JPH0645538A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0645538A
JPH0645538A JP4207184A JP20718492A JPH0645538A JP H0645538 A JPH0645538 A JP H0645538A JP 4207184 A JP4207184 A JP 4207184A JP 20718492 A JP20718492 A JP 20718492A JP H0645538 A JPH0645538 A JP H0645538A
Authority
JP
Japan
Prior art keywords
layer
buried
buried layer
substrate
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4207184A
Other languages
Japanese (ja)
Inventor
Makoto Asai
誠 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP4207184A priority Critical patent/JPH0645538A/en
Publication of JPH0645538A publication Critical patent/JPH0645538A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To monolithically form a plurality of semiconductor elements different in withstand characteristics on the same substrate. CONSTITUTION:A buried layer 3 is formed between a high withstand voltage element 16 for output and a substrate 1. A buried layer 4 is formed between a low withstand voltage element 15 for control and the substrate 1. The buried layers are formed by using materials different in the diffusion coefficient. The buried layer 4 formed by using material whose diffusion coefficient is thick, and the buried layer 3 is thin. Thereby the interval between the buried 4 and the low withstand voltage lement 15 for control becomes larger than the other, and the collector resistance can be reduced. Since the buried 3 is formed so as to be thinner than the buried layer 4, the distance between the high withstand voltage element 16 for output and the buried layer 3 can be made large, and high withstand voltage can be ensured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は埋込み拡散を用いた半導
体装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using buried diffusion and its manufacturing method.

【0002】[0002]

【従来の技術】従来、モノリシックICの製造時、トラ
ンジスタのコレクタ抵抗を低減または抵抗部に発生する
例えば、図3に示すベース層8・エピタキシャル層2・
基板1の寄生素子の影響を低減するため、エピタキシャ
ル層2と基板1の間に埋込層3挿入している。
2. Description of the Related Art Conventionally, when a monolithic IC is manufactured, a collector resistance of a transistor is reduced or generated in a resistance portion. For example, a base layer 8 / epitaxial layer 2 /
In order to reduce the influence of parasitic elements on the substrate 1, the buried layer 3 is inserted between the epitaxial layer 2 and the substrate 1.

【0003】また、出力用高耐圧素子16は耐圧を高く
するためにエピタキシャル層2の不純物濃度を下げて厚
みを増したり、分離層6,コレクタ10、ベース8、エ
ミッタ7の各拡散距離を十分に大きくし、素子面積を大
きくしている。
Further, the output high breakdown voltage element 16 is made thicker by lowering the impurity concentration of the epitaxial layer 2 in order to increase the breakdown voltage, and the diffusion distances of the separation layer 6, the collector 10, the base 8 and the emitter 7 are sufficient. To increase the device area.

【0004】一方、制御用素子15は出力用の素子に比
べて高い耐圧を必要としないので、チップサイズを小さ
くする目的で拡散距離を極力小さくしている。
On the other hand, the control element 15 does not require a higher breakdown voltage than the output element, so the diffusion distance is made as small as possible for the purpose of reducing the chip size.

【0005】[0005]

【発明が解決しようとする課題】しかしながら出力用素
子に高耐圧を要求することから、エピタキシャル層の不
純物濃度を低く、また厚さを厚くしているので、制御用
素子のコレクタ抵抗が大きくなってしまい、それが回路
設計時の制約となって、設計がし難いという課題を有し
ていた。
However, since the output element is required to have a high breakdown voltage, the impurity concentration of the epitaxial layer is low and the thickness is large, so that the collector resistance of the control element becomes large. However, there is a problem that it becomes difficult to design because it becomes a constraint when designing a circuit.

【0006】本発明はこのような状況に鑑みてなされた
もので、アンチモン、燐等の不純物拡散を行うものと同
一導電形で、拡散係数の異なる多種類の埋込み層を用い
ることにより、耐圧、コレクタ抵抗、オン抵抗の異なる
素子を構成するようにしたものである。
The present invention has been made in view of such a situation, and by using various kinds of buried layers having the same conductivity type as that for diffusing impurities such as antimony and phosphorus and having different diffusion coefficients, An element having different collector resistance and ON resistance is configured.

【0007】[0007]

【課題を解決するための手段】このような課題を解決す
るために第1の発明は、少なくとも2種類の半導体素子
を同一基板上にモノリシックに形成し、各半導体素子の
耐圧を異なったものとする半導体装置において、それぞ
れの半導体素子と基板との間に埋込層を設け、耐圧の高
い方の半導体素子に対応する埋込層の厚みを他方よりも
薄くすることを特徴とする。
In order to solve such a problem, the first invention is that at least two kinds of semiconductor elements are monolithically formed on the same substrate, and each semiconductor element has a different breakdown voltage. In the semiconductor device described above, an embedded layer is provided between each semiconductor element and the substrate, and the thickness of the embedded layer corresponding to the semiconductor element having the higher breakdown voltage is smaller than that of the other.

