JPH02105565A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02105565A
JPH02105565A JP25898588A JP25898588A JPH02105565A JP H02105565 A JPH02105565 A JP H02105565A JP 25898588 A JP25898588 A JP 25898588A JP 25898588 A JP25898588 A JP 25898588A JP H02105565 A JPH02105565 A JP H02105565A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
single crystal
elements
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25898588A
Other languages
Japanese (ja)
Inventor
Kazuo Matsuzaki
松崎 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25898588A priority Critical patent/JPH02105565A/en
Publication of JPH02105565A publication Critical patent/JPH02105565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a bipolar element or a MOS element optionally with each semiconductor by laminating alternately an insulating film and semiconductor layers on a semiconductor substrate and then, by introducing and diffusing impurities into the exposed faces of respective semiconductor layers after treating semiconductor layers on each layer. CONSTITUTION:An SiO2 film, a silicon single crystal layer 3, an SiO2 film 4, a silicon single crystal layer 5, and an SiO2 film 6 are laminated one after another on a silicon substrate 1 equipped with a horizontal bipolar transistor for power which is made by forming in advance a P-type base layer 12 in an N-type collector 11 and further forming an emitter layer 13 in the P-type layer. Then, exposed faces which are lacking in respective upper semiconductor layers are formed on the semiconductor layers 3 and 5. Impurities are introduced and diffused from the exposed faces of the above layers 3 and 5 and semiconductor elements are formed on the above layers 3 and 5. The elements having different intrinsic impurity diffusion depths are made by separating them into each chip.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同一チップ上にバイポーラ素子、0MO3素
子、を刃用素子などを集積化した電力用の半導体装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a power semiconductor device in which bipolar elements, 0MO3 elements, blade elements, etc. are integrated on the same chip.

〔従来の技術〕[Conventional technology]

例えば、書籍「フィジンクス、デザイン・アンド−7ブ
リケーシツンズ(Physics、 Design a
nd^pplications) Jニューヨーク、マ
ッグ・グロー・ヒル(McGraw−Hill)社19
86年出版、あるいは雑誌「エレクトロニクス(Ele
ctronlcs) J 1982年12月29日号5
9ページ、同誌1984年5月31日号87ページ、同
誌1985年8月5日号40ページなどに記載されてい
るように、従来の集積化の方法は活性領域およびそれら
の間の素子分離において、不純物の選択拡散による接合
形成および接合分離を行うことを基本としている。これ
は半導体プロセスがブレーナ技術の確立によりICテク
ノロジーの隆盛をもたらした延長上にある技術および方
法である。
For example, the book ``Physics, Design and Seven Building Sciences''
nd^pplications) J New York, McGraw-Hill, Inc. 19
Published in 1986, or published in the magazine “Electronics (Ele
ctronlcs) J December 29, 1982 issue 5
As described in the May 31, 1984 issue of the same magazine, page 87, and the August 5, 1985 issue, page 40 of the same magazine, conventional integration methods are , is based on forming and separating junctions by selectively diffusing impurities. This is a technology and method that is an extension of the semiconductor process that brought about the rise of IC technology with the establishment of Brainer technology.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような従来の集積化の方法の基本が不純物の選択拡
散法にあることから、バイポーラ素子CMO3素子、を
刃用素子を同一チップ上に集積化する場合、以下に述べ
る2つの課題を解決しなければならない。
Since the basis of such conventional integration methods is the selective diffusion method of impurities, when integrating a bipolar element CMO3 element and a blade element on the same chip, the following two problems must be solved. There must be.

+11バイポーラ素子、0MO3素子、i刃用素子など
、それぞれの素子固有の特性に起因した不純物拡散の深
さの違いをどのように制御するか、また一連のプロセス
の設計をどうするか。
How to control the differences in the depth of impurity diffusion caused by the unique characteristics of each element, such as +11 bipolar elements, 0MO3 elements, and i-blade elements, and how to design a series of processes.

(2)バイポーラ素子、CMO5素子、電力用素子など
を同一チップ上に作り込む場合、それら素子間の分離は
どうするか。
(2) When building bipolar elements, CMO5 elements, power elements, etc. on the same chip, how should these elements be separated?

