JPH0274028A - Thin film manufacturing device for amorphous silicon solar cell - Google Patents

Thin film manufacturing device for amorphous silicon solar cell

Info

Publication number
JPH0274028A
JPH0274028A JP63226077A JP22607788A JPH0274028A JP H0274028 A JPH0274028 A JP H0274028A JP 63226077 A JP63226077 A JP 63226077A JP 22607788 A JP22607788 A JP 22607788A JP H0274028 A JPH0274028 A JP H0274028A
Authority
JP
Japan
Prior art keywords
framework
glass substrates
glass substrate
amorphous silicon
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63226077A
Other languages
Japanese (ja)
Inventor
Hiroshi Sagara
相楽 広
Sadahiro Yaginuma
柳沼 禎浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63226077A priority Critical patent/JPH0274028A/en
Publication of JPH0274028A publication Critical patent/JPH0274028A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make the device compact further eliminating the removal work of any by-products produced during the filming process, cutting down the manufacturing man-hours and augmenting the rate of operation by a method wherein thin films are formed on the glass substrates comprising the inner wall surfaces of a plasma cracking chamber making use of the plasma cracking chamber composed of a framework and the glass substrates. CONSTITUTION:A space part encircled by a framework 18 and two sheets of glass substrates 19 is formed into a plasma cracking chamber 17 using the glass substrates 19 to form thin films and then the air inside the chamber 17 is exhausted from one end of the framework 18 while filming gas is led in from the other end and the gas is impressed with RF power using a cathode electrode 15 arranged inside the plasma cracking chamber 17 and two anode electrodes 16 arranged near the peripheral parts of the chamber 17 to start the plasma cracking process. The title device is constituted to form transparent electrodes films and amorphous silicon films by cracking the filming gas after heating the glass substrates 19 by a heater 24 provided around the anode electrodes 16. Through these procedures, the whole device can be made compact in high manufacturing efficiency, thus cutting down the manufacturing cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非晶質シリコン太陽電池に用いられ、°高周波
プラズマ反応を利用して薄膜を製造する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for manufacturing a thin film using a high frequency plasma reaction, which is used in an amorphous silicon solar cell.

(従来の技術) 第2図は非晶質シリコン太陽電池の部分的な断面斜視図
を示したものであり、一般に第2図のように一つの基板
上にユニットセルが直列接続される構造となっている。
(Prior Art) Figure 2 shows a partial cross-sectional perspective view of an amorphous silicon solar cell, and generally has a structure in which unit cells are connected in series on one substrate as shown in Figure 2. It has become.

すなわち、第2図において非晶質シリコン太陽電池は、
ガラス基板1の上に透明電極112a、2b、2cを短
冊状に形成し、これらの上に光起電力発生部である非晶
質シリコンM3a、3b、3cとさらにその上に金属電
極膜4a、4b、4cを順次積み重ねるように形成して
あり、例えばユニットセルの透明電極膜2bは隣り合う
ユニットセルの透明電極1112a、2cと電気的に接
続される。
That is, in FIG. 2, the amorphous silicon solar cell is
Transparent electrodes 112a, 2b, 2c are formed in the shape of strips on a glass substrate 1, and on top of these are amorphous silicon M3a, 3b, 3c, which are photovoltaic force generating parts, and on top of these, a metal electrode film 4a, 4b and 4c are formed so as to be stacked one after another, and for example, the transparent electrode film 2b of a unit cell is electrically connected to the transparent electrodes 1112a and 2c of an adjacent unit cell.

この太陽電池を構成する各薄膜については、透明t8i
膜2a、2b、2cは熱CVD法、非晶質シリコン膜3
a、3b、3cはプラズマCVD法金属電極膜4a、4
b、4cは蒸着法、スパッタ法または印刷法などにより
形成されるが、これら各i IIIを第2図のように構
成するために、それぞれの形成過程の間にレーザなどに
よる加工工程を伴なうのが普通である。
For each thin film that constitutes this solar cell, transparent T8i
Films 2a, 2b, 2c are made by thermal CVD method, amorphous silicon film 3
a, 3b, 3c are plasma CVD metal electrode films 4a, 4
b and 4c are formed by a vapor deposition method, a sputtering method, a printing method, etc., but in order to configure each of these i III as shown in Fig. 2, a processing step using a laser or the like is required between each formation process. It is normal.

ここで太陽電池の非晶質シリコン薄膜3a。Here, an amorphous silicon thin film 3a of a solar cell is shown.

3b、3cを形成するのに用いられるプラズマCVD装
置について概要を述べる。第3図はその装置構成を示す
要部断面であり、この装置の主な構成部分は反応容器5
1反応容器5を真空に非気する排気系61反応容器5内
に成膜ガスを供給するガス供給系7.カソードti8.
アノード電極9カソード電極8に接続されるRF iJ
源10.アノード電極9上に位置するガラス基板1.ア
ノード電極9の下方に位置し、基板lを加熱するヒータ
12およびヒータTX源13からなる。太陽電池の場合
、ガラス基板1の上には前述した透明電極2a、2b、
2cが既に形成されているが、ここでは図示を省略しで
ある。
An outline of the plasma CVD apparatus used to form 3b and 3c will be described. Figure 3 is a cross section of the main parts showing the configuration of the device, and the main components of this device are the reaction vessel 5.
1. Exhaust system 61 which evacuates the reaction container 5; Gas supply system 7. which supplies film forming gas into the reaction container 5; Cathode ti8.
RF iJ connected to anode electrode 9 cathode electrode 8
Source 10. Glass substrate 1 located on anode electrode 9. It is located below the anode electrode 9 and includes a heater 12 and a heater TX source 13 for heating the substrate l. In the case of a solar cell, the above-mentioned transparent electrodes 2a, 2b,
2c has already been formed, but is not shown here.

