JPH0883886A - Fabrication of semiconductor integrated circuit - Google Patents

Fabrication of semiconductor integrated circuit

Info

Publication number
JPH0883886A
JPH0883886A JP21720594A JP21720594A JPH0883886A JP H0883886 A JPH0883886 A JP H0883886A JP 21720594 A JP21720594 A JP 21720594A JP 21720594 A JP21720594 A JP 21720594A JP H0883886 A JPH0883886 A JP H0883886A
Authority
JP
Japan
Prior art keywords
region
semiconductor substrate
main surface
semiconductor
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21720594A
Other languages
Japanese (ja)
Inventor
Hajime Takasaki
一 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Akita Electronics Systems Co Ltd
Original Assignee
Hitachi Ltd
Akita Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Akita Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP21720594A priority Critical patent/JPH0883886A/en
Publication of JPH0883886A publication Critical patent/JPH0883886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To enhance the reliability of a semiconductor integrated circuit device by forming a semiconductor in an element forming region on the major surface of a semiconductor substrate through extended impurity diffusion thereby suppressing fluctuation in the resistance of a resistive element. CONSTITUTION: An impurity introduction mask 5A for defining the width W1 of element forming region is formed on the major surface of a semiconductor substrate 1 through a buffer insulation layer. A resistor element R is then formed of a p<+> -type semiconductor region 6A which is formed in an element forming region on the major surface of the semiconductor substrate 1 defined by the impurity introduction mask 5A. The p<+> -type semiconductor region 6A is connected electrically, on one end side thereof, with a wiring 8A through a contact hole 7A made through the interlayer insulation film 7. A wiring 8B is formed on the other side of the p<+> -type semiconductor region 6A through a contact hole 7B made through the interlayer insulation film 7. Resistance of the p<+> -type semiconductor region 6A can be controlled freely and accurately by controlling the quantity of impurity being introduced therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路装置に
関し、特に、半導体基体の主面の素子形成領域に形成さ
れた半導体領域で構成される抵抗素子を有する半導体集
積回路装置に適用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly, it is applied to a semiconductor integrated circuit device having a resistance element formed of a semiconductor region formed in an element formation region of a main surface of a semiconductor substrate. It relates to effective technology.

【0002】[0002]

【従来の技術】半導体集積回路装置として、例えばアナ
ログ回路とデジタル回路とを有する半導体集積回路装置
が知られている。この種の半導体集積回路装置には複数
の抵抗素子が塔載される。
2. Description of the Related Art As a semiconductor integrated circuit device, for example, a semiconductor integrated circuit device having an analog circuit and a digital circuit is known. In this type of semiconductor integrated circuit device, a plurality of resistance elements are mounted.

【0003】前記抵抗素子は半導体基体の主面の素子形
成領域に形成された半導体領域で構成される。この半導
体領域で構成される抵抗素子は一般的に下記の製造方法
で形成される。
The resistance element is composed of a semiconductor region formed in the element formation region of the main surface of the semiconductor substrate. The resistance element composed of this semiconductor region is generally formed by the following manufacturing method.

【0004】まず、選択酸化技術を使用し、半導体基体
の主面の素子形成領域の周囲を規定するフィールド絶縁
膜(酸化珪素膜)を形成する。次に、前記フィールド絶縁
膜で周囲を規定された半導体基体の主面の素子形成領域
にフィールド絶縁膜に対して自己整合で不純物を導入す
る。不純物の導入は例えばイオン打込み法で行う。次
に、前記不純物に引き伸ばし拡散処理を施し、半導体基
体の主面の素子形成領域に半導体領域を形成する。半導
体領域はフィールド絶縁膜に対して自己整合で形成され
る。
First, a field insulating film (silicon oxide film) that defines the periphery of the element formation region on the main surface of the semiconductor substrate is formed by using the selective oxidation technique. Next, impurities are introduced into the element formation region of the main surface of the semiconductor substrate whose periphery is defined by the field insulating film in self-alignment with the field insulating film. The impurities are introduced by, for example, an ion implantation method. Next, the impurities are stretched and diffused to form a semiconductor region in the element formation region on the main surface of the semiconductor substrate. The semiconductor region is formed in self-alignment with the field insulating film.

【0005】このように構成される抵抗素子は、不純物
の導入量を制御することにより、高い精度で抵抗値を自
由に制御することができる。
In the resistance element thus constructed, the resistance value can be freely controlled with high accuracy by controlling the introduction amount of impurities.

【0006】[0006]

【発明が解決しようとする課題】前記半導体集積回路装
置において、抵抗素子の抵抗幅は半導体領域の領域幅で
規定される。この半導体領域の領域幅の寸法精度は、半
導体基体の主面の素子形成領域の領域幅を規定するフィ
ールド絶縁膜の寸法精度で決定される。しかしながら、
フィールド絶縁膜は加工精度の低い選択酸化技術で形成
されるため、フィールド絶縁膜に対して自己整合で形成
される半導体領域の領域幅の寸法精度は低い。このた
め、半導体領域の領域幅にバラツキが生じるので、抵抗
素子の抵抗値が変動し、半導体集積回路装置の信頼性が
低下するという問題があった。
In the semiconductor integrated circuit device, the resistance width of the resistance element is defined by the area width of the semiconductor area. The dimensional accuracy of the region width of the semiconductor region is determined by the dimensional accuracy of the field insulating film that defines the region width of the element formation region on the main surface of the semiconductor substrate. However,
Since the field insulating film is formed by the selective oxidation technique with low processing accuracy, the dimensional accuracy of the region width of the semiconductor region formed in self alignment with the field insulating film is low. For this reason, the region width of the semiconductor region varies, so that the resistance value of the resistance element fluctuates, and the reliability of the semiconductor integrated circuit device deteriorates.

【0007】本発明の目的は、半導体基体の主面の素子
形成領域に形成された半導体領域で構成される抵抗素子
を有する半導体集積回路装置において、前記抵抗素子の
抵抗値の変動を抑え、半導体集積回路装置の信頼性を高
めることが可能な技術を提供することにある。
An object of the present invention is to provide a semiconductor integrated circuit device having a resistance element formed of a semiconductor region formed in an element formation region of a main surface of a semiconductor substrate, suppressing variation in the resistance value of the resistance element, It is an object of the present invention to provide a technique capable of increasing the reliability of an integrated circuit device.

【0008】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
になるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0009】[0009]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0010】半導体基体の主面の素子形成領域に形成さ
れた半導体領域で構成される抵抗素子を有する半導体集
積回路装置の製造方法において、前記半導体基体の主面
上に均一な膜厚で形成された多結晶珪素膜を形成する工
程と、前記多結晶珪素膜に異方性エッチング技術でパタ
ーンニングを施し、前記半導体基体の主面の素子形成領
域の領域幅を規定する不純物導入用マスクを形成する工
程と、前記半導体基体の主面の素子形成領域に前記不純
物導入用マスクに対して自己整合で不純物を導入する工
程と、前記不純物に引き伸ばし拡散処理を施し、前記半
導体基体の主面の素子形成領域に半導体領域を形成する
工程とを備える。
In a method of manufacturing a semiconductor integrated circuit device having a resistance element formed of a semiconductor region formed in an element forming region of a main surface of a semiconductor substrate, a semiconductor substrate having a uniform film thickness is formed on the main surface of the semiconductor substrate. Forming a polycrystalline silicon film, and patterning the polycrystalline silicon film by an anisotropic etching technique to form an impurity introduction mask that defines the region width of the element formation region of the main surface of the semiconductor substrate. And a step of introducing an impurity into the element formation region of the main surface of the semiconductor substrate in a self-aligned manner with respect to the impurity introduction mask, and an impurity on the main surface of the semiconductor substrate subjected to a diffusion process. Forming a semiconductor region in the formation region.