(1)項の課題に対する従来技術での解決策の基本的な
思想は、深い接合を必要とする素子から順に形成してゆ
くことである。一般には、電力用素子。
The basic idea behind the prior art solution to the problem in item (1) is to form elements in order starting from those requiring deep junctions. Generally, power elements.

バイポーラ素子、CMO3素子の順に接合形成を行う。Bonding is performed in the order of the bipolar element and the CMO3 element.

そうすることによって個々の素子について、順次接合形
成がなされる過程での熱履歴に起因する接合深さの変動
やばらつきを最小限にしようとする考え方である。とこ
ろが、この従来の考え方では、不純物拡散工程と選択的
な不純物拡散を行わせるためのフォトプロセスとの繰り
返しが多く、工程が多く複雑になりがちであること、そ
れに起因するウェハの汚染により、歩留が低下すること
By doing so, the idea is to minimize fluctuations and dispersion in junction depth due to thermal history during the process of sequentially forming junctions for individual elements. However, with this conventional approach, there are many repetitions of the impurity diffusion process and the photo process for selectively diffusing the impurities, which tends to increase the number of steps and make it complicated. Decreased retention.

個々の素子の接合深さの変動やばらつきを最小限におさ
えたつもりでもgk柊工程まで完了しないと、何とも言
えないという不確定要素があることなどの問題があった
Even if it was intended to minimize fluctuations and variations in the junction depth of individual elements, there were problems such as the presence of an uncertain element in which nothing could be said until the GK Hiiragi process was completed.

(2)項の課題に対する従来技術での解決策は、接合分
離が主流であるが、電力用素子部との分離は比較的高濃
度で深い拡散を必要とするなどの制約により微細化が困
難、ラッチアップが起こりやすいなどの問題があった。
Junction isolation is the mainstream solution to the problem in item (2) in the prior art, but it is difficult to miniaturize due to constraints such as the need for relatively high concentration and deep diffusion to separate the power element part. , there were problems such as easy latch-up.

本発明の課題は、上記の問題を解決し、固有の不純物l
11敗深さの異なる素子を一つのチップに分離して容易
に作り込むことができる半導体装置の製造方法を提供す
ることにある。
The object of the present invention is to solve the above problems and eliminate the inherent impurity l
11. It is an object of the present invention to provide a method for manufacturing a semiconductor device, which allows elements having different depths to be separated into one chip and easily fabricated.

(i!Iflを解決するための手段〕 上記のli題の解決のために、本発明の半導体装置の製
造方法は、不純物拡散層を有する半導体基板上に絶縁層
と半導体層が交互に積層し、各半導体層にそれぞれ上層
半導体層の存在しない露出面を形成し、各半導体層の露
出面より不純物を導入。
(Means for Solving i!Ifl) In order to solve the above problem, the method for manufacturing a semiconductor device of the present invention includes alternately stacking insulating layers and semiconductor layers on a semiconductor substrate having an impurity diffusion layer. , an exposed surface where no upper semiconductor layer exists is formed in each semiconductor layer, and impurities are introduced from the exposed surface of each semiconductor layer.

拡散して各半導体層に半導体素子を形成するものとする
、 〔作用〕 絶縁層を介して積層される半導体層に形成される半導体
素子の拡散深さは半導体層の厚さにより一義的に決定さ
れる。また、各層の上層の存在しない部分に不純物拡散
層を形成するため、各】の不純物拡散を一工程で行うこ
とができる。
A semiconductor element is formed in each semiconductor layer by diffusion. [Operation] The diffusion depth of a semiconductor element formed in semiconductor layers laminated via an insulating layer is uniquely determined by the thickness of the semiconductor layer. be done. In addition, since the impurity diffusion layer is formed in the upper layer of each layer where it does not exist, each impurity diffusion can be performed in one step.