このようなガラス基板1上に以上のvi置を用いて非晶
質シリコン薄膜を形成するにはまず反応容器5を真空排
気系6により真空度が数m Torr以下程度になるま
で排気した後、ガス供給系7からS i II aもし
くはhを含むS i It aなどの成膜ガスを反応容
2S5内に供給し、一部真空排気系6で排気して反応容
器5内の圧力をI Torr稈度に保つ。この後カソー
ド電橋8とアノード電極9にRF電源10から電力を供
給し、画電極8,9間にプラズマを発生させる。このと
き電源13によりヒータ )2で約200’Cに加熱さ
れているアノード電極9上の基板lは、両電掻8,9間
に発生したプラズマによって、その上に第3図には図示
してない非晶nシリコン薄膜を形成することができる。
To form an amorphous silicon thin film on such a glass substrate 1 using the above VI setting, first, the reaction vessel 5 is evacuated by the evacuation system 6 until the degree of vacuum is several m Torr or less. A film forming gas such as S i It a containing S i II a or h is supplied from the gas supply system 7 into the reaction chamber 2S5, and is partially evacuated by the vacuum exhaust system 6 to reduce the pressure inside the reaction chamber 5 to I Torr. Keep it at culm level. Thereafter, power is supplied from the RF power source 10 to the cathode bridge 8 and the anode electrode 9 to generate plasma between the picture electrodes 8 and 9. At this time, the substrate l on the anode electrode 9, which is heated to about 200'C by the heater 2 by the power source 13, is heated by the plasma generated between the two electric scrapers 8 and 9, as shown in FIG. It is possible to form a non-crystalline n-silicon thin film.

このようにして非晶質シリコン薄膜を形成した後、レー
ザなどにより一部をカットし、さらに金属電極の被着と
加工の工程を経て最終的に第2図に示した非晶質シリコ
ン太陽電池となるのである。
After forming the amorphous silicon thin film in this way, a portion of it is cut using a laser or the like, and then a metal electrode is attached and processed to form the final amorphous silicon solar cell shown in Figure 2. It becomes.

以上太陽電池の非晶質シリコン膜を形成するプラズマC
VD法による装置について述べたが、原理的には上述の
装置でyIIII!形成が可能であるとしても、実際に
は量産性を向上させるために基板面積を大きくしたり、
一つの反応容器内に電極と基板を多重に配置することも
行なわれている。しかしながら、このようにすると真空
容器である反応容器を大きくしなければならず、その結
果、反応容器に必要な耐圧をもたせるための構造や、ガ
ス排気能力を高めるための両帯設備が大がかりになるな
ど、装置に多額の費用がかかることになり、量産性をあ
げて太陽電池の製造価格を低減しようとすることに必ず
しも結びつかない。さらに上記の装置は、成膜時に反応
容器の壁面に反応副産物として非晶質シリコンが綿状に
耐着し、これが太陽電池特性を阻害するので、この付着
物を除去しなければならず、定期的に反応容器のクリー
ニング作業を必要とするために、装置の稼動率を低下さ
せるという問題がある。
Plasma C that forms the amorphous silicon film of solar cells
Although I have described an apparatus using the VD method, in principle, the above-mentioned apparatus can be used with yIII! Even if it is possible to form a
Multiple arrangements of electrodes and substrates within one reaction vessel have also been practiced. However, in this case, the reaction vessel, which is a vacuum vessel, must be made larger, and as a result, the structure to provide the necessary pressure resistance to the reaction vessel and the equipment for both sides to increase the gas exhaust capacity become large-scale. This results in a large amount of equipment costs, which does not necessarily lead to increasing mass productivity and reducing the manufacturing cost of solar cells. Furthermore, in the above-mentioned apparatus, amorphous silicon sticks to the wall of the reaction vessel as a reaction byproduct during film formation, and this impedes the solar cell characteristics, so this adhesion must be removed periodically. Since this method requires cleaning of the reaction vessel from time to time, there is a problem in that the operating rate of the apparatus is reduced.