【0011】[0011]

【作用】上述した手段によれば、多結晶珪素膜にパター
ンニングを施す異方性エッチング技術は選択酸化技術に
比べて加工精度が高いので、半導体基体の主面の素子形
成領域の領域幅を規定する不純物導入用マスクの寸法精
度を高めることができる。この結果、不純物導入用マス
クに対して自己整合で形成される半導体領域の領域幅の
寸法精度を高めることができるので、抵抗素子の抵抗値
の変動を抑えることができ、半導体集積回路装置の信頼
性を高めることができる。
According to the above-mentioned means, since the anisotropic etching technique for patterning a polycrystalline silicon film has higher processing accuracy than the selective oxidation technique, the area width of the element forming region on the main surface of the semiconductor substrate is reduced. The dimensional accuracy of the specified impurity introduction mask can be improved. As a result, the dimensional accuracy of the region width of the semiconductor region formed in self-alignment with the impurity introduction mask can be increased, so that fluctuations in the resistance value of the resistance element can be suppressed and the reliability of the semiconductor integrated circuit device can be reduced. You can improve your sex.

【0012】[0012]

【実施例】以下、本発明の構成について、実施例ととも
に説明する。なお、実施例を説明するための全図におい
て、同一機能を有するものは同一符号を付け、その繰り
返しの説明は省略する。
EXAMPLES The structure of the present invention will be described below with reference to examples. In all the drawings for explaining the embodiments, parts having the same function are designated by the same reference numerals, and repeated description thereof will be omitted.

【0013】(実施例1)実施例1は、半導体集積回路
装置に本発明を適用した本発明の第1実施例である。本
発明の実施例1である半導体集積回路装置の概略構成を
図1(要部平面図)、図2(図1に示すA−A切断線で切
った断面図)及び図3(図1に示すB−B切断線で切っ
た断面図)に示す。
(Embodiment 1) Embodiment 1 is a first embodiment of the present invention in which the present invention is applied to a semiconductor integrated circuit device. A schematic configuration of a semiconductor integrated circuit device that is Embodiment 1 of the present invention is shown in FIG. 1 (plan view of a main part), FIG. 2 (cross-sectional view taken along the line AA shown in FIG. 1) and FIG. (A cross-sectional view taken along the line BB).

【0014】図1、図2及び図3に示すように、半導体
集積回路装置は半導体基体1を主体に構成される。半導
体基体1は例えば単結晶珪素からなるp-型半導体基板で
形成される。
As shown in FIGS. 1, 2 and 3, the semiconductor integrated circuit device is mainly composed of a semiconductor substrate 1. The semiconductor substrate 1 is formed of, for example, a p-type semiconductor substrate made of single crystal silicon.

【0015】前記半導体基体1の主面には抵抗素子Rが
形成される。この抵抗素子Rは例えばアナログ処理を行
うA/D変換器の構成素子として使用される。抵抗素子
Rが形成される半導体基体1の主面にはn型ウエル領域
2が形成される。
A resistance element R is formed on the main surface of the semiconductor substrate 1. The resistance element R is used as a constituent element of an A / D converter that performs analog processing, for example. An n-type well region 2 is formed on the main surface of the semiconductor substrate 1 on which the resistance element R is formed.

【0016】前記抵抗素子Rは、フィールド絶縁膜3で
周囲を規定された半導体基体1の主面に形成される。フ
ィールド絶縁膜3は、周知の選択酸化法で形成された酸
化珪素膜で形成される。
The resistance element R is formed on the main surface of the semiconductor substrate 1 whose periphery is defined by the field insulating film 3. The field insulating film 3 is formed of a silicon oxide film formed by a known selective oxidation method.

【0017】前記半導体基体1(n型ウエル領域2)の主
面上には、バッファ絶縁膜4を介在して、半導体基体1
の主面の素子形成領域の領域幅W1 を規定する不純物導
入用マスク5Aが形成される。不純物導入用マスク5A
は、均一な膜厚で形成された多結晶珪素膜に異方性エッ
チング技術でパターンニングを施すことにより形成され
る。
A semiconductor substrate 1 is formed on the main surface of the semiconductor substrate 1 (n-type well region 2) with a buffer insulating film 4 interposed therebetween.
An impurity introduction mask 5A that defines the region width W 1 of the element formation region on the main surface is formed. Impurity introduction mask 5A
Is formed by patterning a polycrystalline silicon film having a uniform film thickness by an anisotropic etching technique.

【0018】前記抵抗素子Rはp+型半導体領域6Aで構
成される。p+型半導体領域6Aは、不純物導入用マスク
5Aで規定された半導体基板1(n型ウエル領域2)の主
面の素子形成領域に形成される。p+型半導体領域6A
は、半導体基体1の主面に不純物導入用マスク5Aに対
して自己整合でp型不純物を導入した後、前記p型不純
物に引き伸ばし拡散処理を施すことにより形成される。
つまり、p+型半導体領域6Aの領域幅W2 は、半導体基
体1の主面の素子形成領域の領域幅W1 を規定する不純
物導入用マスク5Aに対して自己整合で規定される。こ
のp+型半導体領域6Aの領域幅W2 は抵抗素子の抵抗幅
を規定する。
The resistance element R comprises a p + type semiconductor region 6A. The p + type semiconductor region 6A is formed in the element forming region of the main surface of the semiconductor substrate 1 (n type well region 2) defined by the impurity introduction mask 5A. p + type semiconductor region 6A
Is formed by introducing p-type impurities into the main surface of the semiconductor substrate 1 in a self-aligned manner with respect to the impurity introduction mask 5A, and then subjecting the p-type impurities to a diffusion process.
That is, the region width W 2 of the p + type semiconductor region 6A is defined by self-alignment with the impurity introduction mask 5A that defines the region width W 1 of the element forming region of the main surface of the semiconductor substrate 1. The region width W 2 of the p + type semiconductor region 6A defines the resistance width of the resistance element.

【0019】前記p+型半導体領域6Aの一端側には層間
絶縁膜7に形成された接続孔7Aを通して配線8Aが電
気的に接続される。また、p+型半導体領域6Aの他端側
には層間絶縁膜7に形成された接続孔7Bを通して配線
8Bが形成される。この接続孔7Aと接続孔7Bとの間
の距離Lは抵抗素子Rの実効的な抵抗長を規定する。
A wiring 8A is electrically connected to one end of the p + type semiconductor region 6A through a connection hole 7A formed in the interlayer insulating film 7. A wiring 8B is formed on the other end side of the p + type semiconductor region 6A through a connection hole 7B formed in the interlayer insulating film 7. The distance L between the connection hole 7A and the connection hole 7B defines the effective resistance length of the resistance element R.

【0020】このように構成される抵抗素子Rは、p+型
半導体領域6Aの不純物の導入量を制御することによ
り、高い精度で抵抗値を自由に制御することができる。
In the resistance element R thus constructed, the resistance value can be freely controlled with high accuracy by controlling the amount of impurities introduced into the p + type semiconductor region 6A.

