JPH0650734B2 - Thin film manufacturing equipment for amorphous silicon solar cells - Google Patents

Thin film manufacturing equipment for amorphous silicon solar cells

Info

Publication number
JPH0650734B2
JPH0650734B2 JP63059867A JP5986788A JPH0650734B2 JP H0650734 B2 JPH0650734 B2 JP H0650734B2 JP 63059867 A JP63059867 A JP 63059867A JP 5986788 A JP5986788 A JP 5986788A JP H0650734 B2 JPH0650734 B2 JP H0650734B2
Authority
JP
Japan
Prior art keywords
plasma decomposition
amorphous silicon
thin film
decomposition chamber
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63059867A
Other languages
Japanese (ja)
Other versions
JPH01232717A (en
Inventor
剛重 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63059867A priority Critical patent/JPH0650734B2/en
Publication of JPH01232717A publication Critical patent/JPH01232717A/en
Publication of JPH0650734B2 publication Critical patent/JPH0650734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶質シリコン太陽電池に用いられ、高周波プ
ラズマ反応を利用して薄膜を製造する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus used for an amorphous silicon solar cell and for producing a thin film by utilizing a high frequency plasma reaction.

〔従来の技術〕[Conventional technology]

第5図は非晶質シリコン太陽電池の部分的な断面斜視図
を示したものであり、一般に第5図のように一つの基板
上にユニットセルが直列接続される構造となっている。
すなわち、第5図において非晶質シリコン太陽電池は、
ガラス基板1の上に透明電極膜2a,2b,2cを短冊
状に形成し、これらの上に光起電力発生部である非晶質
シリコン膜3a,3b,3cとさらにその上に金属電極
膜4a,4b,4cを順次積み重ねるように形成してあ
り、例えばユニットセルの透明電極膜2bは隣り合うユ
ニットセルの透明電極膜2a,2cと電気的に接続され
る。
FIG. 5 is a partial sectional perspective view of an amorphous silicon solar cell, and generally has a structure in which unit cells are connected in series on one substrate as shown in FIG.
That is, the amorphous silicon solar cell in FIG.
Transparent electrode films 2a, 2b, 2c are formed in a strip shape on a glass substrate 1, and amorphous silicon films 3a, 3b, 3c, which are photovoltaic generators, are formed on these, and a metal electrode film is further formed thereon. 4a, 4b, 4c are formed so as to be sequentially stacked. For example, the transparent electrode film 2b of a unit cell is electrically connected to the transparent electrode films 2a, 2c of adjacent unit cells.

この太陽電池を構成する各薄膜については、透明電極膜
2a,2b,2cは熱CVD法,非晶質シリコン膜3
a,3b,3cはプラズマCVD法,金属電極膜4a,
4b,4cは蒸着法,スパッタ法または印刷法などによ
り形成されるが、これら各薄膜を第5図のように構成す
るために、それぞれの形成過程の間にレーザなどによる
加工工程を伴なうのが普通である。
Regarding each thin film constituting this solar cell, the transparent electrode films 2a, 2b and 2c are formed by the thermal CVD method and the amorphous silicon film 3
a, 3b and 3c are plasma CVD method, metal electrode film 4a,
4b and 4c are formed by a vapor deposition method, a sputtering method, a printing method or the like. In order to configure each of these thin films as shown in FIG. Is normal.

ここで太陽電池の非晶質シリコン薄膜3a,3b,3c
を形成するのに用いられるプラズマCVD装置について
概要を述べる。第6図はその装置構成を示す要部断面で
あり、この装置の主な構成部分は反応容器5,反応容器
5を真空に排気する排気系6,反応容器5内に成膜ガス
を供給するガス供給系7,カソード電極8,アノード電
極9,カソード電極8に接続されるRF電源10,アノ
ード電極9上に位置するガラス基板11,アノード電極
9の下方に位置し、基板11を加熱するヒータ12およ
びヒータ電源13からなる。太陽電池の場合、ガラス基
板11の上には前述した透明電極2a,2b,2cが既
に形成されているが、ここでは図示を省略してある。
Here, the amorphous silicon thin films 3a, 3b, 3c of the solar cell
A plasma CVD apparatus used for forming the film will be outlined. FIG. 6 is a cross-sectional view of an essential part showing the structure of the apparatus, and the main constituent parts of this apparatus are an exhaust system 6 for evacuating the reaction container 5 and the reaction container 5 to supply a film forming gas into the reaction container 5. Gas supply system 7, cathode electrode 8, anode electrode 9, RF power source 10 connected to cathode electrode 8, glass substrate 11 located on anode electrode 9, heater located below anode electrode 9 and heating substrate 11 12 and heater power supply 13. In the case of a solar cell, the above-mentioned transparent electrodes 2a, 2b, 2c are already formed on the glass substrate 11, but the illustration thereof is omitted here.

このようなガラス基板11上に以上の装置を用いて非晶
質シリコン薄膜を形成するには、まず反応容器5を真空
排気系6により真空度が数mtorr以下程度になるまで排
気した後、ガス供給系7からSiH4もしくはHを含むSi
H4などの成膜ガスを反応容器5内に供給し、一部真空排
気系6で排気して反応容器5内の圧力を1torr程度に保
つ。この後カソード電極8とアノード電極9にRF電源
10から電力を供給し、両電極8,9間にプラズマを発
生させる。このとき電源13によりヒータ12で約20
0℃に加熱されているアノード電極9上の基板11は、
両電極8,9間に発生したプラズマによって、その上に
第6図には図示していない非晶質シリコン薄膜を形成す
ることができる。
In order to form an amorphous silicon thin film on the glass substrate 11 using the above apparatus, the reaction vessel 5 is first evacuated by the vacuum evacuation system 6 to a degree of vacuum of about several mtorr or less, and then the gas is removed. Si containing SiH 4 or H 2 from the supply system 7
A film forming gas such as H 4 is supplied into the reaction vessel 5 and is partially evacuated by the vacuum exhaust system 6 to maintain the pressure in the reaction vessel 5 at about 1 torr. After that, electric power is supplied from the RF power source 10 to the cathode electrode 8 and the anode electrode 9 to generate plasma between the electrodes 8 and 9. At this time, about 20 by the heater 12 by the power supply 13
The substrate 11 on the anode electrode 9 heated to 0 ° C.
By the plasma generated between both electrodes 8 and 9, an amorphous silicon thin film not shown in FIG. 6 can be formed thereon.