〔実施例〕〔Example〕

第1図(al〜+d+は本発明の一実施例を示し、予め
NコレクタN11中にPベースJH12、さらにその中
にNエミッタ眉13を形成して作られた電力用たて型バ
イポーラトランジスタを存するシリコン基板1の上にs
lo、膜2.シリコン単結晶層3、SIO,膜4、シリ
コン単結晶N5 * Sin、膜6を順次積層する (
図a)* sio、膜2,4上のシリコン単結晶層3.
5は、例えば多結晶シリコンを堆積したのちレーザアニ
ールすることによって得られる。積層の数は何種類の素
子を同時につくるかによって決定される。にたSiJ膜
の厚さやシリコン単結晶の厚さも作り込む素子により決
定される1次に、通常のフォトプロセスにより第一層目
のシリコン単結晶層3がn出するまでその上に5iot
層4.単結晶1155゜sro宜N 6に部分的な溝掘
り加工を施す(図b)、これによって生じた露出面から
シリコン単結晶N3に不純物を選択拡散してコレクタ層
31.ベース層32、エミツタ層33を形成し、横型N
PNバイポーラトランジスタを作り込むと共に、シリコ
ン単結晶層5にもアクセプタ不純物を拡散してPウェル
51を形成する (図cL次にウェハ層51の表面から
ドナー不純物の選択拡散によりソース/ドレイン領域5
2.53を形成し、5iOxa6の上に多結晶シリコン
層によりゲート電極7を設けてMOS F ETを同一
基板上に作り込む(図d)6以上の工程でシリコン単結
晶層3のバイポーラトランジスタ部とシリコン単結晶層
5のMOSFET部の拡散層形成の際、フォトマスクの
寸法と各シリコン単結晶層3.5の厚さおよび不純物注
入のドーズ量を選定するだけで、同一ドライブ条件で形
成できるため、熱処理工程が従来の約1/2に軽減でき
、かつ所望の不純物濃度の拡散層を容易に形成できるよ
うになる。
FIG. 1 (al to +d+ shows an embodiment of the present invention, in which a power vertical bipolar transistor is made by forming a P base JH12 in an N collector N11 and an N emitter eyebrow 13 therein in advance). s on the existing silicon substrate 1
lo, membrane 2. Sequentially stack silicon single crystal layer 3, SIO, film 4, silicon single crystal N5 *Sin, film 6 (
Figure a) * sio, silicon single crystal layer 3 on membranes 2, 4.
5 can be obtained, for example, by depositing polycrystalline silicon and then laser annealing it. The number of laminated layers is determined by how many types of devices are to be made simultaneously. In addition, the thickness of the SiJ film and the thickness of the silicon single crystal are determined by the device to be fabricated. Next, 5iots of silicon are deposited on top of the first silicon single crystal layer 3 by a normal photo process until the first layer 3 is exposed.
Layer 4. A partial trenching process is performed on the single crystal 1155° sro nitride N6 (Fig. b), and impurities are selectively diffused into the silicon single crystal N3 from the resulting exposed surface to collector layer 31. A base layer 32 and an emitter layer 33 are formed, and a horizontal N
At the same time as forming a PN bipolar transistor, an acceptor impurity is also diffused into the silicon single crystal layer 5 to form a P well 51.
2.53 is formed, and a gate electrode 7 is provided on the 5iOxa6 using a polycrystalline silicon layer, and a MOSFET is fabricated on the same substrate (Figure d).The bipolar transistor section of the silicon single crystal layer 3 is formed in 6 or more steps. When forming the diffusion layer of the MOSFET part of the silicon single crystal layer 5, it is possible to form it under the same drive conditions by simply selecting the dimensions of the photomask, the thickness of each silicon single crystal layer 3.5, and the dose of impurity implantation. Therefore, the heat treatment process can be reduced to about 1/2 of the conventional process, and a diffusion layer with a desired impurity concentration can be easily formed.

第2図は第1図とほぼ同様な工程で形成された半導体装
置で、基板1はN°サブストレー)10の上にNJIを
エピタキシャル成長させた合計の厚さ525 amのも
のを用いている。横型バイポーラトランジスタの厚さは
シリコン単結晶N3の厚さで決まり、MOSFETの厚
さはシリコン単結晶層5の厚さで決まる。それらの厚さ
は1−程度である。
FIG. 2 shows a semiconductor device formed by substantially the same process as in FIG. 1, in which the substrate 1 is a substrate 1 made by epitaxially growing NJI on an N° substray (10) to a total thickness of 525 am. The thickness of the lateral bipolar transistor is determined by the thickness of the silicon single crystal N3, and the thickness of the MOSFET is determined by the thickness of the silicon single crystal layer 5. Their thickness is of the order of 1-.

またソース・ドレイン領域53の幅はシリコン単結晶1
5の溝掘り加工の寸法で決まる0図示されていないが、
配線は各5ins膜に設けられた接触孔を介して接続さ
れる。
Also, the width of the source/drain region 53 is equal to the width of the silicon single crystal 1
Determined by the dimensions of the groove digging process in step 5. Although not shown in the figure,
Wiring is connected through contact holes provided in each 5-ins membrane.