これらの問題を解決するため、同一出願人により出願中
の特願昭63−59867号明細書に記載の薄膜製造装
置がありこの装置の概要を第4図1第5図に示した。こ
の装置は従来の真空容器である反応容器の代りに、y4
膜を形成するガラス基Fi19を用いて、枠組18を複
数個の支持体23を介在させて2枚のガラス基Fi19
で囲った空間部を形成してこれをプラズマ分解室17と
し、枠組の一端から排気して他嬬から成膜ガスを導入し
、二つのプラズマ分解室17の中間または一つのプラズ
マ分解室17の内部に配置したカソードin 15 と
、プラズマ分解室17の外周面近くに配置した二つのア
ノード電極16 とによりRFit力を印加してプラズ
マ分解を起こさせるとともに、アノード電極16周辺に
設けたヒータ24 によりガラス基板19を加熱し、プ
ラズマ分解室17の内壁面となっているガラス基板19
上に、成膜ガスの分解による透明電極膜とJト晶質シリ
コン膜を形成するように構成したものであり、薄膜が形
成されるガラス基板19自体がプラズマ分解室17の内
壁面となっているので、薄膜の面積が増加しても大きな
反応容器やこれに伴なう耐量設備は不要であり、しかも
プラズマ分解室17内に配設された支持体23は、プラ
ズマ分解室17の内部が減圧されたときにも、ガラス基
板19が変形したり破損したりするのを防ぐ補強の役割
を果たすとともに、この支持体23がガラス基板19 
と接触する個所には薄膜が形成されないからマスクとし
ての役割も有し、透明電極膜と非晶質シリコン膜の形成
に際して、従来選択除去するために後加工を行なってい
た個所に、支持体23とガラス基板19との接触位置を
定めることにより、成膜ガスが分解して生ずるこれらの
薄膜を後加工なしで短冊状に所望の位置に配列すること
が可能となる。このように従来装置に比べて量産効果が
大きく、しかも効率よく稼動する装置を提供することが
できたのである。
In order to solve these problems, there is a thin film manufacturing apparatus described in Japanese Patent Application No. 63-59867, currently pending by the same applicant, and an outline of this apparatus is shown in FIG. 4 and FIG. 5. This device replaces the reaction vessel, which is a conventional vacuum vessel, with y4
Using the glass base Fi19 forming the membrane, the framework 18 is attached to two glass bases Fi19 with a plurality of supports 23 interposed therebetween.
A space surrounded by a space is formed and used as a plasma decomposition chamber 17, and the gas is evacuated from one end of the framework and a film-forming gas is introduced from the other end. Plasma decomposition is caused by applying RFit force using the cathode in 15 placed inside and the two anode electrodes 16 placed near the outer peripheral surface of the plasma decomposition chamber 17, and the heater 24 placed around the anode electrode 16 causes plasma decomposition to occur. The glass substrate 19 is heated and serves as the inner wall surface of the plasma decomposition chamber 17.
The structure is such that a transparent electrode film and a crystalline silicon film are formed thereon by decomposition of the film-forming gas, and the glass substrate 19 itself on which the thin film is formed becomes the inner wall surface of the plasma decomposition chamber 17. Therefore, even if the area of the thin film increases, there is no need for a large reaction vessel or accompanying capacity-resistant equipment.Moreover, the support body 23 disposed inside the plasma decomposition chamber 17 can be This support body 23 serves as a reinforcement to prevent the glass substrate 19 from being deformed or damaged even when the pressure is reduced.
Since no thin film is formed in the areas in contact with the support 23, it also serves as a mask, and when forming the transparent electrode film and the amorphous silicon film, the support 23 By determining the contact position between the glass substrate 19 and the glass substrate 19, it becomes possible to arrange these thin films produced by decomposition of the film forming gas at desired positions in the form of strips without any post-processing. In this way, we were able to provide a device that has a greater mass production effect than conventional devices and operates more efficiently.

上記プラズマ分解室内に支持体を配設する装置を用いる
ことにより、プラズマ分解室が減圧されたときにガラス
基板が破損するのを防止するのにを効であり、後加工な
しで薄膜が形成できることから低コストの太陽電池が得
られる。
By using the above device for arranging a support in the plasma decomposition chamber, it is effective to prevent the glass substrate from being damaged when the plasma decomposition chamber is depressurized, and a thin film can be formed without post-processing. Low-cost solar cells can be obtained from

〔発明が解決しようとする課題) しかしながら、本発明者らのその後の研究によれば、な
お次のような点を解決しなければならないことがわかっ
た。成膜時にプラズマ分解室内の支持体壁面に反応副産
物として非晶質シリコンが綿状に付着することは避けら
れず、これが太陽電池特性を阻害するので、支持体を繰
り返し使用するためには、この付着物を除去し、支持体
壁面のクリーニング作業を必要とする。
[Problems to be Solved by the Invention] However, subsequent research by the present inventors revealed that the following points still need to be solved. During film formation, it is inevitable that amorphous silicon will adhere to the wall surface of the support in the plasma decomposition chamber as a reaction byproduct, and this will impede the solar cell characteristics. Removal of deposits and cleaning of the support wall surface are required.

また、真空容器である反応容器の代りにガラス基板を用
いる装置では、薄膜形成の際の減圧によるガラス基板の
破損、あるいはプラズマ分解室の真空シール部からのS
 i It a・H2などの成膜ガスの蒲れが皆無とは
言えず、安全を確保するため前記プラズマ分解室1アノ
ード電極、ヒータなどの薄膜形成部を第4図に示した密
閉容器25で覆う必要があり、このことによって、太陽
電池薄膜形成の際に作業性を悪化させ、量産効果を低下
させることである。
In addition, in devices that use a glass substrate instead of a reaction vessel that is a vacuum vessel, damage to the glass substrate due to reduced pressure during thin film formation, or S
It cannot be said that there is no leakage of film-forming gases such as a. This impairs workability during the formation of solar cell thin films and reduces the effectiveness of mass production.