このようにして非晶質シリコン薄膜を形成した後、レー
ザなどにより一部をカットし、さらに金属電極の被着と
加工の工程を経て最終的に第5図に示した非晶質シリコ
ン太陽電池となるのである。
After forming the amorphous silicon thin film in this way, a part of it is cut by a laser or the like, and further, the steps of depositing and processing a metal electrode and finally the amorphous silicon solar cell shown in FIG. It becomes.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

以上太陽電池の非晶質シリコン膜を形成するプラズマC
VD法による装置について述べたが、原理的には上述の
装置で薄膜装置が可能であるとしても、実際には量産性
を向上させるために基板面積を大きくしたり、1つの反
応容器内に電極と基板を多重に配置することも行なわれ
ている。しかしながら、このようにすると真空容器であ
る反応容器を大きくしなければならず、その結果、反応
容器に必要な耐圧をもたせるための構造や、ガス排気能
力を高めるための附帯設備が大がかりになるなど、装置
に多額の費用がかかることになり、量産性をあげて太陽
電池の製造価格を低減しようとすることに必ずしも結び
つかない。さらに上記の装置は、成膜時に反応容器の壁
面に反応副産物として非晶質シリコンが綿状に附着し、
これが太陽電池特性を阻害するので、この付物を除去し
なければならず、定期的に反応容器内のクリーニング作
業を必要とするために、装置の稼動率を低下させるとい
う問題がある。
Plasma C for forming the amorphous silicon film of the solar cell
Although the apparatus using the VD method has been described, in principle, even if the above-mentioned apparatus can be used for a thin film apparatus, in actuality, the substrate area is increased or electrodes are formed in one reaction container in order to improve mass productivity. It is also practiced to arrange multiple substrates. However, if this is done, the reaction container, which is a vacuum container, must be made larger, and as a result, the structure for providing the pressure resistance required for the reaction container and the auxiliary equipment for increasing the gas exhaust capacity become large. However, the cost of the device will be high, and it will not always be possible to improve the mass productivity and reduce the manufacturing cost of the solar cell. Furthermore, in the above apparatus, amorphous silicon as a reaction by-product adheres to the wall surface of the reaction container in a cotton shape during film formation,
Since this impairs the characteristics of the solar cell, it is necessary to remove this adhering substance, and it is necessary to regularly clean the inside of the reaction container, which causes a problem of lowering the operation rate of the apparatus.

本発明は上述の点に鑑みてなされたものであり、その目
的は量産効果が大きく、しかも効率よく稼動することが
できる非晶質シリコン太陽電池の薄膜製造装置を提供す
ることにある。
The present invention has been made in view of the above points, and an object thereof is to provide a thin-film manufacturing apparatus for an amorphous silicon solar cell, which has a large effect of mass production and can be operated efficiently.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するために、本発明の非晶質シリコン太
陽電池の薄膜製造装置は、従来の真空容器である反応容
器の代りに、薄膜を形成するガラス基板を用いて、枠組
を複数個の支持体を介在させて2枚のガラス基板で囲っ
た空間部を形成してこれをプラズマ分解室とし、枠組の
一端から排気して他端から成膜ガスを導入し、二つのプ
ラズマ分解室の中間または一つのプラズマ分解室の内部
に配置したカソード電極と、プラズマ分解室の外周面近
くに配置した二つのアノード電極とによりRF電力を印
加してプラズマ分解を起こさせるとともに、アノード電
極周辺に設けたヒータによりガラス基板を加熱し、プラ
ズマ分解室の内壁面となっているガラス基板上に、成膜
ガスの分解による透明電極膜と非晶質シリコン膜を形成
するように装置を構成したものである。
In order to achieve the above object, the thin film manufacturing apparatus for an amorphous silicon solar cell of the present invention uses a glass substrate for forming a thin film, instead of a reaction container which is a conventional vacuum container, and has a plurality of frameworks. A space surrounded by two glass substrates is formed with a support interposed, and this is used as a plasma decomposition chamber, and gas is exhausted from one end of the framework and a film forming gas is introduced from the other end of the frame. RF power is applied by the cathode electrode arranged in the middle or one of the plasma decomposition chambers and the two anode electrodes arranged near the outer peripheral surface of the plasma decomposition chamber to cause plasma decomposition and to be provided around the anode electrode. The heater is used to heat the glass substrate, and the apparatus is used to form the transparent electrode film and the amorphous silicon film by the decomposition of the film-forming gas on the glass substrate which is the inner wall surface of the plasma decomposition chamber. Are those that form.

〔作用〕[Action]

上記のように本発明の薄膜製造装置は、薄膜が形成され
るガラス基板自体をプラズマ分解室の内壁面となるよう
に構成してあるので、薄膜の面積が増加しても大きな反
応容器やこれに伴なう附帯設備は不要であり、しかもプ
ラズマ分解室内に配設された支持体は、プラズマ分解室
の内部が減圧されたときにも、ガラス基板が変形したり
破損したりするのを防ぐ補強の役割を果たすとともに、
この支持体がガラス基板と接触する個所には薄膜が形成
されないからマスクとしての役割も有し、透明電極膜と
非晶質シリコン膜の形成に際して、従来選択除去するた
めに後加工を行なっていた個所に、支持体とガラス基板
との接触位置を定めることにより、成膜ガスが分解して
生ずるこれらの薄膜を後加工なしで短冊状に所望の位置
に配列することを可能とする。
As described above, since the thin film manufacturing apparatus of the present invention is configured such that the glass substrate itself on which the thin film is formed becomes the inner wall surface of the plasma decomposition chamber, even if the area of the thin film increases, a large reaction container or No additional equipment is required, and the support placed inside the plasma decomposition chamber prevents the glass substrate from being deformed or damaged even when the pressure inside the plasma decomposition chamber is reduced. Plays a role of reinforcement,
Since this support does not form a thin film where it contacts the glass substrate, it also functions as a mask. Conventionally, when forming the transparent electrode film and the amorphous silicon film, post-processing was performed for selective removal. By defining the contact position between the support and the glass substrate at a position, it is possible to arrange these thin films generated by the decomposition of the film forming gas in a strip shape at a desired position without post-processing.