【0021】次に、前記半導体集積回路装置の製造方法
について、図4乃至図7(製造方法を説明するための断
面図)を用いて説明する。
Next, a method of manufacturing the semiconductor integrated circuit device will be described with reference to FIGS. 4 to 7 (cross-sectional views for explaining the manufacturing method).

【0022】まず、p-型半導体基板で形成された半導体
基体1を用意する。
First, a semiconductor substrate 1 formed of a p-type semiconductor substrate is prepared.

【0023】次に、前記半導体基体1の主面にn型不純
物を選択的に導入し、n型ウエル領域2を形成する。
Next, an n-type impurity is selectively introduced into the main surface of the semiconductor substrate 1 to form an n-type well region 2.

【0024】次に、前記半導体基体1の主面の素子分離
領域上にフィールド絶縁膜3を形成する。フィールド絶
縁膜3は、周知の選択酸化法で形成された酸化珪素膜で
形成される。
Next, a field insulating film 3 is formed on the element isolation region on the main surface of the semiconductor substrate 1. The field insulating film 3 is formed of a silicon oxide film formed by a known selective oxidation method.

【0025】次に、前記フィールド絶縁膜3で周囲を規
定された半導体基体1の主面上にバッファ絶縁膜4を形
成する。バッファ絶縁膜4は例えば熱酸化珪素膜で形成
される。
Next, a buffer insulating film 4 is formed on the main surface of the semiconductor substrate 1 whose periphery is defined by the field insulating film 3. The buffer insulating film 4 is formed of, for example, a thermal silicon oxide film.

【0026】次に、図4に示すように、前記半導体基体
1の主面上に均一な膜厚で形成された多結晶珪素膜5を
形成する。多結晶珪素膜5は例えばCVD法で堆積され
る。
Next, as shown in FIG. 4, a polycrystalline silicon film 5 having a uniform film thickness is formed on the main surface of the semiconductor substrate 1. The polycrystalline silicon film 5 is deposited by the CVD method, for example.

【0027】次に、前記多結晶珪素膜5に異方性エッチ
ング技術でパターンニングを施し、図5に示すように、
半導体基体1の主面の素子形成領域の領域幅W1 を規定
する不純物導入用マスク5Aを形成する。異方性エッチ
ング技術は選択酸化技術に比べて加工精度が高いので、
半導体基体1の主面の素子形成領域の領域幅W1 を規定
する不純物導入用マスク5Aの寸法精度を高めることが
できる。
Next, the polycrystalline silicon film 5 is patterned by an anisotropic etching technique, and as shown in FIG.
An impurity introduction mask 5A that defines the region width W 1 of the element formation region on the main surface of the semiconductor substrate 1 is formed. Since the anisotropic etching technology has higher processing accuracy than the selective oxidation technology,
It is possible to improve the dimensional accuracy of the impurity introduction mask 5A that defines the region width W 1 of the element formation region on the main surface of the semiconductor substrate 1.

【0028】次に、前記不純物導入用マスク5Aで規定
された半導体基体1の主面の素子形成領域に前記不純物
導入用マスク5Aに対して自己整合でp型不純物6を導
入する。p型不純物の導入は例えばイオン打込み法で行
う。
Then, the p-type impurity 6 is introduced into the element formation region of the main surface of the semiconductor substrate 1 defined by the impurity introduction mask 5A in self-alignment with the impurity introduction mask 5A. The p-type impurity is introduced by, for example, an ion implantation method.

【0029】次に、前記p型不純物6に引き伸ばし拡散
処理を施し、前記半導体基体1の主面の素子形成領域に
p+型半導体領域6Aを形成する。このp+型半導体領域6
Aの領域幅W2 の寸法精度は、半導体基体1の主面の素
子形成領域の領域幅W1 を規定する不純物導入用マスク
5Aの寸法精度で決定される。
Next, the p-type impurity 6 is stretched and diffused to form an element formation region on the main surface of the semiconductor substrate 1.
A p + type semiconductor region 6A is formed. This p + type semiconductor region 6
The dimensional accuracy of the region width W 2 of A is determined by the dimensional accuracy of the impurity introduction mask 5A that defines the region width W 1 of the element forming region of the main surface of the semiconductor substrate 1.

【0030】次に、前記半導体基体1の主面上の全面に
層間絶縁膜7を形成する。層間絶縁膜7は例えばCVD
法で形成された酸化珪素膜で形成される。
Next, an interlayer insulating film 7 is formed on the entire main surface of the semiconductor substrate 1. The interlayer insulating film 7 is, for example, CVD.
It is formed of a silicon oxide film formed by the method.

【0031】次に、前記層間絶縁膜7に抵抗素子Rの実
効的な抵抗長を規定する接続孔7A、接続孔7Bの夫々
を形成する。
Next, a connection hole 7A and a connection hole 7B that define the effective resistance length of the resistance element R are formed in the interlayer insulating film 7.

【0032】次に、前記層間絶縁膜7の主面上の全面に
配線材を形成する。配線材は例えばアルミニウム膜又は
アルミニウム合金膜で形成される。
Next, a wiring material is formed on the entire main surface of the interlayer insulating film 7. The wiring material is formed of, for example, an aluminum film or an aluminum alloy film.

【0033】次に、前記配線材にパターンニングを施
し、p+型半導体領域6Aの一端側に接続孔7Aを通して
接続された配線8A、p+型半導体領域6Aの一端側に接
続孔7Bを通して接続された配線8Bの夫々を形成する
ことにより、図1、図2及び図3に示すように、半導体
基体1の主面の素子形成領域に形成されたp+型半導体領
域6Aで構成される抵抗素子Rが完成する。
Next, the wiring material is patterned, and the wiring 8A is connected to one end side of the p + type semiconductor region 6A through the connection hole 7A, and is connected to one end side of the p + type semiconductor region 6A through the connection hole 7B. By forming each of the wirings 8B, as shown in FIGS. 1, 2 and 3, the resistance element R formed of the p + type semiconductor region 6A formed in the element formation region of the main surface of the semiconductor substrate 1 is formed. Complete.