【0008】第2の発明は、少なくとも2種類の半導体
素子を同一基板上にモノリシックに形成し、その半導体
素子の下方に各半導体素子の耐圧を異なったものとする
ための埋込層を設ける半導体装置の製造方法において、
各埋込層を拡散係数の異なる材料による拡散によって形
成することを特徴とする。
According to a second aspect of the present invention, at least two types of semiconductor elements are monolithically formed on the same substrate, and a buried layer is provided below the semiconductor elements to make the breakdown voltage of each semiconductor element different. In the method of manufacturing the device,
It is characterized in that each buried layer is formed by diffusion using materials having different diffusion coefficients.

【0009】[0009]

【作用】出力用高耐圧素子16および制御用低耐圧素子
15と、基板1との間に埋込層3、4を形成し、その埋
込層を拡散係数の異なる材料によって形成したので、拡
散係数の大きい材料で形成した埋込層4は厚みが厚くな
り、他方は薄くなる。これによって埋込層4と制御用低
耐圧素子15までの間隔は他方よりも厚くなり、コレク
タ抵抗を少なく形成できる。埋込層3は埋込層4より薄
く形成されるので出力用高耐圧素子16と埋込層3との
間の距離が大きくとれ、高耐圧を確保できる。
Since the buried layers 3 and 4 are formed between the substrate 1 and the high breakdown voltage element 16 for output and the low breakdown voltage element 15 for control, and the buried layers are made of materials having different diffusion coefficients, diffusion is performed. The buried layer 4 formed of a material having a large coefficient becomes thicker and the other becomes thinner. As a result, the distance between the buried layer 4 and the control low breakdown voltage element 15 becomes thicker than the other, and the collector resistance can be reduced. Since the buried layer 3 is formed thinner than the buried layer 4, the distance between the output high breakdown voltage element 16 and the buried layer 3 can be made large, and a high breakdown voltage can be secured.

【0010】[0010]

【実施例】図1は本発明の一実施例を示す断面図であ
り、この例では左側に出力用高耐圧素子16を、右側に
制御用低耐圧素子15を配置している。出力用高耐圧素
子16はP形ベース拡散層8、N+ エミッタ拡散層7か
らなるプレーナ形半導体の下側であってN形エピタキシ
ャル層2とP形の基板1との間に埋込層3を設けてい
る。また、コレクタウォール10がエピタキシャル層2
の表面から埋込層3まで達している。
1 is a sectional view showing an embodiment of the present invention, in which an output high breakdown voltage element 16 is arranged on the left side and a control low breakdown voltage element 15 is arranged on the right side. The output high breakdown voltage element 16 is below the planar semiconductor composed of the P type base diffusion layer 8 and the N + emitter diffusion layer 7 and is buried between the N type epitaxial layer 2 and the P type substrate 1. Is provided. In addition, the collector wall 10 is the epitaxial layer 2
From the surface to the buried layer 3.

【0011】一方、、制御用低耐圧素子15はP形ベー
ス拡散層8、N+ エミッタ拡散層7、N+ コレクタ拡散
層9からなるプレーナ形半導体の下側であってN形エピ
タキシャル層2とP形の基板1との間に埋込層4を設け
ている。
On the other hand, the control low breakdown voltage element 15 is below the planar semiconductor composed of the P type base diffusion layer 8, the N + emitter diffusion layer 7 and the N + collector diffusion layer 9 and is the N type epitaxial layer 2. A buried layer 4 is provided between the P type substrate 1 and the buried layer 4.

【0012】出力用高耐圧素子16の埋込層3はその形
成時にアンチモン等の拡散定数の小さな不純物を用いて
拡散を行い、エピタキシャル層2への盛上がりを少なく
し、埋込層3からベース層8までのエピタキシャル層2
の距離を長く確保し、高耐圧素子を実現している。
The buried layer 3 of the output high breakdown voltage element 16 is diffused by using an impurity having a small diffusion constant such as antimony at the time of formation thereof to reduce the rise to the epitaxial layer 2 so that the buried layer 3 is removed from the base layer. Epitaxial layer 2 up to 8
The long distance is secured to realize a high breakdown voltage element.

【0013】制御用低耐圧素子15の埋込層4はその形
成時に燐等の拡散定数の大きい不純物を用いて拡散を行
い、エピタキシャル層2への盛上がりを大きくし、埋込
層4からベース層8までのエピタキシャル層2の長さを
短くすることによってコレクタ抵抗を低減している。
The buried layer 4 of the control low breakdown voltage element 15 is diffused by using an impurity having a large diffusion constant such as phosphorus at the time of its formation to increase the swelling to the epitaxial layer 2 so that the buried layer 4 becomes a base layer. The collector resistance is reduced by shortening the length of the epitaxial layer 2 up to 8.