〔実施例〕〔Example〕

以下本発明を実施例に基づき説明する。 The present invention will be described below based on examples.

第1図,第2図は本発明の非晶質シリコン太陽電池の薄
膜製造装置の構成を示すものであり、第1図は全体の要
部構造を示す断面図,第2図は一部の断面斜視図であ
る。以下第1図,第2図を併用参照して説明する。
FIGS. 1 and 2 show the structure of a thin film manufacturing apparatus for an amorphous silicon solar cell according to the present invention. FIG. 1 is a cross-sectional view showing the entire main structure of the present invention, and FIG. It is a cross-sectional perspective view. A description will be given below with reference to FIGS. 1 and 2 together.

まず第1図において、この装置はRF電源14に接続す
るカソード電極15と、所定の間隔でその両側に並列す
る二つのアノード電極16を配置し、これら電極同士で
形成される間隙に、二つのプラズマ分解室17が挿入さ
れるように互の位置を保っている。プラズマ分解室17
は、いずれも幅方向に開口する長方向の枠組18の開口
面に、第1図には図示を省略してあるシール材を介して
2枚のガラス基板19を当接することにより枠組18と
2枚のガラス基板19で囲まれた空間部である。そして
カソード電極15,アノード電極16および二つのプラ
ズマ分解室17を、縦に長く互に平行に所定の間隙を保
つように配列している。枠組18の向い合う上辺に成膜
ガスを導入する複数本のガス導入管20,下辺には複数
本のガス排気管21をとりつけ、さらに各プラズマ分解
室17の内部には、いずれも第1図に図示してない複数
個の支持体を挿入してあり、これらの関係を明らかにす
るために第2図に部分断面斜視図を示し第1図と共通部
分に同一符号を用いてある。第2図において、2枚のガ
ラス基板19は、例えばステンレス製の枠体18の開口
面の溝にはめ込んだOリングなどのシール材22に密着
するが、第2図では一方のガラス基板は図示を省略し
た。プラズマ分解室17の内部は、枠組18とガラス基
板19の内面に全側面で当接する複数個の支持体23例
えばセラミック板などにより、第1図で示したプラズマ
分解室17の縦方向に所定の間隔で仕切られ、仕切られ
た複数個の各領域の枠組18に対してそれぞれ上辺に成
膜ガスを導入する複数本のガス導入管20,下辺には第
1図で示したように、ガス導入管20に対応して成膜ガ
スの一部を排気する複数本のガス排気管21をとりつけ
るが、第2図ではガス排出管21は図示を省略した。こ
れらガス導入管20は互に連結されて図示してないガス
供給系へ、またガス排気管21もうに連結されて図示し
ていない真空排気系へ導かれる。プラズマ分解室17
は、ガス排気管21により真空排気されたとき、枠組1
8と2枚のガラス基板19の間のシール材22によって
真空シールされ、ガラス基板19と枠組18との気密を
保つことができる。また各ガラス基板19を加熱するヒ
ータ24は、第1図のようにそれぞれ二つのアノード電
極16の近傍にこれら電極に沿って設けられる。
First, in FIG. 1, this apparatus has a cathode electrode 15 connected to an RF power source 14 and two anode electrodes 16 arranged in parallel on both sides of the cathode electrode 15 at a predetermined interval, and two electrodes are provided in a gap formed between these electrodes. The plasma decomposition chambers 17 are kept in mutual positions so that they are inserted. Plasma decomposition chamber 17
The two frame substrates 18 and 2 are formed by bringing two glass substrates 19 into contact with the opening surface of the long-side frame 18 which is open in the width direction via a sealing material (not shown in FIG. 1). It is a space portion surrounded by one glass substrate 19. The cathode electrode 15, the anode electrode 16 and the two plasma decomposition chambers 17 are arranged vertically long and parallel to each other so as to maintain a predetermined gap. A plurality of gas introduction pipes 20 for introducing a film forming gas are attached to the upper sides of the frame 18 which face each other, a plurality of gas exhaust pipes 21 are attached to the lower side thereof, and each of the plasma decomposition chambers 17 has an internal structure shown in FIG. In FIG. 2, a plurality of supports (not shown) are inserted, and in order to clarify the relationship between them, a partial cross-sectional perspective view is shown and the same reference numerals are used in common with FIG. In FIG. 2, the two glass substrates 19 are in close contact with a sealing material 22 such as an O-ring fitted in a groove of the opening surface of the frame body 18 made of stainless steel, for example, but one glass substrate is shown in FIG. Was omitted. Inside the plasma decomposition chamber 17, a plurality of supports 23, such as ceramic plates, which come into contact with the inner surfaces of the frame 18 and the glass substrate 19 on all sides are provided in a predetermined direction in the vertical direction of the plasma decomposition chamber 17 shown in FIG. A plurality of gas introduction pipes 20 for introducing the film forming gas into the upper side of the frame 18 of each of the plurality of regions partitioned at intervals, and gas introduction into the lower side of the frame 18 as shown in FIG. Although a plurality of gas exhaust pipes 21 for exhausting a part of the film-forming gas are attached to the pipes 20, the gas exhaust pipes 21 are not shown in FIG. These gas introduction pipes 20 are connected to each other to a gas supply system (not shown), and also connected to a gas exhaust pipe 21 to be guided to a vacuum exhaust system (not shown). Plasma decomposition chamber 17
When the frame is evacuated by the gas exhaust pipe 21, the frame 1
It is vacuum-sealed by the sealing material 22 between the eight and two glass substrates 19, so that the glass substrate 19 and the frame 18 can be kept airtight. Further, the heaters 24 for heating the respective glass substrates 19 are provided in the vicinity of the two anode electrodes 16 along these electrodes, respectively, as shown in FIG.