【0034】このように、半導体基体1の主面の素子形
成領域に形成された半導体領域6Aで構成される抵抗素
子Rを有する半導体集積回路装置の製造方法において、
前記半導体基体1の主面上に均一な膜厚で形成された多
結晶珪素膜5を形成する工程と、前記多結晶珪素膜5に
異方性エッチング技術でパターンニングを施し、半導体
基体1の主面の素子形成領域の領域幅W1 を規定する不
純物導入用マスク5Aを形成する工程と、前記半導体基
体1の主面の素子形成領域に前記不純物導入用マスク5
Aに対して自己整合でp型不純物6を導入する工程と、
前記p型不純物に引き伸ばし拡散処理を施し、前記半導
体基体1の主面の素子形成領域にp+型半導体領域6Aを
形成する工程とを備える。これにより、多結晶珪素膜5
にパターンニングを施す異方性エッチング技術は選択酸
化技術に比べて加工精度が高いので、半導体基体1の主
面の素子形成領域の領域幅W1 を規定する不純物導入用
マスク5Aの寸法精度を高めることができる。この結
果、不純物導入用マスク5Aに対して自己整合で形成さ
れる半導体領域6Aの領域幅の寸法精度を高めることが
できるので、抵抗素子Rの抵抗値の変動を抑えることが
でき、半導体集積回路装置の信頼性を高めることができ
る。
As described above, in the method of manufacturing a semiconductor integrated circuit device having the resistance element R formed of the semiconductor region 6A formed in the element formation region of the main surface of the semiconductor substrate 1,
A step of forming a polycrystalline silicon film 5 having a uniform film thickness on the main surface of the semiconductor substrate 1; and a step of patterning the polycrystalline silicon film 5 by an anisotropic etching technique. A step of forming an impurity introduction mask 5A that defines the region width W 1 of the element formation region of the main surface, and the impurity introduction mask 5 in the element formation region of the main surface of the semiconductor substrate 1.
A step of introducing the p-type impurity 6 in self-alignment with A,
And p-type semiconductor regions 6A are formed in the element formation region of the main surface of the semiconductor substrate 1 by subjecting the p-type impurities to a diffusion process. As a result, the polycrystalline silicon film 5
Since the anisotropic etching technique for patterning the substrate has a higher processing accuracy than the selective oxidation technique, the dimensional accuracy of the impurity introduction mask 5A that defines the region width W 1 of the element forming region of the main surface of the semiconductor substrate 1 can be improved. Can be increased. As a result, the dimensional accuracy of the region width of the semiconductor region 6A formed in self-alignment with the impurity introduction mask 5A can be increased, so that the resistance value of the resistance element R can be suppressed from varying, and the semiconductor integrated circuit can be suppressed. The reliability of the device can be increased.

【0035】また、不純物導入用マスク5Aは均一な膜
厚で形成されるので、この不純物導入用マスク5Aに対
して自己整合で導入されるp型不純物6の導入深さを一
定にすることができ、p+型半導体領域6Aの領域幅W2
の寸法精度を高めることができる。この結果、抵抗素子
Rの抵抗値の変動を抑えることができ、半導体集積回路
装置の信頼性を高めることができる。
Further, since the impurity introduction mask 5A is formed with a uniform film thickness, the introduction depth of the p-type impurity 6 introduced in self-alignment with the impurity introduction mask 5A can be made constant. The width of the p + type semiconductor region 6A W 2
The dimensional accuracy of can be improved. As a result, fluctuations in the resistance value of the resistance element R can be suppressed, and the reliability of the semiconductor integrated circuit device can be improved.

【0036】(実施例2)実施例2は、半導体集積回路
装置に本発明を適用した本発明の第2実施例である。本
発明の実施例2である半導体集積回路装置の概略構成を
図8(要部平面図)、図9(図8に示すC−C切断線で切
った断面図)に示す。
(Embodiment 2) Embodiment 2 is a second embodiment of the present invention in which the present invention is applied to a semiconductor integrated circuit device. A schematic configuration of a semiconductor integrated circuit device that is Embodiment 2 of the present invention is shown in FIG. 8 (plan view of relevant parts) and FIG.

【0037】図8及び図9に示すように、半導体集積回
路装置は例えば単結晶珪素からなp-型半導体基板で形成
された半導体基体1を主体に構成される。
As shown in FIGS. 8 and 9, the semiconductor integrated circuit device mainly comprises a semiconductor substrate 1 formed of a p-type semiconductor substrate made of, for example, single crystal silicon.

【0038】前記半導体基体1の主面にはpチャネルM
ISFET(etal nsulator emiconductor iel
d ffect tansistor)Qp及び抵抗素子R1、抵抗素
子R2、抵抗素子R3が形成される。これらの素子が形
成される半導体基体1の主面にはn型ウエル領域2が形
成される。
A p channel M is formed on the main surface of the semiconductor substrate 1.
ISFET (M etal I nsulator S emiconductor F iel
d E ffect T tansistor) Qp and the resistor R1, the resistor element R2, the resistance element R3 is formed. An n-type well region 2 is formed on the main surface of a semiconductor substrate 1 on which these elements are formed.

【0039】前記pチャネルMISFETQp及び抵抗
素子R1、R2、R3は、フィールド絶縁膜で周囲を規
定された半導体基体1の主面に形成される。フィールド
絶縁膜3は、周知の選択酸化法で形成された酸化珪素膜
で形成される。
The p-channel MISFET Qp and the resistance elements R1, R2, R3 are formed on the main surface of the semiconductor substrate 1 whose periphery is defined by the field insulating film. The field insulating film 3 is formed of a silicon oxide film formed by a known selective oxidation method.

【0040】前記pチャネルMISFETQpは、フィ
ールド絶縁膜3で周囲を規定された領域内において、n
型ウエル領域2の主面に形成される。つまり、pチャネ
ルMISFETQpは、主に、n型ウエル領域(チャネ
ル形成領域)2、ゲート絶縁膜4、ゲート電極5B、ソ
ース領域及びドレイン領域である一対のp+型半導体領域
6Bで構成される。ソース領域及びドレイン領域である
一対のp+型半導体領域6Bの夫々には層間絶縁膜7に形
成された接続孔7Cを通して配線8Cの夫々が電気的に
接続される。
The p-channel MISFET Qp has an n-type structure in the region defined by the field insulating film 3.
It is formed on the main surface of the mold well region 2. That is, the p-channel MISFET Qp is mainly composed of the n-type well region (channel forming region) 2, the gate insulating film 4, the gate electrode 5B, and the pair of p + -type semiconductor regions 6B which are the source region and the drain region. The wirings 8C are electrically connected to the pair of p + type semiconductor regions 6B, which are the source region and the drain region, respectively, through the connection holes 7C formed in the interlayer insulating film 7.

【0041】前記抵抗素子R1はp+型半導体領域6A1
で構成される。このp+型半導体領域6A1 は不純物導入
用マスク5Aで規定された半導体基体1の主面の素子形
成領域に形成される。抵抗素子R2はp+型半導体領域6
2 で構成される。このp+型半導体領域6A2 は不純物
導入用マスク5Aで規定された半導体基体1の主面の素
子形成領域に形成される。抵抗素子R3はp+型半導体領
域6A3 で構成される。このp+型半導体領域6A3 は不
純物導入用マスク5Aで規定された半導体基体1の主面
の素子形成領域に形成される。これらのp+型半導体領域
6A1 、p+型半導体領域6A2 、p+型半導体領域6A3
の夫々は、前述の実施例1に示した半導体集積回路装置
の製造方法で形成される。つまり、p+型半導体領域6A
1 、p+型半導体領域6A2 、p+型半導体領域6A3 の夫
々の領域幅W2 の寸法精度は、半導体基体1の主面の素
子形成領域の領域幅W1 を規定する不純物導入用マスク
5Aの寸法精度で決定される。
The resistance element R1 is a p + type semiconductor region 6A 1
Composed of. The p + type semiconductor region 6A 1 is formed in the element forming region of the main surface of the semiconductor substrate 1 defined by the impurity introduction mask 5A. The resistance element R2 is a p + type semiconductor region 6
It is composed of A 2 . The p + type semiconductor region 6A 2 is formed in the element forming region of the main surface of the semiconductor substrate 1 defined by the impurity introduction mask 5A. The resistance element R3 is composed of the p + type semiconductor region 6A 3 . The p + type semiconductor region 6A 3 is formed in the element forming region of the main surface of the semiconductor substrate 1 defined by the impurity introduction mask 5A. These p + type semiconductor regions 6A 1 , p + type semiconductor regions 6A 2 and p + type semiconductor regions 6A 3
Are formed by the method for manufacturing the semiconductor integrated circuit device shown in the first embodiment. That is, the p + type semiconductor region 6A
The dimensional accuracy of the region width W 2 of each of the p 1 , p + type semiconductor region 6A 2 and the p + type semiconductor region 6A 3 is determined by the impurity introduction mask 5A which defines the region width W 1 of the element forming region of the main surface of the semiconductor substrate 1. It is determined by the dimensional accuracy of.