本発明は上述の点に鑑みてなされたものであり、その目
的はガラス基板を直接プラズマ分解室の壁面として利用
する装置に関して、支持体を配設することなく、さらに
プラズマ分解室の気密性を高めた非晶質シリコン太陽電
池の薄膜製造装置を提供することにある。
The present invention has been made in view of the above points, and its purpose is to improve the airtightness of the plasma decomposition chamber without arranging a support for an apparatus that uses a glass substrate directly as the wall surface of the plasma decomposition chamber. An object of the present invention is to provide a thin film manufacturing apparatus for an improved amorphous silicon solar cell.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この課題を解決するため、本発明の装置は、従来の真空
容器である反応容器の代りに、薄膜を形成するガラス基
板を用いて、枠組と2枚のガラス基板で囲った空間部を
プラズマ分解室とし、枠組の一端から排気して他端から
成膜ガスを導入し、プラズマ分解室の内部に配置したカ
ソードN (’Jと、プラズマ分解室の外周面近くに配
置した二つのアノード電極とによりRFi力を印加して
プラズマ分解を起こさせるとともに、アノードT4h周
辺に設けたヒータによりガラス基板を加熱し、プラズマ
分解室の内壁面となっているガラスS板上に、成膜ガス
の分解による透明電極膜と非晶質シリコン膜を形成する
ように構成し、さらに、アノード電極にはガラス基板に
当接する複数個の凸状支持部と、枠組の開口面積(成膜
面積)とほぼ同一面積の凹状空間とを形成し、凹状空間
と連通ずる第1の真空排気口を設け、アノード電極がプ
ラズマ分解室のガラス基板および枠組とはそれぞれシー
ル材を介して密接するようにし、アノード電極に、ガラ
ス基板と枠組とそれぞれのシール材とで形成した空間に
連通ずる第2の真空排気口を設けたものである。
In order to solve this problem, the apparatus of the present invention uses a glass substrate on which a thin film is formed in place of the reaction vessel, which is a conventional vacuum vessel, and uses plasma decomposition in a space surrounded by a framework and two glass substrates. The chamber is evacuated from one end of the framework, and the film forming gas is introduced from the other end. At the same time, RFi force is applied to cause plasma decomposition, and the glass substrate is heated by the heater installed around the anode T4h, and the film is heated by the decomposition of the film forming gas on the glass S plate that forms the inner wall of the plasma decomposition chamber. The anode electrode is configured to form a transparent electrode film and an amorphous silicon film, and the anode electrode has a plurality of convex support parts that contact the glass substrate, and an area that is approximately the same as the opening area (film formation area) of the framework. A first vacuum exhaust port communicating with the concave space is provided, and the anode electrode is in close contact with the glass substrate and framework of the plasma decomposition chamber via sealing materials, respectively. A second vacuum exhaust port is provided that communicates with the space formed by the glass substrate, the framework, and the respective sealants.

〔作用〕[Effect]

本発明の装置は、薄膜が形成されるガラス基板自体をプ
ラズマ分解室の内壁面となるように構成しであるので、
薄膜の面積が増加しても大きな反応容器やこれに伴なう
付帯設備は不要である点は、前述の特願昭63−598
67号により開示した装置と同様であるが、複数個の支
持体を設けることなく、しかも、アノード電極にガラス
54Fiを装着し、凹状空間を真空に減圧した場合に、
凸状支持部はガラス基板が変形したり破壊したりするの
を防ぐ補強の役割を果たすとともに、凹状空間を枠組の
開口面積とほぼ同一面積にすることによって、薄膜形成
の際、プラズマ分解室内を減圧にした場合に差圧が発生
してガラス基板が変形あるいは破…しないようにしてい
る。
Since the apparatus of the present invention is configured so that the glass substrate itself on which the thin film is formed becomes the inner wall surface of the plasma decomposition chamber,
The point that even if the area of the thin film increases, there is no need for a large reaction vessel or accompanying equipment, as disclosed in the above-mentioned Japanese Patent Application No. 63-598.
The device is similar to the device disclosed in No. 67, but without providing a plurality of supports, and in addition, when glass 54Fi is attached to the anode electrode and the concave space is reduced to a vacuum,
The convex support plays a reinforcing role to prevent the glass substrate from being deformed or destroyed, and by making the concave space almost the same area as the opening of the framework, it is possible to prevent the inside of the plasma decomposition chamber from forming a thin film. This prevents the glass substrate from deforming or breaking due to the generation of differential pressure when the pressure is reduced.