以上本発明の薄膜製造装置の構沢成を説明してきたが、
次にプラズマ分解室17を組み立てる手順について述べ
る。まずガス導入管20とガス排出管21をとりつけた
二つの枠組18を第1図のように縦に長い方向に立てて
置き、各枠組18の開口面から支持体23の必要な数量
を所定の位置に挿入する。支持体23はいずれも両端面
が枠組18の向い合う内面を摺動して保持される程度の
寸法精度が必要である。次いで2枚のガラス基板19を
各枠組18の両側の開口面溝にはめ込んであるシール材
22に当てがい、枠組18をはさみ込むようにし、この
状態で2枚のガラス基板19と枠組18からなる二つの
プラズマ分解室17を、それぞれ適当な個所で適当数の
クランプを用いて各ガラス基板19を保持する。続いて
これら二つのプラズマ分解室17を、固定されたカソー
ド電極15と二つのアノード電極16との隙間に挿入し
た後、各プラズマ分解室17にとりつけてあるガ鵜供給
管20の連結,ガス排気管21の連結,さらに装置本体
のガス供給系と真空発気系への接続を行なう。これらの
接続は管継手用部材を用いて容易に行なうことができ
る。かくして真空排気を行なうことにより、ガラス基板
19と枠組18からなる各プラズマ分解室内は減圧さ
れ、ガラス基板19はシール材22を介して枠組18と
気密を保つことができる。この時点で先に用いたガラス
基板19を押えるための適当数のクランプは不要となる
のでこれらを全て取り外す。
The structure of the thin film manufacturing apparatus of the present invention has been described above.
Next, a procedure for assembling the plasma decomposition chamber 17 will be described. First, the two frameworks 18 to which the gas introduction pipe 20 and the gas discharge pipe 21 are attached are set upright in a vertically long direction as shown in FIG. 1, and the required number of the supports 23 is set to a predetermined number from the opening surface of each framework 18. Insert in position. Each of the support members 23 needs to have a dimensional accuracy such that both end surfaces are held by sliding on the facing inner surfaces of the framework 18. Next, the two glass substrates 19 are put on the sealing material 22 fitted in the opening surface grooves on both sides of each frame 18, and the frame 18 is sandwiched. In this state, the two glass substrates 19 and the frame 18 are formed. Each of the two plasma decomposition chambers 17 holds each glass substrate 19 by using an appropriate number of clamps at appropriate positions. Subsequently, these two plasma decomposition chambers 17 are inserted into the gap between the fixed cathode electrode 15 and the two anode electrodes 16, and then the gas cormorant supply pipes 20 attached to each plasma decomposition chamber 17 are connected and gas is exhausted. The pipe 21 is connected, and further connected to the gas supply system of the apparatus main body and the vacuum gas generation system. These connections can be easily made by using the pipe joint member. Thus, by performing vacuum evacuation, the inside of each plasma decomposition chamber composed of the glass substrate 19 and the frame 18 is decompressed, and the glass substrate 19 can be kept airtight with the frame 18 via the sealing material 22. At this point, an appropriate number of clamps for pressing the glass substrate 19 used previously is unnecessary, so all of them are removed.

以上のようにしてプラズマ分解室17を組み立てること
ができるが、プラズマ分解室17は真空になったとき、
壁面となったいるガラス基板19に1kg/cm2の圧力が
外部から加わるので、これがガラスの強度を超えた場合
には、ガラス基板19は破損されてしまう。支持体23
はこのような場合の外圧に対抗してガラス基板19が変
形したり破損したりするのを防ぐものであり、これが支
持体23の第1の効用である。厚さ3mmのガラス基板1
9に対して、3cmの間隔で支持体23を挿入することに
より、ガラス基板19の破損を防止することができる。
Although the plasma decomposition chamber 17 can be assembled as described above, when the plasma decomposition chamber 17 is evacuated,
Since a pressure of 1 kg / cm 2 is externally applied to the glass substrate 19 forming the wall surface, if this exceeds the strength of the glass, the glass substrate 19 will be damaged. Support 23
Prevents the glass substrate 19 from being deformed or damaged against the external pressure in such a case, and this is the first effect of the support member 23. Glass substrate 1 with a thickness of 3 mm
The glass substrate 19 can be prevented from being damaged by inserting the support member 23 at an interval of 3 cm with respect to 9.