第3図は別の実施例を示し、Pベース層14.N”エミ
ツタ層15を形成した電力用MO3)ランジスタ基Fi
1の上にSing膜2,4.6とシリコン単結晶層3.
5を交互に積層し、先ず高不純物濃度にしたシリコン単
結晶層3を加工して電力用MO3)ランジスタのゲート
電極8を設ける。単結晶層3の他の部分は、上層の溝掘
りにより他の素子の形成に利用できる。第二層のシリコ
ン単結晶層5をMOSあるいは0MO3)ランジスタの
基板とし、第1.2図と同様にPウェル51.ソ、−ス
・ドレイン領域52.53およびゲート電極7を形成す
る。これにより、電力用トランジスタからなる電力部と
MOSFETからなる制御部が一つのチップに集積され
る。
FIG. 3 shows another embodiment in which the P base layer 14. Power MO3) transistor base Fi with N” emitter layer 15 formed
A Sing film 2, 4.6 and a silicon single crystal layer 3.
First, a silicon single crystal layer 3 with a high impurity concentration is processed to provide a gate electrode 8 of a power MO3) transistor. Other parts of the single crystal layer 3 can be used for forming other elements by trenching the upper layer. The second silicon single crystal layer 5 is used as a substrate for a MOS or 0MO3) transistor, and the P well 51. So, -s and drain regions 52 and 53 and a gate electrode 7 are formed. As a result, a power section made up of power transistors and a control section made up of MOSFETs are integrated into one chip.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電力用素子を形成できる半導体基板上
に絶縁膜と半導体層を交互に積層することにより、上層
の半導体層を加工して各半導体層の露出面に不純物を導
入、拡散し、各半導体層ごとにバイポーラ素子あるいは
MO3素子を任意に形成できるようになった。そして、
素子間の分離が三次元的に絶縁膜で行われるので接合分
離を行う必要がな(、集積度が向上した。また、不純物
拡散工程とフォトプロセスとの繰り返しがなく、各素子
の厚さが層厚さで自動的に限定されるので製造工程が極
めて簡素化された。
According to the present invention, insulating films and semiconductor layers are alternately stacked on a semiconductor substrate on which a power device can be formed, and the upper semiconductor layer is processed to introduce and diffuse impurities into the exposed surface of each semiconductor layer. , it has become possible to arbitrarily form bipolar elements or MO3 elements for each semiconductor layer. and,
Since the isolation between elements is performed three-dimensionally using an insulating film, there is no need for junction isolation (and the degree of integration has improved. Also, there is no need to repeat the impurity diffusion process and photo process, and the thickness of each element can be reduced. Since the layer thickness is automatically limited, the manufacturing process is extremely simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(Ill〜+d+は本発明の一実施例の製造工程
を順次示す断面図、第2図は第1図に示すような工程で
製造される半導体装置の部分断面図、第3図は本発明の
別の実施例により製造される半導体装置の部分断面図で
ある。 1:シリコン基板、2,4,6  : Sho、膜、3
.5:シリコン単結晶層、7.8:ゲート電極、11,
31;Nコレクタ層、12.14,32 : Pベース
層、13.15.33 jNエミッタ層。 1ノ ー14−7〜.・く・
FIG. 1 (Ill to +d+ are sectional views sequentially showing the manufacturing steps of an embodiment of the present invention, FIG. 2 is a partial sectional view of a semiconductor device manufactured by the steps shown in FIG. 1, and FIG. 3 is a partial sectional view of a semiconductor device manufactured by the steps shown in FIG. 1. It is a partial sectional view of a semiconductor device manufactured by another example of the present invention. 1: Silicon substrate, 2, 4, 6: Sho, film, 3
.. 5: silicon single crystal layer, 7.8: gate electrode, 11,
31; N collector layer, 12.14, 32: P base layer, 13.15.33 jN emitter layer. 1 no 14-7~. ·Ku·

Claims (1)

