing method of an enclosed vibration isolator.
JP2009051817A 2009-03-05 2009-03-05 Liquid sealing type vibration control device and method of manufacturing the same Pending JP2010203566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051817A JP2010203566A (en) 2009-03-05 2009-03-05 Liquid sealing type vibration control device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051817A JP2010203566A (en) 2009-03-05 2009-03-05 Liquid sealing type vibration control device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010203566A true JP2010203566A (en) 2010-09-16

Family

ID=42965244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051817A Pending JP2010203566A (en) 2009-03-05 2009-03-05 Liquid sealing type vibration control device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010203566A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104824A (en) * 1983-11-09 1985-06-10 Honda Motor Co Ltd Fluid-contained engine mount
JPH06280929A (en) * 1993-03-26 1994-10-07 Bridgestone Corp Vibration control device with liquid encapsulated
JP2000186739A (en) * 1998-12-22 2000-07-04 Tokai Rubber Ind Ltd Fluid seal type vibration control device
JP2002115740A (en) * 1997-04-08 2002-04-19 Yamashita Rubber Co Ltd Liquid seal mount
JP2003128095A (en) * 2001-10-24 2003-05-08 Ohtsu Tire & Rubber Co Ltd :The Medicinal rubber stopper and production method therefor
JP2003194136A (en) * 2001-12-25 2003-07-09 Kurashiki Kako Co Ltd Manufacturing method of liquid-filled mount

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104824A (en) * 1983-11-09 1985-06-10 Honda Motor Co Ltd Fluid-contained engine mount
JPH06280929A (en) * 1993-03-26 1994-10-07 Bridgestone Corp Vibration control device with liquid encapsulated
JP2002115740A (en) * 1997-04-08 2002-04-19 Yamashita Rubber Co Ltd Liquid seal mount
JP2000186739A (en) * 1998-12-22 2000-07-04 Tokai Rubber Ind Ltd Fluid seal type vibration control device
JP2003128095A (en) * 2001-10-24 2003-05-08 Ohtsu Tire & Rubber Co Ltd :The Medicinal rubber stopper and production method therefor
JP2003194136A (en) * 2001-12-25 2003-07-09 Kurashiki Kako Co Ltd Manufacturing method of liquid-filled mount

Similar Documents

Publication Publication Date Title
US9494210B2 (en) Vehicle mount and method
JP5933984B2 (en) Vibration isolator
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
JP5172243B2 (en) Vibration isolator
JP2007046777A (en) Fluid-filled type engine mount
JP2009275910A (en) Fluid-filled type vibration control device
CN111284319A (en) Hydraulic engine support
CN104847836A (en) Semi-active control type hydraulic suspension and vehicle having same
EP3620682B1 (en) Mr mount with a dual hardness rubber decoupler
KR101324533B1 (en) Hydro engine mount
JP2007127193A (en) Liquid sealing type mount
JP2007271004A (en) Fluid-sealed vibration isolating device
JP4718137B2 (en) Vibration isolator
JP2010203566A (en) Liquid sealing type vibration control device and method of manufacturing the same
KR102169366B1 (en) Engine-mount
JP2008163970A (en) Fluid-sealed vibration control device
JP2008069905A (en) Vibration absorbing device
JP2018017304A (en) Fluid sealed type vibration-proof device
JP2010265958A (en) Vibration isolator
JP6554007B2 (en) Vibration isolator and manufacturing method thereof
JP2010007836A (en) Fluid sealed type vibration control device
JP5677898B2 (en) Fluid filled vibration isolator
JP3528882B2 (en) Liquid-filled mount and its manufacturing method
KR101976844B1 (en) Hydraulic engine mount
JP2011099465A (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20111212

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312