また、アノード電極がプラズマ分解室のガラスu +1
iおよび枠組とそれぞれシール材を介して密接し、7ノ
ード電極とガラス基板と枠組とシール材とで形成した空
間を真空に減圧することによって、ガラス基板を真空吸
着したアノード電極とプラズマ分解室の枠組とはシール
材を介して密接し、プラズマ分解室の気密が保たれる。
In addition, the anode electrode is the glass u +1 of the plasma decomposition chamber.
The anode electrode and the plasma decomposition chamber are brought into close contact with each other through the sealant and the glass substrate is vacuum-adsorbed by vacuuming the space formed by the seven-node electrode, the glass substrate, the framework, and the sealant. The plasma decomposition chamber is kept in close contact with the framework via a sealing material.

また、万が−この気密が確保できず、S i II a
や1などの成膜ガスが漏れた場合でも、アノード電極と
ガラス基板と枠組とソール材とで形成した空間を真空に
減圧して排気することによって、装置外部には成膜ガス
が漏れず、二重ソール構造の密閉容器となって安全が確
保できる。
Also, in the unlikely event that this airtightness cannot be ensured, S i II a
Even if the film-forming gas such as 1 or 1 leaks, the space formed by the anode electrode, glass substrate, framework, and sole material is reduced to a vacuum and evacuated to prevent the film-forming gas from leaking outside the device. It becomes a sealed container with a double sole structure to ensure safety.

〔実施例〕〔Example〕

第1図は本発明の非晶質シリコン太陽電池の薄膜製造装
置の構造を示す断面図であり、前述の第4図および第5
図と共通部分には同一符号を用いている。第1図におい
て、2枚のガラス基板19はシール材22を介して枠組
18に当接され、枠組18 と2校のガラス基Fi19
とで囲まれた空間部であるプラズマ分解室17を形成し
ている。プラズマ分解室17の内部には格子状のカソー
ド電極15を配置し、枠組18に設けた図示していない
絶縁気密端子を経てRF電ia 14に接続しである。
FIG. 1 is a cross-sectional view showing the structure of the thin film manufacturing apparatus for amorphous silicon solar cells of the present invention, and is similar to the above-mentioned FIGS. 4 and 5.
The same reference numerals are used for parts common to the figures. In FIG. 1, two glass substrates 19 are brought into contact with a framework 18 via a sealant 22, and the framework 18 and two glass substrates Fi 19
A plasma decomposition chamber 17 is formed as a space surrounded by. A grid-shaped cathode electrode 15 is arranged inside the plasma decomposition chamber 17, and is connected to the RF power supply 14 via an insulated airtight terminal (not shown) provided on the framework 18.

枠組18の向い合う上辺には成膜ガスを導入するガス導
入管20を、下辺にはガス排気管21を取付けである。
A gas introduction pipe 20 for introducing a film forming gas is attached to the opposite upper side of the framework 18, and a gas exhaust pipe 21 is attached to the lower side.

また、プラズマ分解室I7を形成する2枚のガラス基板
19の両側に相対向して二つのアノード電極16を配置
し、ガラス基板19 とはシール材22aを介して当接
される。ガラス基1反19に当接されたアノード電極1
6には、幅方向に開口する長方形の枠IJI 18の開
口面と対向する位置に、ガラス基板I9に当接する複数
個の凸状支持部30と、枠All 18の開口面とほぼ
同一面積を有する凹状空間a、 とを形成し、凹状空間
a、 は第1の真空排気口32を経て図示していない真
空排気系へと連通している。アノード電極16は枠! 
18 ともシール材22bを介して当接され、アノード
電極16 と枠組18 とガラス基板19 とシール材
22 、22a 、 22b 、!:で囲まれた空間部
は、第2の真空排気口33を経てこれも図示していない
真空排気系へと連通している。さらに、各ガラス基Fi
19を加熱するヒータ24が、それぞれ二つの7ノード
電極16の近傍にこれらT4Frに沿って設けである。
Further, two anode electrodes 16 are disposed opposite to each other on both sides of two glass substrates 19 forming the plasma decomposition chamber I7, and are in contact with the glass substrates 19 via a sealing material 22a. Anode electrode 1 in contact with glass substrate 1 19
6 includes a plurality of convex support portions 30 that abut against the glass substrate I9 at a position facing the opening surface of the rectangular frame IJI 18 opening in the width direction, and a plurality of convex support portions 30 having approximately the same area as the opening surface of the frame All 18. A recessed space a, is formed, and the recessed space a, is connected to an evacuation system (not shown) via a first evacuation port 32. The anode electrode 16 is a frame!
18 are in contact with each other via a sealing material 22b, and the anode electrode 16, the framework 18, the glass substrate 19, and the sealing materials 22, 22a, 22b, ! The space surrounded by : communicates with an evacuation system, which is also not shown, via a second evacuation port 33. Furthermore, each glass group Fi
Heaters 24 for heating the electrodes 19 are provided along these T4Fr near the two 7-node electrodes 16, respectively.