【0042】前記p+型半導体領域6A1 は不純物導入用
マスク5Aでp+型半導体領域6A2と分離される。p+型
半導体領域6A2 は不純物導入用マスク5Aでp+型半導
体領域6A3 と分離される。p+型半導体領域6A3 は不
純物導入用マスク5AでpチャネルMISFETQpの
一方のp+型半導体領域6Bと分離される。つまり、不純
物導入用マスク5Aは、半導体基体1の主面の素子形成
領域の領域幅W2 を規定すると共に、この半導体基体1
の主面の素子形成領域に形成されたp+型半導体領域6A
間を分離する。
The p + type semiconductor region 6A 1 is separated from the p + type semiconductor region 6A 2 by the impurity introduction mask 5A. The p + type semiconductor region 6A 2 is separated from the p + type semiconductor region 6A 3 by the impurity introduction mask 5A. The p + type semiconductor region 6A 3 is separated from one p + type semiconductor region 6B of the p channel MISFET Qp by the impurity introduction mask 5A. That is, the impurity introduction mask 5A defines the region width W 2 of the element forming region on the main surface of the semiconductor substrate 1, and at the same time, the semiconductor substrate 1 is formed.
P + type semiconductor region 6A formed in the element forming region of the main surface of
Separate the spaces.

【0043】前記不純物導入用マスク5Aは、その直下
のn型ウエル領域2にMISFETで言うチャネルが形
成されないように電源電位に固定される。本実施例の抵
抗素子R1、R2、R3の夫々は、p+型半導体領域で構
成されているので、不純物導入用マスク5Aは動作電位
(Vcc)に固定される。
The impurity introducing mask 5A is fixed to the power supply potential so that the channel called MISFET is not formed in the n-type well region 2 immediately below. Since each of the resistance elements R1, R2, and R3 of this embodiment is composed of a p + type semiconductor region, the impurity introduction mask 5A is set to the operating potential.
It is fixed at (Vcc).

【0044】このように、p+型半導体領域6A1 、p+型
半導体領域6A2 、p+型半導体領域6A3 の夫々を前述
の実施例1に示す製造方法で形成することにより、p+型
半導体領域6A1 、p+型半導体領域6A2 、p+型半導体
領域6A3 の夫々の領域幅W2 の寸法精度を高めること
ができるので、抵抗素子R1、抵抗素子R2、抵抗素子
R3の夫々の抵抗値の変動を抑えることができ、半導体
集積回路装置の信頼性を高めることができる。
As described above, the p + type semiconductor region 6A 1 , the p + type semiconductor region 6A 2 and the p + type semiconductor region 6A 3 are formed by the manufacturing method shown in the first embodiment, and thus the p + type semiconductor region 6A is formed. Since the dimensional accuracy of the region width W 2 of each of the p + type semiconductor region 6A 2 and the p + type semiconductor region 6A 3 can be improved, the fluctuation of the resistance value of each of the resistance element R1, the resistance element R2, and the resistance element R3 can be improved. Can be suppressed, and the reliability of the semiconductor integrated circuit device can be improved.

【0045】また、p+型半導体領域6A1 、p+型半導体
領域6A2 、p+型半導体領域6A3、p+型半導体領域6
Bの夫々を不純物導入用マスク6Aで分離することによ
り、フィールド絶縁膜3で分離する場合に比べて分離領
域の占有面積を縮小することができるので、半導体集積
回路装置の集積度を高めることができる。
The p + type semiconductor region 6A 1 , the p + type semiconductor region 6A 2 , the p + type semiconductor region 6A 3 and the p + type semiconductor region 6 are also included.
By separating each of B by the impurity introduction mask 6A, the occupied area of the separation region can be reduced as compared with the case of separating by the field insulating film 3, so that the integration degree of the semiconductor integrated circuit device can be improved. it can.

【0046】(実施例3)実施例3は、半導体集積回路
装置に本発明を適用した本発明の第2実施例である。本
発明の実施例3である半導体集積回路装置の概略構成を
図10(要部平面図)に示す。
(Embodiment 3) Embodiment 3 is a second embodiment of the present invention in which the present invention is applied to a semiconductor integrated circuit device. A schematic configuration of a semiconductor integrated circuit device which is Embodiment 3 of the present invention is shown in FIG. 10 (plan view of relevant parts).

【0047】図10に示すように、半導体集積回路装置
は例えば単結晶珪素からなるp-型半導体基板で形成され
た半導体基体1を主体に構成される。この半導体基体1
の主面上には複数の抵抗素子Rが形成される。
As shown in FIG. 10, the semiconductor integrated circuit device is mainly composed of a semiconductor substrate 1 formed of a p-type semiconductor substrate made of, for example, single crystal silicon. This semiconductor substrate 1
A plurality of resistance elements R are formed on the main surface of.

【0048】前記複数の抵抗素子Rの夫々は、フィール
ド絶縁膜3で周囲を規定された半導体基体1の主面に形
成される。このフィールド絶縁膜3で周囲を規定された
半導体基体1の主面上にはマトリックス状に形成された
不純物導入用マスク5Aが形成される。
Each of the plurality of resistance elements R is formed on the main surface of the semiconductor substrate 1 whose periphery is defined by the field insulating film 3. An impurity introduction mask 5A formed in a matrix is formed on the main surface of the semiconductor substrate 1 whose periphery is defined by the field insulating film 3.

【0049】前記複数の抵抗素子Rの夫々はp+型半導体
領域6Aで構成される。このp+型半導体領域6Aの夫々
は、マトリックス状の不純物導入用マスク5Aで規定さ
れた半導体基体1の主面の素子形成領域に形成される。
これらのp+型半導体領域6Aの夫々は前述の実施例1に
示した半導体集積回路装置の製造方法で形成される。つ
まり、p+型半導体領域6Aの夫々の領域幅W2 の寸法精
度は、半導体基体1の主面の素子形成領域の領域幅W1
を規定するマトリックス状の不純物導入用マスク5Aの
寸法精度で決定される。
Each of the plurality of resistance elements R is composed of a p + type semiconductor region 6A. Each of the p + type semiconductor regions 6A is formed in the element formation region of the main surface of the semiconductor substrate 1 defined by the matrix-shaped impurity introduction mask 5A.
Each of these p + type semiconductor regions 6A is formed by the method of manufacturing the semiconductor integrated circuit device described in the first embodiment. In other words, the dimensional accuracy of the region width W 2 of each of the p + type semiconductor regions 6A depends on the region width W 1 of the element forming region on the main surface of the semiconductor substrate 1.
Is determined by the dimensional accuracy of the matrix-shaped impurity introduction mask 5A that defines

【0050】このように、p+型半導体領域6Aの夫々を
前述の実施例1に示す製造方法で形成することにより、
p+型半導体領域6Aの夫々の領域幅W2 の寸法精度を高
めることができるので、複数の抵抗素子の夫々の抵抗値
の変動を抑えることができ、半導体集積回路装置の信頼
性を高めることができる。
As described above, by forming each of the p + type semiconductor regions 6A by the manufacturing method shown in the first embodiment,
Since the dimensional accuracy of the region width W 2 of each of the p + type semiconductor regions 6A can be increased, it is possible to suppress the variation in the resistance value of each of the plurality of resistance elements, and to improve the reliability of the semiconductor integrated circuit device. it can.