次に本発明の装置を用いて非晶質シリコン太陽電池の薄
膜を形成する過程を述べる。まず各プラズマ分解室17
を、ガス排出管21に接続されている図示してない真空
装置により、数mTorr以下程度まで真空排気した後、ガ
ス導入管20から図示してないガス供給系により成膜ガ
スをプラズマ分解室17に導入し、その一部をガス排出
管21で排気し、プラズマ分解室17を1Torr程度の圧
力に保つ。この後、カソード電極15とアノード電極1
6にRF電源14から高周波電力を印加し、プラズ分解
室17内部に成膜ガスのプラズマを発生させることによ
り、プラズマ分解室17の壁面として用いられ、ヒータ
24で約200℃に加熱されたガラス基板19上に、成
膜ガスの分解による薄膜を形成することができる。この
状況を第3図を参照して説明する。第3図はガラス基板
19と支持体23の位置関係を示した部分断面図であ
り、これに透明電極膜25a,25b,25cと非晶質
シリコン膜26a,26b,26cが順次形成される過
程を示している。第3図(a)ではガラス基板19と、こ
れを支える支持体23の初期の状態を表わしており、上
述の成膜ガスとして、まず(CH3)4Sn,N2,O2,CF3Brを
1:10:10:0.1の割合で流したとき、透明電極膜S
nO2:F 25a,25b,25cが第3図(b)のように
形成される。これら透明電極膜25a,25b,25c
はいずれも厚さ1μmで5Ω/□の特性値を有し、支持
体23の部分で分割された短冊状を呈する。次にプラズ
マ分解室17内の圧力を、ガラス基板19が平行移動で
きる程度まで上げて、ガラス基板19の位置を0.1〜1m
m程度第3図(c)のようにずらせる。このとき各透明電極
膜の厚さは1μm程であるから、ガラス基板19をずら
せるのは容易である。再びプラズマ分解室17を1Torr
程度の圧力とし、次に成膜ガスとして、P型非晶質シリ
コン膜用に10%SiH4(H稀釈),0.1%B2H6(H
稀釈),1%C4H2(H稀釈),i形非晶質シリコン膜
用に10%SiH4(H稀釈),n形非晶質シリコン膜用
に10%SiH4(H稀釈),0.1%pH3(H稀釈)を順
次供給してプラズマ分解させることにより、P形−i形
−n形の非晶質シリコン膜26a,26b,26cを第
3図(d)のように積層形成することができる。この場合
のガス組成,温度,各層の膜厚等の値は、通常のものと
同じでよい。最後に金属電極膜を形成することにより、
第5に示したのと同じ構造の非晶質シリコン太陽電池が
得られる。基本的な構造は同じのであっても本発明の装
置を用いて製造される非晶質シリコン太陽電池が従来と
異なる所は、透明電極膜25a,25b,25cと非晶
質シリコン膜26a,26b,26cを形成するのにレ
ーザ加工などの後加工を必要としない点にある。すなわ
ち、本発明の装置にはプラズマ分解室17の中に支持体
23が設けられており、プラズマ分解室17の部から高
周波電力を供給して薄膜形成を行なうとき、支持体23
がマスクしての役割を果たし、ガラス基板19と支持体
23の接触部分には薄膜が形成されることなく、ガラス
基板19上に短冊状の薄膜形成が行なわれるからであ
る。したがって従来薄膜の溝加工を施していた個所で、
ガラス基板19と支持体23が接触するように、支持体
23の位置決めをすることにより、薄膜の加工工程を無
くすことができる。これが支持体23の第2の効用であ
る。
Next, a process of forming a thin film of an amorphous silicon solar cell using the apparatus of the present invention will be described. First, each plasma decomposition chamber 17
Is evacuated to about several mTorr or less by a vacuum device (not shown) connected to the gas discharge pipe 21, and then the film-forming gas is supplied from the gas introduction pipe 20 to the plasma decomposition chamber 17 by a gas supply system (not shown). And a part of the gas is exhausted through the gas exhaust pipe 21 to keep the plasma decomposition chamber 17 at a pressure of about 1 Torr. After this, the cathode electrode 15 and the anode electrode 1
High-frequency power is applied from the RF power source 14 to the plasma generator 6 to generate plasma of the film forming gas inside the plasma decomposition chamber 17, which is used as a wall surface of the plasma decomposition chamber 17 and is heated to about 200 ° C. by the heater 24. A thin film can be formed on the substrate 19 by decomposition of the film forming gas. This situation will be described with reference to FIG. FIG. 3 is a partial cross-sectional view showing the positional relationship between the glass substrate 19 and the support member 23, in which transparent electrode films 25a, 25b, 25c and amorphous silicon films 26a, 26b, 26c are sequentially formed. Is shown. FIG. 3 (a) shows the initial state of the glass substrate 19 and the support 23 that supports it. First, as the above-mentioned film forming gas, (CH 3 ) 4 Sn, N 2 , O 2 , CF 3 When Br was flown at a ratio of 1: 10: 10: 0.1, the transparent electrode film S
nO 2 : F 25a, 25b, 25c are formed as shown in FIG. 3 (b). These transparent electrode films 25a, 25b, 25c
Each of them has a characteristic value of 5 Ω / □ at a thickness of 1 μm, and has a strip shape divided by the support member 23. Next, the pressure in the plasma decomposition chamber 17 is increased to such an extent that the glass substrate 19 can be moved in parallel, so that the position of the glass substrate 19 is 0.1 to 1 m.
Shift about m as shown in Fig. 3 (c). At this time, since the thickness of each transparent electrode film is about 1 μm, it is easy to shift the glass substrate 19. The plasma decomposition chamber 17 is again set to 1 Torr.
Then, the pressure is set to about 10% SiH 4 (H 2 dilution), 0.1% B 2 H 6 (H 2 ) for the P-type amorphous silicon film.
Dilution), 1% C 4 H 2 (H 2 dilution), i Katachihi 10% SiH 4 (H 2 dilution for Si film), n Katachihi amorphous silicon film for the 10% SiH 4 (H 2 Dilution) and 0.1% pH 3 (H 2 dilution) are sequentially supplied to cause plasma decomposition to form the P-type-i-n-type amorphous silicon films 26a, 26b, and 26c in FIG. 3 (d). Can be formed in a laminated manner. In this case, the values of gas composition, temperature, film thickness of each layer, etc. may be the same as usual ones. By finally forming a metal electrode film,
An amorphous silicon solar cell having the same structure as the fifth one can be obtained. Even though the basic structure is the same, the amorphous silicon solar cell manufactured by using the apparatus of the present invention is different from the conventional one in that the transparent electrode films 25a, 25b, 25c and the amorphous silicon films 26a, 26b are different. , 26c does not require post-processing such as laser processing. That is, in the apparatus of the present invention, the support 23 is provided in the plasma decomposition chamber 17, and when the high frequency power is supplied from the plasma decomposition chamber 17 to form a thin film, the support 23 is formed.
Serves as a mask, and a strip-shaped thin film is formed on the glass substrate 19 without forming a thin film on the contact portion between the glass substrate 19 and the support member 23. Therefore, at the place where the groove processing of the thin film was performed in the past,
By positioning the support member 23 so that the glass substrate 19 and the support member 23 are in contact with each other, the thin film processing step can be eliminated. This is the second effect of the support 23.