以上、本発明の薄膜製造装置の構成を説明したが、次に
この装置の組み立てと薄Rりの形成手順について述べる
。まず、ガス導入管20とガス排出管21を取付け、内
部にカソード電極15を取り付けた枠&[118を第1
図のように縦に長い方向に立てて置き、両側の開口面溝
にソール材22および22bをはめ込む、この時、第1
図で縦に長い方向を立てて示しであるアノード電極]6
およびヒータ24 は縦に長い方向を水平にし、凸状支
持部30を上向きにして置いておく、この場合、水平に
置く意味は、量産装置としてガラス基板19の搬送の容
易さ、脱着の容易さを考慮したためであって、枠&ll
 18 と離れた位置に立てて置いてもよい0次に、ア
ノード電極16の凹状空間a、外周に配設した溝にはめ
込んであるシール材22aにガラス基板19を当てがい
、第1の真空排気口32と連通した凹状空間a、の真空
排気を行う、ガラス基板19はシール材22aによって
気密が保たれ、アノード電極16に吸着固定される。こ
の時、壁面となるガラス基板19に1 kg・f / 
cdの圧力が外部から加わるので、これがガラス強度を
超えた場合には破頃してしまう。凸状支持部30はこの
外圧に対抗してガラス基板19が変形や破損するのを防
ぐものであり、例えば、ガラス基板19が厚さ3閣の場
合にはa、の間隔で凸状支持部30を形成することによ
って破…を防止することができる。続いて、アノード電
極16およびヒータ24で構成したユニットを第1図の
ように縦に長い方向に立て、シール材22および22b
を介して枠組18に当接する。しかる後、アノード電極
16 と枠組18 とガラス基板19 とシール材22
 、22a22bとで形成した空間を、第2の真空排気
口33から真空排気を行い、アノード電極16およびガ
ラス基板19を枠&g18に真空固着する。このことに
よって、プラズマ分解室17 は枠&II 18にはめ
込まれたシール材22 とガラス基板19 とによって
気密が保たれる0次に、プラズマ分解室17をガス排出
管21に接続されている図示していない真空装置によっ
て数m Torr以下程度まで真空排気した後、ガス導
入管20から図示してないガス供給系により成膜ガスを
プラズマ分解室17に導入し、その一部をガス排出管2
1 で排気し、プラズマ分解室17をl Torr程度
の圧力に保つ。この後、カソード電極15 とアノード
電Bi 16にRF電源14から高周波電力を印加し、
プラズマ分解室17内部に成膜ガスのプラズマを発生さ
せることにより、プラズマ分解室17の壁面として用い
られ、ヒータ 24 で約200°Cに加熱されたガラ
ス基板19上に、成膜ガスの分解による薄膜を形成する
ことができる。
The configuration of the thin film manufacturing apparatus of the present invention has been described above, and next, the procedure for assembling this apparatus and forming a thin radius will be described. First, the gas inlet pipe 20 and the gas discharge pipe 21 are attached, and the frame & [118 with the cathode electrode 15 attached inside it]
As shown in the figure, place the sole materials 22 and 22b in the opening grooves on both sides.
Anode electrode shown vertically in the figure]6
The heater 24 is placed horizontally with its long vertical direction and with the convex support portion 30 facing upward. This is because the frame &ll
18. Next, the glass substrate 19 is applied to the sealing material 22a fitted in the groove provided on the outer periphery of the concave space a of the anode electrode 16, and the first evacuation is performed. The glass substrate 19, which evacuates the concave space a communicating with the opening 32, is kept airtight by the sealing material 22a and is fixed to the anode electrode 16 by suction. At this time, 1 kg・f/
CD pressure is applied from the outside, so if this exceeds the glass strength, it will burst. The convex support portions 30 prevent the glass substrate 19 from being deformed or damaged by resisting this external pressure. For example, if the glass substrate 19 has a thickness of 3 mm, the convex support portions 30 are arranged at intervals of a. By forming 30, breakage can be prevented. Next, the unit composed of the anode electrode 16 and the heater 24 is erected vertically as shown in FIG.
It abuts against the framework 18 via. After that, the anode electrode 16, the framework 18, the glass substrate 19, and the sealing material 22
, 22a and 22b is evacuated from the second vacuum exhaust port 33, and the anode electrode 16 and the glass substrate 19 are vacuum-fixed to the frame &g18. As a result, the plasma decomposition chamber 17 is kept airtight by the sealing material 22 fitted in the frame 18 and the glass substrate 19. Next, the plasma decomposition chamber 17 is connected to the gas exhaust pipe 21. After evacuation to several m Torr or less using a vacuum device (not shown), the film forming gas is introduced into the plasma decomposition chamber 17 from the gas introduction pipe 20 by a gas supply system (not shown), and a part of it is passed through the gas exhaust pipe 2.
The plasma decomposition chamber 17 is evacuated at 1 Torr and kept at a pressure of about 1 Torr. After that, high frequency power is applied from the RF power source 14 to the cathode electrode 15 and the anode electrode Bi 16,
By generating a plasma of the film-forming gas inside the plasma decomposition chamber 17, a film formed by the decomposition of the film-forming gas is placed on the glass substrate 19, which is used as the wall surface of the plasma decomposition chamber 17 and is heated to about 200°C by the heater 24. A thin film can be formed.