【特許請求の範囲】[Claims] 1)不純物拡散層を有する半導体基板上に絶縁層と半導
体層を交互に積層し、各半導体層にそれぞれ上層半導体
層の存在しない露出面を形成し、各半導体層の露出面よ
り不純物を導入、拡散して各半導体層に半導体素子を形
成することを特徴とする半導体装置の製造方法。
1) Alternately stacking insulating layers and semiconductor layers on a semiconductor substrate having an impurity diffusion layer, forming an exposed surface in each semiconductor layer where no upper semiconductor layer is present, and introducing impurities from the exposed surface of each semiconductor layer, A method for manufacturing a semiconductor device, comprising forming a semiconductor element in each semiconductor layer by diffusion.
JP25898588A 1988-10-14 1988-10-14 Manufacture of semiconductor device Pending JPH02105565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25898588A JPH02105565A (en) 1988-10-14 1988-10-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25898588A JPH02105565A (en) 1988-10-14 1988-10-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02105565A true JPH02105565A (en) 1990-04-18

Family

ID=17327752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25898588A Pending JPH02105565A (en) 1988-10-14 1988-10-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02105565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521706A (en) * 1991-07-11 1993-01-29 Mitsubishi Electric Corp Semiconductor device and its manufacture
US7064041B2 (en) 2003-12-24 2006-06-20 Oki Electric Industry Co., Ltd. Semiconductor device and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467989A (en) * 1987-09-09 1989-03-14 Hitachi Ltd Narrow-band laser device
JPH03173486A (en) * 1989-12-01 1991-07-26 Toshiba Corp Narrow bandwidth laser
JPH03214680A (en) * 1990-01-19 1991-09-19 Mitsubishi Electric Corp Excimer laser device
JPH0418783A (en) * 1990-02-28 1992-01-22 Komatsu Ltd Narrow band oscillation excimer laser
JPH0582882A (en) * 1991-09-24 1993-04-02 Komatsu Ltd Light wave length controller and wave length controlling laser beam generating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6467989A (en) * 1987-09-09 1989-03-14 Hitachi Ltd Narrow-band laser device
JPH03173486A (en) * 1989-12-01 1991-07-26 Toshiba Corp Narrow bandwidth laser
JPH03214680A (en) * 1990-01-19 1991-09-19 Mitsubishi Electric Corp Excimer laser device
JPH0418783A (en) * 1990-02-28 1992-01-22 Komatsu Ltd Narrow band oscillation excimer laser
JPH0582882A (en) * 1991-09-24 1993-04-02 Komatsu Ltd Light wave length controller and wave length controlling laser beam generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521706A (en) * 1991-07-11 1993-01-29 Mitsubishi Electric Corp Semiconductor device and its manufacture
US7064041B2 (en) 2003-12-24 2006-06-20 Oki Electric Industry Co., Ltd. Semiconductor device and manufacturing method therefor
US7335952B2 (en) 2003-12-24 2008-02-26 Oki Electric Industry Co., Ltd. Semiconductor device and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP2557750B2 (en) Optical semiconductor device
JP3328309B2 (en) Semiconductor substrate processing method
JP2002083876A (en) Production method for semiconductor integrated circuit device
JPH02105565A (en) Manufacture of semiconductor device
SU773793A1 (en) Method of manufacturing semiconductor integrated bipolar circuits
JP2940818B2 (en) Optical semiconductor device and its manufacturing method
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPS59103380A (en) Laminated mos transistor
JP2616809B2 (en) Semiconductor device
JP2002083877A (en) Semiconductor integrated circuit device and production method therefor
JP2747574B2 (en) Bipolar transistor and method of manufacturing the same
JPH03286562A (en) Semiconductor device and its manufacture
JPS63245939A (en) Semiconductor device
JPH01128463A (en) Semiconductor integrated circuit
JPS63144567A (en) Manufacture of semiconductor device
JPH0281438A (en) Bipolar integrated circuit
JPH0364066A (en) Manufacture of bipolar cmos semiconductor integrated circuit
JP2002158304A (en) Semiconductor integrated circuit device and its manufacturing method
JPS63244668A (en) Manufacture of semiconductor device
JPH0577301B2 (en)
JPH02305461A (en) Manufacture of semiconductor integrated circuit
JPS6035563A (en) Manufacture of semiconductor device
JPS61117849A (en) Manufacture of semiconductor ic
JPH0645538A (en) Semiconductor device and its manufacture
JPH0727970B2 (en) Method for manufacturing semiconductor integrated circuit