【0051】また、p+型半導体領域6Aの夫々をマトリ
ックス状の不純物導入用マスク6Aで分離することによ
り、フィールド絶縁膜3で分離する場合に比べて分離領
域の占有面積を縮小することができるので、半導体集積
回路装置の集積度を高めることができる。
Further, by separating each of the p + type semiconductor regions 6A by the matrix-like impurity introducing mask 6A, the occupied area of the separation region can be reduced as compared with the case of separating by the field insulating film 3. The integration degree of the semiconductor integrated circuit device can be increased.

【0052】(実施例4)実施例4は、半導体集積回路
装置に本発明を適用した本発明の第4実施例である。本
発明の実施例4である半導体集積回路装置の概略構成を
図11(要部平面図)、図12(図11に示すD−D切断線
で切った断面図)及び図13(図11に示すE−E切断
線で切った断面図)に示す。
(Embodiment 4) Embodiment 4 is a fourth embodiment of the present invention in which the present invention is applied to a semiconductor integrated circuit device. A schematic configuration of a semiconductor integrated circuit device according to a fourth embodiment of the present invention is shown in FIG. 11 (plan view of relevant parts), FIG. 12 (cross-sectional view taken along the line D-D shown in FIG. 11) and FIG. (A cross-sectional view taken along the line E-E).

【0053】図11、図12及び図13に示すように、
半導体集積回路装置は例えば単結晶珪素からなるp-型半
導体基板で形成された半導体基体1を主体に構成され
る。この半導体基体1の主面には抵抗素子Rが形成され
る。抵抗素子Rが形成される半導体基体1の主面にはn
型ウエル領域2が形成される。
As shown in FIGS. 11, 12 and 13,
The semiconductor integrated circuit device is mainly composed of a semiconductor substrate 1 formed of a p-type semiconductor substrate made of, for example, single crystal silicon. A resistance element R is formed on the main surface of the semiconductor substrate 1. On the main surface of the semiconductor substrate 1 on which the resistance element R is formed, n
The mold well region 2 is formed.

【0054】前記抵抗素子Rは、フィールド絶縁膜3で
周囲を規定された半導体基体1の主面に形成される。フ
ィールド絶縁膜3は、周知の選択酸化法で形成された酸
化珪素膜で形成される。
The resistance element R is formed on the main surface of the semiconductor substrate 1 whose periphery is defined by the field insulating film 3. The field insulating film 3 is formed of a silicon oxide film formed by a known selective oxidation method.

【0055】前記フィールド絶縁膜3で周囲を規定され
た半導体基体1(n型ウエル領域2)の主面上にはバッフ
ァ絶縁膜4が形成される。このバッファ絶縁膜4は、例
えば熱酸化珪素膜で形成され、例えば15〜25〔n
m〕程度の膜厚で形成される。
A buffer insulating film 4 is formed on the main surface of the semiconductor substrate 1 (n-type well region 2) whose periphery is defined by the field insulating film 3. The buffer insulating film 4 is formed of, for example, a thermal silicon oxide film and has a thickness of, for example, 15 to 25 [n.
The film thickness is about m].

【0056】前記バッファ絶縁膜4の主面上には半導体
基体1の主面の素子形成領域の領域幅W1 を規定する不
純物導入用マスク5Aが形成される。また、バッファ絶
縁膜4の主面上には、不純物導入マスクとして使用さ
れ、かつ引き出し配線として使用されるマスク5C1
マスク5C2 の夫々が形成される。この不純物導入用マ
スク5A、マスク5B1 、マスク5B2 の夫々は、均一
な膜厚で形成され、かつ抵抗値を低減する不純物が導入
された多結晶珪素膜に異方性エッチング技術でパターン
ニングを施すことにより形成される。つまり、不純物導
入用マスク5A、マスク5B1 、マスク5B2 の夫々は
同一工程で形成される。
On the main surface of the buffer insulating film 4, an impurity introduction mask 5A for defining the area width W 1 of the element forming area of the main surface of the semiconductor substrate 1 is formed. Further, on the main surface of the buffer insulating film 4, a mask 5C 1 used as an impurity introduction mask and as an extraction wiring,
Each of the masks 5C 2 is formed. Each of the impurity introduction mask 5A, the mask 5B 1 and the mask 5B 2 has a uniform film thickness and is patterned by an anisotropic etching technique on a polycrystalline silicon film into which an impurity for reducing a resistance value is introduced. It is formed by applying. That is, the impurity introduction mask 5A, the mask 5B 1 , and the mask 5B 2 are formed in the same process.

【0057】前記抵抗素子Rはp+型半導体領域6A、p+
型半導体領域9A、p+型半導体領域9Bの夫々で構成さ
れる。
The resistance element R is a p + type semiconductor region 6A, p +
Each of the type semiconductor regions 9A and the p + type semiconductor regions 9B is formed.

【0058】前記p+型半導体領域6Aは、不純物導入用
マスク5Aで規定された半導体基板1(n型ウエル領域
2)の主面の素子形成領域に形成される。p+型半導体領
域6Aは、前述の実施例1に示した半導体集積回路装置
の製造方法で形成される。つまり、p+型半導体領域6A
の領域幅W2 の寸法精度は、半導体基体1の主面の素子
形成領域の領域幅W1 を規定する不純物導入用マスク5
Aの寸法精度で決定される。
The p + type semiconductor region 6A is formed in the element forming region of the main surface of the semiconductor substrate 1 (n type well region 2) defined by the impurity introducing mask 5A. The p + type semiconductor region 6A is formed by the method for manufacturing the semiconductor integrated circuit device described in the first embodiment. That is, the p + type semiconductor region 6A
The dimensional accuracy of the region width W 2 of the impurity introduction mask 5 that defines the region width W 1 of the element formation region of the main surface of the semiconductor substrate 1
It is determined by the dimensional accuracy of A.

【0059】前記p+型半導体領域9A、p+型半導体領域
9Bの夫々は、不純物導入用マスク5Aで規定された半
導体基体1の主面の素子形成領域に形成される。p+型半
導体領域9Aにはバッファ絶縁膜4に形成された接続孔
4Aを通してマスク5C1 の一端側が電気的に接続さ
れ、p+型半導体領域9Bにはバッファ絶縁膜4に形成さ
れた接続孔4Bを通してマスク5C2 の一端側が電気的
に接続される。
Each of the p + type semiconductor region 9A and the p + type semiconductor region 9B is formed in the element forming region of the main surface of the semiconductor substrate 1 defined by the impurity introduction mask 5A. One end of the mask 5C 1 is electrically connected to the p + type semiconductor region 9A through the connection hole 4A formed in the buffer insulating film 4, and the p + type semiconductor region 9B is connected through the connection hole 4B formed in the buffer insulating film 4. One end of the mask 5C 2 is electrically connected.