以上の工程の逆の工程を経てガラス基板I9を取りはず
した後、レーザなどにより一部をカットし、さらに金属
電極の被着と加工の工程を経て、最終的に第2図に示し
た非晶質シリコン太陽電池が得られる。
After removing the glass substrate I9 through the reverse process of the above steps, a portion of the glass substrate I9 is cut using a laser or the like, and then a metal electrode is attached and processed, resulting in the final amorphous structure shown in Figure 2. A high quality silicon solar cell can be obtained.

〔発明の効果] 非晶質シリコン内隅電池の薄膜製造装置は、量産効果を
あげるために大きな反応容器を必要とし、ガス排気能力
を高めるための付帯設備が大がかりになるなど、装置に
多額の費用がかかっていたが、本発明の装置では実施例
で述べたように、枠組とガラス基板からなるプラズマ分
解室を用いて、プラズマ分解室の内壁面となっているガ
ラス基板上に薄膜を形成するので、装置がコンパクトな
ものである上に、大面積の非晶質シリコン太陽電池に対
しても十分対応することができる。また、In形成が行
われるプラズマ分解室のほとんどがガラス基板で構成し
てあり、ガラス基板の支持体を用いていないため、成膜
時に生ずる副産物の除去作業が不要となり、製造工数の
短縮と稼動率の向上が顕著である。さらに、アノード電
極を二重シール構造の密閉容器としたので、安全性と作
業性が著しく向上できる。すなわち、本発明の装置を用
いて太陽電池を製造すると、装置全体がコンパクトとな
るから設備費が減少し、製造効率が高く製造コストも低
減するという極めて大きな効果を得ることができる。
[Effects of the invention] The thin film manufacturing equipment for amorphous silicon inner corner batteries requires a large reaction vessel in order to achieve mass production efficiency, and requires large-scale ancillary equipment to increase gas exhaust capacity. Although it was expensive, the apparatus of the present invention uses a plasma decomposition chamber consisting of a framework and a glass substrate to form a thin film on the glass substrate that forms the inner wall of the plasma decomposition chamber, as described in the examples. Therefore, the device is not only compact, but also sufficiently compatible with large-area amorphous silicon solar cells. In addition, most of the plasma decomposition chambers where In formation is performed are made of glass substrates and do not use glass substrate supports, which eliminates the need to remove by-products generated during film formation, reducing manufacturing man-hours and increasing operational efficiency. The improvement in the rate is remarkable. Furthermore, since the anode electrode is made into an airtight container with a double seal structure, safety and workability can be significantly improved. That is, when a solar cell is manufactured using the apparatus of the present invention, the entire apparatus becomes compact, which reduces equipment costs, and produces extremely large effects such as high manufacturing efficiency and reduced manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の要部構成断面図、第2図は非
晶質シリコン太陽電池の構造を示す要部断面図、第3図
は従来装置の要部構成断面図、第4図は先願による装置
の要部構成断面図、第5図は第4図の装置におけるカソ
ード電極をプラズマ分解室の内部に設けたときの部分断
面斜視図である。 1.19・・・ガラス基讐反、2a、2b、2c・・・
透明を極膜、3a、3b、3c・・・非晶質シリコン膜
、4a、4b、4c・・・金r/s電極膜、5・・・反
応容器、6・・・排気系、7・・・ガス供給系、8.1
5・・・カソード電極、9.16・・・アノード電極、
10.14・・・RFiit源、12、24・・・ヒー
タ、13・・・ヒータ1を源、17・・・プラズマ分解
室、18・・・枠組、20・・・ガス導入管、21・・
・ガス排出管、22.22 a 、22 b・・・シー
ル材、23・・・支持体、25・・・密閉容器、30・
・・凸状支持部、a、・・・凹状空間、32・・・第1
の真空排気口、33・・・第2の真空排気口。 図 あ 閏 ぢ 図 29ハーメ千ツ2シール ぢ 図
FIG. 1 is a sectional view of the main part of an embodiment of the present invention, FIG. 2 is a sectional view of the main part showing the structure of an amorphous silicon solar cell, FIG. 3 is a sectional view of the main part of a conventional device, and FIG. The figure is a cross-sectional view of the main part of the apparatus according to the prior application, and FIG. 5 is a partial cross-sectional perspective view of the apparatus of FIG. 4 when the cathode electrode is provided inside the plasma decomposition chamber. 1.19...Glass base, 2a, 2b, 2c...
Transparent electrode film, 3a, 3b, 3c...amorphous silicon film, 4a, 4b, 4c...gold r/s electrode film, 5...reaction vessel, 6...exhaust system, 7. ...Gas supply system, 8.1
5... Cathode electrode, 9.16... Anode electrode,
10.14... RFiit source, 12, 24... Heater, 13... Heater 1 as source, 17... Plasma decomposition chamber, 18... Framework, 20... Gas introduction pipe, 21...・
・Gas exhaust pipe, 22.22 a, 22 b...Sealing material, 23...Support, 25...Airtight container, 30.
...Convex support part, a, ...Concave space, 32...First
vacuum exhaust port, 33... second vacuum exhaust port. Figure 29. Herme 1,000 2 seals.