以上のごとく第1図,第2図を参照して説明した本発明
の非晶質シリコン太陽電池の薄膜製造装置は、4枚のガ
ラス基板上に後加工無しで透明電極膜と非晶質シリコン
膜を、連続的に形成することが可能な効率の高い装置で
あるが、第1図からわかるように、ガラス基板19の温
度はヒータ24に近いアノード電極16側と、ヒータ2
4から遠いカソード電極15側とでは均一性がやや悪く
なることと、アノード電極16側のガラス基板19に形
成される薄膜と、カソード電極15側のガラス基板19
に形成される薄膜との間で、膜質がやや異なるという場
合も生ずる。これを解決するためにはプラズマ分解室を
一つだけ用い、カソード電極をこのプラズマ分解室の内
部に配置すればよい。
As described above with reference to FIGS. 1 and 2, the thin film manufacturing apparatus for an amorphous silicon solar cell according to the present invention has a transparent electrode film and an amorphous silicon film on four glass substrates without post-processing. Although this is a highly efficient device capable of continuously forming a film, as can be seen from FIG. 1, the temperature of the glass substrate 19 is close to the heater 24 on the side of the anode electrode 16 and the heater 2.
4, the uniformity becomes slightly worse on the side of the cathode electrode 15 farther away from the cathode electrode 4, and the thin film formed on the glass substrate 19 on the side of the anode electrode 16 and the glass substrate 19 on the side of the cathode electrode 15
There may be a case where the film quality is slightly different from that of the thin film formed in 1. To solve this, only one plasma decomposition chamber is used, and the cathode electrode may be arranged inside this plasma decomposition chamber.

このときのプラズマ分解室内のカソード電極と支持体の
関係を第4図の部分断面斜視図に示した。第4図は第2
図と同様のプラズマ分解室17aの一部断面斜視図であ
り、第2図と共通部分を同一符号を用いてある。第4図
が第2図と異なる所は、プラズマ分解室17a内に格子
状のカソード電極15aをガラス基板19と平行に設
け、カソード電極15aが複数個の支持体27と交差す
る個所は、いずれも支持体27に貫通孔28をあけ、こ
の貫通孔28を通ってカソード電極15aを支持体27
と交差しない部分と格子状に連結してあり、その一端を
枠組18にとりつけたハーメチックシール29を経て図
示していないRF電源に接続していることである。その
他の部分は第2図の場合と同様であるから説明を省略す
る。プラズマ分解室の組み立て方も、前述したのとほぼ
同様であって、この場合は複数個の支持体27の貫通孔
28を通って格子状となっているカソード電極15aを
あらかじめ作製しておき、これを枠組18に挿入し、カ
ソード電極15aの一端をハーメチックシール29に接
続する点が異なるだけである。
The relationship between the cathode electrode and the support in the plasma decomposition chamber at this time is shown in the partial cross-sectional perspective view of FIG. Figure 4 is second
It is a partial cross-section perspective view of the same plasma decomposition chamber 17a as the figure, and the same code | symbol is used for the same part as FIG. 4 is different from FIG. 2 in that a lattice-shaped cathode electrode 15a is provided in parallel with the glass substrate 19 in the plasma decomposition chamber 17a, and the position where the cathode electrode 15a intersects with the plurality of supports 27 is somehow. Also, a through hole 28 is opened in the support body 27, and the cathode electrode 15a is supported through the through hole 28.
It is connected to a portion that does not intersect with in a lattice shape, and one end thereof is connected to an RF power source (not shown) through a hermetic seal 29 attached to the frame 18. The other parts are the same as in the case of FIG. The method of assembling the plasma decomposition chamber is almost the same as that described above. In this case, the cathode electrodes 15a in the form of a grid are formed in advance through the through holes 28 of the plurality of supports 27, The only difference is that this is inserted into the framework 18 and one end of the cathode electrode 15a is connected to the hermetic seal 29.

このようにカソード電極15aをプラズマ分解室17a
の内部に設置することが可能であり、しかもカソード電
極15aは格子状となっているので、形成された薄膜は
均一性が高くなる。またこの場合は、一つのプラズマ分
解室17aの両側にアノード電極とヒータが配置される
ので、ガラス基板に対する昇温温度の均一性もよくなる
が、ガラス基板19は2枚しか使用されないので、第1
図のものに比べて生産性は劣る。
In this way, the cathode electrode 15a is connected to the plasma decomposition chamber 17a.
Since the cathode electrode 15a has a lattice shape, the formed thin film has high uniformity. Further, in this case, since the anode electrode and the heater are arranged on both sides of one plasma decomposition chamber 17a, the uniformity of the temperature rising with respect to the glass substrate is improved, but since only two glass substrates 19 are used, the first
Productivity is inferior to that in the figure.

透明電極膜や非晶質シリコン膜の製造過程および支持体
の効用などに関しては、前述と全く同様であるから説明
を省略する。
The manufacturing process of the transparent electrode film and the amorphous silicon film, the effect of the support, and the like are the same as those described above, and thus the description thereof is omitted.