【0060】前記p+型半導体領域9Aは、マスク5C1
に導入されたp型不純物を半導体基体1の主面の素子形
成領域に拡散することにより形成され、p+型半導体領域
6Aの一端側に電気的に接続される。p+型半導体領域9
Bは、マスク5C2 に導入されたp型不純物を半導体基
体1の主面の素子形成領域に拡散することにより形成さ
れ、p+型半導体領域6Aの他端側に電気的に接続され
る。このマスク5C1 、マスク5C2 の夫々に導入され
たp型不純物の拡散は、不純物導入用マスク5Aに対し
て自己整合で導入されたp型不純物に引き伸ばし拡散処
理を施す工程(p+型半導体領域6Aの形成工程)と同
一工程で行なわれる。
The p + type semiconductor region 9A has a mask 5C 1
Is formed by diffusing the p-type impurity introduced into the element forming region of the main surface of the semiconductor substrate 1, and is electrically connected to one end side of the p + type semiconductor region 6A. p + type semiconductor region 9
B is formed by diffusing the p-type impurities introduced into the mask 5C 2 into the element formation region of the main surface of the semiconductor substrate 1, and is electrically connected to the other end side of the p + -type semiconductor region 6A. The diffusion of the p-type impurities introduced into each of the mask 5C 1 and the mask 5C 2 is performed by a process of extending and diffusing the p-type impurities introduced by self-alignment with the impurity introduction mask 5A (p + type semiconductor region). 6A forming step).

【0061】前記マスク5C の他端側は半導体基体
1の主面の素子形成領域からフィールド絶縁膜3上に引
き出されている。このマスク5C1 の他端側には層間絶
縁膜7に形成された接続孔7Aを通して配線8Aが電気
的に接続される。つまり、p+型半導体領域6Aの一端側
は、p+型半導体領域9A、マスク5C1 の夫々を介して
配線8Aに電気的に接続される。層間絶縁膜7は、例え
ばCVD法で形成された酸化珪素膜で形成され、例えば
1〔μm〕程度の膜厚で形成される。
The other end of the mask 5C 1 is drawn out from the element forming region of the main surface of the semiconductor substrate 1 onto the field insulating film 3. A wiring 8A is electrically connected to the other end of the mask 5C 1 through a connection hole 7A formed in the interlayer insulating film 7. That is, one end side of the p + type semiconductor region 6A is electrically connected to the wiring 8A via the p + type semiconductor region 9A and the mask 5C 1 . The interlayer insulating film 7 is formed of, for example, a silicon oxide film formed by a CVD method and has a film thickness of, for example, about 1 [μm].

【0062】前記マスク5C2 の他端側は半導体基体1
の主面の素子形成領域からフィールド絶縁膜3上に引き
出されている。このマスク5C2 の他端側には層間絶縁
膜7に形成された接続孔7Aを通して配線8Bが電気的
に接続される。つまり、p+型半導体領域6Aの他端側
は、p+型半導体領域9B、マスク5C2 の夫々を介して
配線8Bに電気的に接続される。
The other end of the mask 5C 2 is the semiconductor substrate 1
Of the main surface of the element formation region on the field insulating film 3. A wiring 8B is electrically connected to the other end of the mask 5C 2 through a connection hole 7A formed in the interlayer insulating film 7. That is, the other end of the p + type semiconductor region 6A is electrically connected to the wiring 8B via the p + type semiconductor region 9B and the mask 5C 2 .

【0063】抵抗素子Rの実効的な抵抗長は接続孔4A
と接続孔4Bとの間の距離Lで規定される。接続孔4
A、接続孔4Bの夫々は、バッファ絶縁膜4に異方性エ
ッチング技術でパターンニングを施すことにより形成さ
れる。このパターンニング工程において、接続孔4A、
接続孔4Bは若干サイドエッチングされる。サイドエッ
チング量は接続孔を形成する絶縁膜の膜厚に比例してそ
の割合が大きくなる。しかしながら、本実施例の接続孔
4A、接続孔4Bの夫々は、層間絶縁膜7に比べて膜厚
の薄いバッファ絶縁膜4に形成されているので、パター
ンニング時におけるサイドエッチ量はわずかである。つ
まり、抵抗素子Rの実効的な抵抗長を規定する接続孔4
Aと接続孔4Bとの間の距離Lの寸法精度を高めること
ができる。
The effective resistance length of the resistance element R is the connection hole 4A.
Is defined by the distance L between the contact hole and the connection hole 4B. Connection hole 4
Each of A and the connection hole 4B is formed by patterning the buffer insulating film 4 by an anisotropic etching technique. In this patterning process, the connection holes 4A,
The connection hole 4B is slightly side-etched. The side etching amount increases in proportion to the film thickness of the insulating film forming the connection hole. However, since the connection hole 4A and the connection hole 4B of this embodiment are each formed in the buffer insulating film 4 having a smaller film thickness than the interlayer insulating film 7, the side etching amount during patterning is small. . That is, the connection hole 4 that defines the effective resistance length of the resistance element R
The dimensional accuracy of the distance L between A and the connection hole 4B can be increased.

【0064】このように、p+型半導体領域6Aを前述の
実施例1に示す半導体集積回路装置の製造方法で形成す
ることにより、p+型半導体領域6Aの領域幅W2 の寸法
精度を高めることができるので、抵抗素子Rの抵抗値の
変動を抑えることができ、半導体集積回路装置の信頼性
を高めることができる。
As described above, by forming the p + type semiconductor region 6A by the method for manufacturing the semiconductor integrated circuit device shown in the first embodiment, the dimensional accuracy of the region width W 2 of the p + type semiconductor region 6A can be improved. Therefore, fluctuations in the resistance value of the resistance element R can be suppressed, and the reliability of the semiconductor integrated circuit device can be improved.

【0065】また、抵抗素子の実質的な抵抗長を規定す
る接続孔4A、接続孔4Bの夫々をバッファ絶縁膜4に
形成することにより、接続孔4Aと接続孔4Bとの間の
距離Lの寸法精度を高めることができるので、抵抗素子
Rの抵抗値の変動を抑えることができ、半導体集積回路
装置の信頼性を高めることができる。
Further, by forming each of the connection hole 4A and the connection hole 4B which define the substantial resistance length of the resistance element in the buffer insulating film 4, the distance L between the connection hole 4A and the connection hole 4B can be reduced. Since the dimensional accuracy can be improved, fluctuations in the resistance value of the resistance element R can be suppressed, and the reliability of the semiconductor integrated circuit device can be improved.

【0066】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論であ
る。
As described above, the invention made by the present inventor is
Although the present invention has been specifically described based on the above-mentioned embodiments, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention.

【0067】例えば、本発明は、半導体基板の主面上に
エピキシャル成長法でエピタキシャル層を積層した半導
体基体で構成される半導体集積回路装置に適用できる。
For example, the present invention can be applied to a semiconductor integrated circuit device composed of a semiconductor substrate in which an epitaxial layer is laminated on the main surface of a semiconductor substrate by an epitaxial growth method.

【0068】また、本発明は、単結晶珪素からなる半導
体基板の主面上に絶縁膜を介在して単結晶珪素からなる
半導体基板を積層した所謂SOI(ilicon n nsu
lator)構造の半導体基体で構成される半導体集積回路装
置に適用できる。
[0068] Further, the present invention includes a semiconductor substrate main surface on an insulating film interposed in a so-called SOI formed by laminating semiconductor substrate of monocrystalline silicon (S ilicon O n I nsu consisting of a single crystal silicon
The present invention can be applied to a semiconductor integrated circuit device including a semiconductor substrate having a (lator) structure.