【0014】図2はこのような装置を製造する製造工程
を示す断面図である。先ず図2(a)に示すようにP形
基板1の表面に酸化膜5aを形成し、その酸化膜5aに
窓5bを開け、それをマスクとして拡散定数の小さなア
ンチモンを使用して拡散を行う。この処理によってアン
チモンが窓5bから基板1に拡散浸透し、窓5bより若
干広い面積にわたり、N+ 埋込み層3を形成する。
FIG. 2 is a sectional view showing a manufacturing process for manufacturing such a device. First, as shown in FIG. 2A, an oxide film 5a is formed on the surface of the P-type substrate 1, a window 5b is opened in the oxide film 5a, and diffusion is performed using antimony having a small diffusion constant by using the window 5b as a mask. . By this treatment, antimony diffuses and permeates through the window 5b into the substrate 1 to form the N + buried layer 3 over a slightly larger area than the window 5b.

【0015】次に酸化膜5aを除去して図2(b)に示
すように酸化膜5cを形成し、その酸化膜5cに窓5d
を開け、それをマスクとして拡散定数の大きな燐を使用
して拡散を行う。この処理によって燐が窓5dから基板
1に拡散浸透し、窓5dより若干広い面積にわたり、埋
込層3と同一導電形のN+ 埋込層4を形成する。このと
き、アンチモンより燐の方が拡散係数が大きいので、埋
込層4は埋込層3より基板1の奥深くまで浸透し、埋込
層4の厚みは埋込層3より厚くなる。
Next, the oxide film 5a is removed to form an oxide film 5c as shown in FIG. 2B, and the window 5d is formed in the oxide film 5c.
Then, diffusion is performed using phosphorus having a large diffusion constant as a mask. By this treatment, phosphorus diffuses and permeates through the window 5d into the substrate 1 to form an N + buried layer 4 having the same conductivity type as the buried layer 3 over a slightly larger area than the window 5d. At this time, since phosphorus has a larger diffusion coefficient than antimony, the embedded layer 4 penetrates deeper into the substrate 1 than the embedded layer 3, and the embedded layer 4 becomes thicker than the embedded layer 3.

【0016】そして酸化膜5cを除去し、その後に図2
(c)で示すようにN形エピタキシャル層2を形成す
る。このとき熱処理を行うと、先に基板1に拡散したア
ンチモンおよび燐がエピタキシャル層2に再度拡散さ
れ、埋込層3、4はエピタキシャル層2に浸透し、盛り
上がる。
Then, the oxide film 5c is removed, and after that, as shown in FIG.
The N-type epitaxial layer 2 is formed as shown in (c). If heat treatment is performed at this time, antimony and phosphorus that have previously diffused into the substrate 1 are diffused again into the epitaxial layer 2, and the buried layers 3 and 4 permeate into the epitaxial layer 2 and rise up.

【0017】次に図2(d)に示すようにエピタキシャ
ル層2の表面に酸化膜5eを形成しその、その酸化膜5
eの所定個所に窓を設け、酸化膜5eをマスクとして、
P+分離拡散層6をN形エピタキシャル層2の表面から
P形基板1に達するまで形成する。同様にして、N+ コ
レクタウォール拡散層10をN形エピタキシャル層2の
表面からP形基板1に達するまで形成する。
Next, as shown in FIG. 2D, an oxide film 5e is formed on the surface of the epitaxial layer 2, and the oxide film 5e is formed.
A window is provided at a predetermined position of e, and the oxide film 5e is used as a mask.
The P + isolation diffusion layer 6 is formed from the surface of the N type epitaxial layer 2 to the P type substrate 1. Similarly, the N + collector wall diffusion layer 10 is formed from the surface of the N type epitaxial layer 2 to the P type substrate 1.

【0018】そして図2(e)に示すようにベース拡散
層8、エミッタ拡散層7を形成し、その後に各電極を形
成し、図1の構造の半導体を完成する。
Then, as shown in FIG. 2E, a base diffusion layer 8 and an emitter diffusion layer 7 are formed, and then respective electrodes are formed to complete the semiconductor having the structure shown in FIG.