Claims (1)

【特許請求の範囲】 1)プラズマCVD法を用いた非晶質シリコン太陽電池
の薄膜製造装置であって、 a、幅方向に開口する長方形の枠組と、この枠組の両開
口面でそれぞれシール材を介して密接する2枚の平行な
ガラス基板と、これらガラス基板と枠組で囲まれた箱状
空間内のほぼ中央部に各ガラス基板と平行に配置し、一
端を箱状空間の外部でRF電源に接続したカソード電極
と、前記枠組にガス導入管、およびガス排出管を配設し
たプラズマ分解室、 b、前記箱状空間を形成する2枚のガラス基板のそれぞ
れ外側面に当接する複数個の凸状支持部と、前記枠組の
開口面積とほぼ同一面積の凹状空間と、この凹状空間と
連通する第1の真空排気口と、各ガラス基板と枠組およ
びシール材で気密に形成した空間に連通する第2の真空
排気口を有する二つのアノード電極、 c、二つのアノード電極近傍にそれぞれ配設され、これ
らのアノード電極を介してプラズマ分解室の各ガラス基
板を加熱する二つのヒータ、 を備えてなることを特徴とする非晶質シリコン太陽電池
の薄膜製造装置。
[Scope of Claims] 1) An apparatus for producing thin films of amorphous silicon solar cells using a plasma CVD method, which comprises: a. a rectangular framework opening in the width direction; and a sealing material on both opening surfaces of the framework. Two parallel glass substrates that are in close contact with each other are arranged parallel to each glass substrate approximately in the center of a box-shaped space surrounded by a frame with these glass substrates, and one end is connected to the outside of the box-shaped space to transmit RF a plasma decomposition chamber including a cathode electrode connected to a power source, a gas inlet pipe and a gas exhaust pipe arranged in the framework; b) a plurality of glass substrates each abutting on the outer surface of each of the two glass substrates forming the box-shaped space; a convex support portion, a concave space having an area approximately the same as the opening area of the framework, a first vacuum exhaust port communicating with the concave space, and a space airtightly formed by each glass substrate, the framework, and a sealing material. two anode electrodes having a communicating second vacuum exhaust port, c, two heaters each disposed near the two anode electrodes and heating each glass substrate in the plasma decomposition chamber via these anode electrodes. 1. A thin film manufacturing apparatus for amorphous silicon solar cells, characterized by comprising:
JP63226077A 1988-09-09 1988-09-09 Thin film manufacturing device for amorphous silicon solar cell Pending JPH0274028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226077A JPH0274028A (en) 1988-09-09 1988-09-09 Thin film manufacturing device for amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226077A JPH0274028A (en) 1988-09-09 1988-09-09 Thin film manufacturing device for amorphous silicon solar cell

Publications (1)

Publication Number Publication Date
JPH0274028A true JPH0274028A (en) 1990-03-14

Family

ID=16839457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226077A Pending JPH0274028A (en) 1988-09-09 1988-09-09 Thin film manufacturing device for amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPH0274028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541135U (en) * 1991-11-01 1993-06-01 三洋電機株式会社 Semiconductor thin film forming equipment
JPH0541136U (en) * 1991-11-06 1993-06-01 三洋電機株式会社 Semiconductor thin film forming equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541135U (en) * 1991-11-01 1993-06-01 三洋電機株式会社 Semiconductor thin film forming equipment
JPH0541136U (en) * 1991-11-06 1993-06-01 三洋電機株式会社 Semiconductor thin film forming equipment

Similar Documents

Publication Publication Date Title
JP2948842B2 (en) In-line type CVD equipment
US9343603B2 (en) Method for manufacturing solar cell module and laminator
KR20010101866A (en) Gas discharge type display panel and production method therefor
JP3314711B2 (en) Thin film manufacturing equipment
WO2011125861A1 (en) Method for manufacturing solar cell, and solar cell
JPH0274028A (en) Thin film manufacturing device for amorphous silicon solar cell
KR20010033313A (en) Method for fabricating a flat panel device
JPH0650734B2 (en) Thin film manufacturing equipment for amorphous silicon solar cells
JPH01102857A (en) Current supply part for electrochemical cell battery
JP3475752B2 (en) Thin film manufacturing equipment
JP4311223B2 (en) Thin film manufacturing apparatus, thin film manufacturing method, and thin film manufacturing apparatus cleaning method
JP2013084895A (en) Substrate processing apparatus, substrate processing method and solar cell manufacturing method
JP2000268737A (en) Plasma display pannel
JP4311222B2 (en) Thin film manufacturing apparatus, thin film manufacturing method, and thin film manufacturing apparatus cleaning method
JPS61257469A (en) Formation of thin film
JPH05225997A (en) Stack fuel cell
JPH0425017A (en) Vacuum film formation equipment
CN217104063U (en) Sealing structure of chemical vapor deposition device and chemical vapor deposition device
JP2832322B2 (en) Semiconductor manufacturing equipment
JP3531398B2 (en) Apparatus and method for manufacturing thin-film solar cell
JP3401104B2 (en) Semiconductor film forming equipment
KR20010044058A (en) Ashing apparatus for processing glass substrate or waper
JPS62238372A (en) Gate valve
JPH06338340A (en) External manifold type fused carbonate fuel cell
JPS62237720A (en) Molecular beam crystal growth apparatus