〔発明の効果〕〔The invention's effect〕

非晶質シリコン太陽電池の薄膜製造装置は、量産効果を
あげるために大きな反応容器を必要とし、また薄膜形成
の都度後加工が避けられず、設備,工数ともに多くの費
用がかかっていたが、本発明の装置では実施例で述べた
ように、枠組とガラス基板からなるプラズマ分解室を用
いて、プラズマ分解室の内壁面となっているガラス基板
上に薄膜を形成するので、装置がコンパクトなものであ
る上に、大面積の非晶質シリコン太陽電池に対しても十
分対応することができ、しかもプラズ分解室内に設けた
複数個の支持体は、ガラス基板の変形や破損を防止する
とともに、薄膜形成時のマスクとしての役割をもつの
で、ガラス基板上に短冊状の薄膜が後加工なしで形成さ
れ、また従来製膜時に生ずる副産物の除去作業も不要と
なり、製造工数の短縮と稼動率の向上が顕著である。す
なわち、本発明の装置を用いて非晶質シリコン太陽電池
を製造するときは、装置全体がコンパクトとなるから設
備費が減少し、ガラス基板上に透明電極膜と非晶質シリ
コン膜が後加工なしで連続的に形成され、加工費も低減
するという極めて大きな効果を得ることができる。
Amorphous silicon solar cell thin film manufacturing equipment requires a large reaction vessel in order to improve the mass production effect, and post processing is inevitable every time thin film formation is performed, which requires a large amount of equipment and man-hours. In the apparatus of the present invention, as described in the embodiment, the plasma decomposition chamber composed of the frame and the glass substrate is used to form a thin film on the glass substrate which is the inner wall surface of the plasma decomposition chamber, so that the apparatus is compact. In addition to being capable of handling a large area of amorphous silicon solar cells, a plurality of supports provided in the plasma decomposition chamber prevent deformation and damage of the glass substrate. Since it also has a role as a mask during thin film formation, a strip-shaped thin film is formed on the glass substrate without post-processing, and the work of removing the by-products that occur during conventional film formation is not required, and the number of manufacturing steps is short. Improvement of the operating rate is remarkable. That is, when an amorphous silicon solar cell is manufactured using the device of the present invention, the entire device becomes compact and the equipment cost is reduced, and the transparent electrode film and the amorphous silicon film are post-processed on the glass substrate. It is possible to obtain the extremely large effect that the processing cost is reduced without being formed continuously.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の装置の要部構成断面図、第2図は本発
明の装置の部分断面斜視図、第3図は本発明の装置によ
る成膜過程を示す部分断面図、第4図は本発明の装置に
おけるカソード電極をプラズマ分解室の内部に設けたと
きの部分断面斜視図、第5図は非晶質シリコン太陽電池
の構造を示す要部断面図、第6図は従来装置の要部構成
断面図である。 1,11,19……ガラス基板、2a,2b,2c,2
5a,25b,25c……透明電極膜、3a,3b,3
c,26a,26b,26c……非晶質シリコン膜、5
……反応容器、8,15,15a……カソード電極、
9,16……アノード電極、10,14……RF電源、
12,24……ヒータ、17,17a……プラズマ分解
室、18……枠組、20……ガス導入管、21……ガス
排出管、22……シール材、23,27……支持体、2
8……貫通孔、29……ハーメチックシール。
FIG. 1 is a cross-sectional view of a main part of the apparatus of the present invention, FIG. 2 is a partial cross-sectional perspective view of the apparatus of the present invention, and FIG. 3 is a partial cross-sectional view showing a film forming process by the apparatus of the present invention. Is a partial cross-sectional perspective view when the cathode electrode in the device of the present invention is provided inside the plasma decomposition chamber, FIG. 5 is a cross-sectional view of a main part showing the structure of an amorphous silicon solar cell, and FIG. It is a principal part composition sectional view. 1, 11, 19 ... Glass substrate, 2a, 2b, 2c, 2
5a, 25b, 25c ... Transparent electrode film, 3a, 3b, 3
c, 26a, 26b, 26c ... Amorphous silicon film, 5
...... Reaction container, 8, 15, 15a …… Cathode electrode
9,16 ... Anode electrode, 10,14 ... RF power supply,
12, 24 ... Heater, 17, 17a ... Plasma decomposition chamber, 18 ... Framework, 20 ... Gas introduction pipe, 21 ... Gas discharge pipe, 22 ... Sealing material, 23, 27 ... Support, 2
8 ... through hole, 29 ... hermetic seal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】プラズマCVD法を用いた非晶質シリコン
太陽電池の薄膜製造装置であって、 a.幅方向に開口する長方形の枠組と、この枠組の両開
口面でそれぞれシール材を介して密接する2枚のガラス
基板と、これらガラス基板と枠組で囲まれた箱状空間の
内部でこの空間を複数個の所定の領域に区分するように
各ガラス基板に一平行端面がそれぞれ垂直に並列して接
触し他の平行端面はそれぞれ枠組内面に当接する複数個
の支持体とからなるプラズマ分解室, b.プラズマ分解室のそれぞれ支持体で区分された領域
の向い合う枠組の一方に二つのプラズマ分解室を互に連
結するようにとりつけた複数本のガス供給管および他方
にとりつけた前記ガス供給管に対応する複数本のガス排
出管, c.所定の間隔に平行配置された二つのプラズマ分解室
の間に位置し、各プラズマ分解室のガラス基板と両面で
対向して配置されたRF電源に接続されるカソード電極
および各プラズマ分解室のもう一方のガラス基板の外周
面といずれも対向して配設された二つのアノード電極, d.二つのアノード電極近傍にそれぞれ配設され、これ
らアノード電極を介していずれも二つのプラズマ分解室
ガラス基板を加熱する二つのヒータを備えてなることを
特徴とする非晶質シリコン太陽電池の薄膜製造装置。
1. A thin film manufacturing apparatus for an amorphous silicon solar cell using a plasma CVD method, comprising: a. A rectangular framework that opens in the width direction, two glass substrates that are in close contact with each other on both opening surfaces of the framework via a sealing material, and this space inside the box-shaped space surrounded by these glass substrates and the framework. A plasma decomposition chamber composed of a plurality of supports, each of which has one parallel end face in parallel contact with each glass substrate so as to be divided into a plurality of predetermined regions, and the other parallel end faces contact the inner surface of the frame, respectively. b. Corresponding to a plurality of gas supply pipes mounted so as to connect two plasma decomposition chambers to each other in one of the facing frames of the regions divided by the support of the plasma decomposition chamber and the gas supply pipe mounted to the other A plurality of gas exhaust pipes, c. A cathode electrode connected to an RF power source, which is located between two plasma decomposition chambers arranged in parallel at a predetermined interval and is opposed to the glass substrate of each plasma decomposition chamber on both sides, and another of the plasma decomposition chambers. Two anode electrodes disposed so as to face the outer peripheral surface of one of the glass substrates, d. Thin film production of an amorphous silicon solar cell, characterized by comprising two heaters respectively arranged near the two anode electrodes and heating two glass substrates for plasma decomposition chambers via these anode electrodes. apparatus.
【請求項2】プラズマCVD法を用いた非晶質シリコン
太陽電池の薄膜製造装置であって、 a.幅方向に開口する長方形の枠組と、この枠組の両開
口面でそれぞれシール材を介して密接する2枚のガラス
基板と、これらガラス基板と枠組で囲まれた箱状空間の
内部でこの空間を複数個の所定の領域に区分するように
各ガラス基板に一平行端面がそれぞれ垂直に並行して接
触し他の平行端面はそれぞれ枠組内面に当接する複数個
の支持体と、前記空間内にガラス基板と平行に格子状に
組み込み、各支持体に設けた複数個の貫通孔を通って互
に連結し、一端がRF電源に接続されるカソード電極と
かなるプラズマ分解室, b.プラズマ分解室のそれぞれ支持体で区分された領域
の向い合う枠組の一方にとりつけた複数本のガス供給管
および他方にとりつけた前記ガス供給管に対応する複数
本のガス排出管, c.プラズマ分解室の2枚のガラス基板外周面といずれ
も対向して配置された二つのアノード電極, d.二つのアノード電極近傍にそれぞれ配設され、これ
らのアノード電極を介してプラズマ分解室のガラス基板
を加熱する二つのヒータ を備えてなることを特徴とする非晶質シリコン太陽電池
の薄膜製造装置。
2. A thin film manufacturing apparatus for an amorphous silicon solar cell using a plasma CVD method, comprising: a. A rectangular framework that opens in the width direction, two glass substrates that are in close contact with each other on both opening surfaces of the framework via a sealing material, and this space inside the box-shaped space surrounded by these glass substrates and the framework. A plurality of support bodies in which one parallel end face is in contact with each glass substrate in parallel vertically so as to be divided into a plurality of predetermined regions, and the other parallel end faces are in contact with the inner surface of the frame, respectively, and glass in the space is provided. A plasma decomposition chamber, which is assembled in parallel with the substrate in a lattice shape and is connected to each other through a plurality of through holes provided in each support, and one end of which is a cathode electrode connected to an RF power source, b. A plurality of gas supply pipes attached to one of the frames facing each other of the regions of the plasma decomposition chamber divided by the supports and a plurality of gas discharge pipes corresponding to the gas supply pipes attached to the other; c. Two anode electrodes arranged so as to face both outer peripheral surfaces of the two glass substrates of the plasma decomposition chamber, d. An apparatus for manufacturing a thin film of an amorphous silicon solar cell, comprising two heaters which are respectively disposed in the vicinity of two anode electrodes and heat the glass substrate of the plasma decomposition chamber via these anode electrodes.
JP63059867A 1988-03-14 1988-03-14 Thin film manufacturing equipment for amorphous silicon solar cells Expired - Fee Related JPH0650734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63059867A JPH0650734B2 (en) 1988-03-14 1988-03-14 Thin film manufacturing equipment for amorphous silicon solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059867A JPH0650734B2 (en) 1988-03-14 1988-03-14 Thin film manufacturing equipment for amorphous silicon solar cells