【0019】[0019]

【発明の効果】以上説明したように、本発明はモノリシ
ックに形成した半導体素子の下側に複数の埋込層を形成
するとき、拡散係数の異なる材料により拡散を行うよう
にしたので、埋込層は拡散係数差による厚みの差がで
き、埋込層からプレーナ形半導体までの距離を任意に形
成することができる。これにより各半導体の特性を独立
に制御でき、各半導体が所望の特性を得ることができる
という効果を有する。
As described above, according to the present invention, when a plurality of embedding layers are formed below a monolithically formed semiconductor element, diffusion is performed using materials having different diffusion coefficients. The layers can have different thicknesses due to the difference in diffusion coefficient, and the distance from the buried layer to the planar semiconductor can be arbitrarily formed. This has the effect that the characteristics of each semiconductor can be controlled independently and each semiconductor can obtain the desired characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用して形成した半導体装置の構成を
示す断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a semiconductor device formed by applying the present invention.

【図2】図1の半導体装置を製造する工程を示す図であ
る。
FIG. 2 is a diagram showing a process of manufacturing the semiconductor device of FIG.

【図3】従来の半導体装置の一例を示す図である。FIG. 3 is a diagram showing an example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 基板 2 エピタキシャル層 3、4 埋込層 5 酸化膜 6 分離層 7 エミッタ 8 ベース層 9 コレクタ拡散層 10 コレクタ 15 制御用低耐圧素子 16 出力用高耐圧素子 1 Substrate 2 Epitaxial Layer 3, 4 Buried Layer 5 Oxide Film 6 Separation Layer 7 Emitter 8 Base Layer 9 Collector Diffusion Layer 10 Collector 15 Control Low Voltage Element 16 Output High Voltage Element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2種類の半導体素子を同一基
板上にモノリシックに形成し、各半導体素子の耐圧を異
なったものとする半導体装置において、 それぞれの半導体素子と基板との間に埋込層を設け、耐
圧の高い方の半導体素子に対応する埋込層の厚みを他方
よりも薄くすることを特徴とする半導体装置。
1. In a semiconductor device in which at least two kinds of semiconductor elements are monolithically formed on the same substrate and the breakdown voltage of each semiconductor element is different, an embedded layer is provided between each semiconductor element and the substrate. A semiconductor device provided, wherein a thickness of an embedded layer corresponding to a semiconductor element having a higher breakdown voltage is smaller than that of the other semiconductor element.
【請求項2】 少なくとも2種類の半導体素子を同一基
板上にモノリシックに形成し、その半導体素子の下方に
各半導体素子の耐圧を異なったものとするための埋込層
を設ける半導体装置の製造方法において、 各埋込層を拡散係数の異なる材料による拡散によって形
成することを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, wherein at least two kinds of semiconductor elements are monolithically formed on the same substrate, and an embedded layer is provided below the semiconductor elements to make the breakdown voltage of each semiconductor element different. 2. The method for manufacturing a semiconductor device according to, wherein each buried layer is formed by diffusion of materials having different diffusion coefficients.
JP4207184A 1992-07-10 1992-07-10 Semiconductor device and its manufacture Withdrawn JPH0645538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207184A JPH0645538A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207184A JPH0645538A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0645538A true JPH0645538A (en) 1994-02-18

Family

ID=16535642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207184A Withdrawn JPH0645538A (en) 1992-07-10 1992-07-10 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0645538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061009A1 (en) * 2002-01-16 2003-07-24 Sanken Electric Co., Ltd. Semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061009A1 (en) * 2002-01-16 2003-07-24 Sanken Electric Co., Ltd. Semiconductor device manufacturing method
US7074663B2 (en) 2002-01-16 2006-07-11 Sanken Electric Co., Ltd. Method of making semiconductor device including a first set of windows in a mask with larger ratio of surface area than a second set of windows

Similar Documents

Publication Publication Date Title
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
JPH07326742A (en) Semiconductor device and manufacture thereof
US5100814A (en) Semiconductor device and method of manufacturing the same
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
US4786614A (en) Method of fabricating a high voltage semiconductor device having a pair of V-shaped isolation grooves
JPH0645538A (en) Semiconductor device and its manufacture
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
US3316128A (en) Semiconductor device
JPH07176639A (en) Semiconductor integrated circuit device and fabrication thereof
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS59204252A (en) Manufacture of semiconductor integrated circuit
JPS6241422B2 (en)
JP2715479B2 (en) Method for manufacturing semiconductor device
JPH0997876A (en) Semiconductor device and its manufacture
JPS58108765A (en) Manufacture of semiconductor device
JP2830076B2 (en) Method for manufacturing semiconductor device
JPH036844A (en) Manufacture of semiconductor integrated circuit
JPS6316654A (en) Semiconductor device
JPH02105565A (en) Manufacture of semiconductor device
JPS6455853A (en) Semiconductor device and manufacture thereof
JPS61123173A (en) Solid-state image pickup device and manufacture thereof
JPH0883886A (en) Fabrication of semiconductor integrated circuit
JPH06275798A (en) Semiconductor storage device
JPS5931860B2 (en) semiconductor equipment
JPH02215152A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005