【0069】[0069]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0070】半導体基体の主面の素子形成領域に形成さ
れた半導体領域で構成される抵抗素子を有する半導体集
積回路装置において、前記抵抗素子の抵抗値の変動を抑
え、半導体集積回路装置の信頼性を高める。
In a semiconductor integrated circuit device having a resistance element formed of a semiconductor region formed in the element formation region of the main surface of a semiconductor substrate, fluctuations in the resistance value of the resistance element are suppressed, and the reliability of the semiconductor integrated circuit device is improved. Increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1である半導体集積回路装置の
要部平面図。
FIG. 1 is a plan view of a main part of a semiconductor integrated circuit device that is Embodiment 1 of the present invention.

【図2】図1に示すA−A切断線で切った断面図。FIG. 2 is a cross-sectional view taken along the line AA shown in FIG.

【図3】図1に示すB−B切断線で切った断面図。3 is a cross-sectional view taken along the line BB of FIG.

【図4】前記半導体集積回路装置の製造方法を説明する
ための断面図。
FIG. 4 is a sectional view for explaining the method for manufacturing the semiconductor integrated circuit device.

【図5】前記半導体集積回路装置の製造方法を説明する
ための断面図。
FIG. 5 is a sectional view for explaining the method for manufacturing the semiconductor integrated circuit device.

【図6】前記半導体集積回路装置の製造方法を説明する
ための断面図。
FIG. 6 is a sectional view for explaining the method for manufacturing the semiconductor integrated circuit device.

【図7】前記半導体集積回路装置の製造方法を説明する
ための断面図。
FIG. 7 is a sectional view for explaining the method for manufacturing the semiconductor integrated circuit device.

【図8】本発明の実施例2である半導体集積回路装置の
要部平面図。
FIG. 8 is a plan view of a main portion of a semiconductor integrated circuit device that is Embodiment 2 of the present invention.

【図9】図8に示すC−C切断線で切った断面図。9 is a cross-sectional view taken along the line CC of FIG.

【図10】本発明の実施例3である半導体集積回路装置
の要部平面図。
FIG. 10 is a plan view of a principal portion of a semiconductor integrated circuit device that is Embodiment 3 of the present invention.

【図11】本発明の実施例4である半導体集積回路装置
の要部平面図。
FIG. 11 is a plan view of essential parts of a semiconductor integrated circuit device which is Embodiment 4 of the present invention.

【図12】図11に示すD−D切断線で切った断面図。12 is a cross-sectional view taken along the line D-D shown in FIG.

【図13】図11に示すE−E切断線で切った断面図。13 is a cross-sectional view taken along the line EE shown in FIG.

【符号の説明】[Explanation of symbols]

1…半導体基体、2…n型ウエル領域、3…フィールド
絶縁膜、4…バッファ絶縁膜(ゲート絶縁膜)、4A,4
B…接続孔、5…多結晶珪素膜、5A…不純物導入用マ
スク、5B…ゲート電極、5C1 ,5C2 …マスク、6
…p型不純物、6A,6B…p+型半導体領域、7…層間
絶縁膜、7A,7B,7C…接続孔、8A,8B,8C
…配線、9A,9B…p+型半導体領域、R…抵抗素子、
Qp…pチャネルMISFET。
1 ... Semiconductor substrate, 2 ... N-type well region, 3 ... Field insulating film, 4 ... Buffer insulating film (gate insulating film), 4A, 4
B ... connection hole, 5 ... polycrystalline silicon film, 5A ... impurity introducing mask, 5B ... gate electrode, 5C 1, 5C 2 ... mask, 6
... p-type impurities, 6A, 6B ... p + type semiconductor region, 7 ... interlayer insulating film, 7A, 7B, 7C ... connection holes, 8A, 8B, 8C
... Wiring, 9A, 9B ... P + type semiconductor region, R ... Resistance element,
Qp ... p channel MISFET.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 H01L 21/265 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 21/265 H01L 21/265 S

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基体の主面の素子形成領域に形成
された半導体領域で構成される抵抗素子を有する半導体
集積回路装置の製造方法において、前記半導体基体の主
面上に均一な膜厚で形成された多結晶珪素膜を形成する
工程と、前記多結晶珪素膜に異方性エッチング技術でパ
ターンニングを施し、前記半導体基体の主面の素子形成
領域の領域幅を規定する不純物導入用マスクを形成する
工程と、前記半導体基体の主面の素子形成領域に前記不
純物導入用マスクに対して自己整合で不純物を導入する
工程と、前記不純物に引き伸ばし拡散処理を施し、前記
半導体基体の主面の素子形成領域に半導体領域を形成す
る工程とを備えたことを特徴とする半導体集積回路装置
の製造方法。
1. A method of manufacturing a semiconductor integrated circuit device having a resistance element formed of a semiconductor region formed in an element forming region of a main surface of a semiconductor substrate, wherein a uniform film thickness is provided on the main surface of the semiconductor substrate. A step of forming the formed polycrystalline silicon film, and a mask for introducing impurities for patterning the polycrystalline silicon film by an anisotropic etching technique to define a region width of an element formation region of the main surface of the semiconductor substrate. And a step of introducing impurities into the element formation region of the main surface of the semiconductor substrate in a self-aligned manner with respect to the impurity introduction mask; And a step of forming a semiconductor region in the element forming region.
【請求項2】 前記半導体領域は、不純物導入用マスク
で他の半導体領域と分離されることを特徴とする請求項
1に記載の半導体集積回路装置の製造方法。
2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the semiconductor region is separated from other semiconductor regions by an impurity introduction mask.
【請求項3】 前記不純物導入用マスクは、マトリック
ス状に形成されることを特徴とする請求項1又は請求項
2に記載の半導体集積回路装置の製造方法。
3. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the impurity introduction mask is formed in a matrix.
JP21720594A 1994-09-12 1994-09-12 Fabrication of semiconductor integrated circuit Pending JPH0883886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21720594A JPH0883886A (en) 1994-09-12 1994-09-12 Fabrication of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21720594A JPH0883886A (en) 1994-09-12 1994-09-12 Fabrication of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0883886A true JPH0883886A (en) 1996-03-26

Family

ID=16700519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21720594A Pending JPH0883886A (en) 1994-09-12 1994-09-12 Fabrication of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0883886A (en)

Similar Documents

Publication Publication Date Title
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US6699776B2 (en) MOSFET gate insulating film and method of manufacturing the same
JPH07326742A (en) Semiconductor device and manufacture thereof
US4884116A (en) Double diffused mosfet with potential biases
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
US5059547A (en) Method of manufacturing double diffused mosfet with potential biases
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPH05299658A (en) Semiconductor device and manufacture thereof
US5246877A (en) Method of manufacturing a semiconductor device having a polycrystalline electrode region
JPH08172135A (en) Manufacture of semiconductor device and semiconductor integrated circuit device
JPH0883886A (en) Fabrication of semiconductor integrated circuit
JPS6159543B2 (en)
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH07130898A (en) Semiconductor device and manufacture thereof
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JPS6313352B2 (en)
JPH0481336B2 (en)
JP2776891B2 (en) Semiconductor integrated circuit device
JPH09102604A (en) Semiconductor device
JPH02207534A (en) Semiconductor device
JP2764988B2 (en) Semiconductor device
JPH065708B2 (en) Semiconductor integrated circuit device
JPH0637306A (en) Semiconductor device
JPS60229373A (en) Semiconductor device
JPH02105521A (en) Manufacture of semiconductor device