Publications (2)

Publication Number Publication Date
JPH01232717A JPH01232717A (en) 1989-09-18
JPH0650734B2 true JPH0650734B2 (en) 1994-06-29

Family

ID=13125549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059867A Expired - Fee Related JPH0650734B2 (en) 1988-03-14 1988-03-14 Thin film manufacturing equipment for amorphous silicon solar cells

Country Status (1)

Country Link
JP (1) JPH0650734B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225375A (en) * 1991-05-20 1993-07-06 Process Technology (1988) Limited Plasma enhanced chemical vapor processing of semiconductor substrates
JPH09512665A (en) * 1994-03-25 1997-12-16 アモコ/エンロン・ソーラー Enhanced Stabilizing Properties of Amorphous Silicon-Based Devices Produced by High Hydrogen Dilution Low Temperature Plasma Deposition
WO2009148077A1 (en) * 2008-06-06 2009-12-10 株式会社アルバック Apparatus for manufacturing thin film solar cell
EP2290701B1 (en) * 2008-06-06 2013-12-11 Ulvac, Inc. Apparatus for manufacturing thin film solar cell
US8298629B2 (en) * 2009-02-25 2012-10-30 Crystal Solar Incorporated High throughput multi-wafer epitaxial reactor

Also Published As

Publication number Publication date
JPH01232717A (en) 1989-09-18

Similar Documents

Publication Publication Date Title
US4452828A (en) Production of amorphous silicon film
JPS6342115A (en) Manufacture of film
JP3146112B2 (en) Plasma CVD equipment
WO2011125861A1 (en) Method for manufacturing solar cell, and solar cell
JPH0650734B2 (en) Thin film manufacturing equipment for amorphous silicon solar cells
WO2007060876A1 (en) Plasma processing apparatus and plasma processing method
JP4496401B2 (en) Plasma CVD apparatus and method for manufacturing solar cell
WO1999039363A1 (en) Method for fabricating a flat panel device
JPS5914633A (en) Plasma cvd apparatus
JP4126810B2 (en) Thin film solar cell manufacturing equipment
JP3649898B2 (en) Multilayer thin film forming apparatus using plasma CVD apparatus
JPH02303371A (en) Formation of electrode pattern on piezoelectric element for ultrasonic motor
JP3006029B2 (en) Vacuum deposition equipment
JPH0274028A (en) Thin film manufacturing device for amorphous silicon solar cell
JP4311223B2 (en) Thin film manufacturing apparatus, thin film manufacturing method, and thin film manufacturing apparatus cleaning method
JP2000299481A (en) Manufacture of thin-film solar battery and degassing processor for solar battery substrate
JP3560109B2 (en) Method and apparatus for manufacturing thin film photoelectric conversion element
JP4311222B2 (en) Thin film manufacturing apparatus, thin film manufacturing method, and thin film manufacturing apparatus cleaning method
JP2562686B2 (en) Plasma processing device
JP6024417B2 (en) Sample holder
JPWO2007023559A1 (en) Film forming method, film forming mask, and film forming apparatus
KR19980061511A (en) Field emission display device
JP2000178749A (en) Plasma cvd equipment
JPH03215687A (en) Dry etching device
JP2001053313A (en) Device for manufacturing thin-film photoelectric conversion element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees