JPS6035563A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6035563A
JPS6035563A JP58143849A JP14384983A JPS6035563A JP S6035563 A JPS6035563 A JP S6035563A JP 58143849 A JP58143849 A JP 58143849A JP 14384983 A JP14384983 A JP 14384983A JP S6035563 A JPS6035563 A JP S6035563A
Authority
JP
Japan
Prior art keywords
type
well layer
substrate
layer
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58143849A
Other languages
Japanese (ja)
Inventor
Satoshi Meguro
目黒 怜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58143849A priority Critical patent/JPS6035563A/en
Publication of JPS6035563A publication Critical patent/JPS6035563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to easily form a well layer having a concentration distribution of reverse gradient to prevent latch-up by a method wherein an N type impurity is introduced to the entire surface of an Si substrate, and further a P type impurity is introduced at this region selectively into the substrate, thereafter the P type and N type impurities which have been introduced are thermally diffused into the substrate at the same time. CONSTITUTION:The region other than the region for forming a P type well layer is selectively covered with a photo resist film 23 in order to form the well layer, and, with the film as a mask, the P type impurity, e.g., boron to form the well layer is introduced via Si oxide film 21. In the region for forming the well layer, the layer 24 of the P type impurity, e.g., boron and the layer 22 of the N type impurity, e.g., arsenic are mixed. Next, the film 23 is removed, and the P type impurity, e.g., boron and the N type impurity, e.g., arsenic which have been introduced are thermally diffused. At this time, because the diffusion speeds of boron and arsenic into the substrate 1 are different, layers of different depths are formed on thermal diffusion treatment. Since boron has a higher diffusion speed than arsenic, it forms a deeper P type well layer.

Description

【発明の詳細な説明】 〔技術分野] 本発明は、相補型絶縁ケート電介効果半導体装置(Co
mplimentaly M I S I C,以下、
CMISICと称する)の製造方法に関し、特に、CM
O8ICのラッチアップ対策技術に関するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to a complementary insulating cathedral effect semiconductor device (Co
mplementaly MISIC, hereinafter,
Regarding the manufacturing method of CM
The present invention relates to latch-up countermeasure technology for O8IC.

〔背景技術〕[Background technology]

0M6S工Cにおいては、それを構成する半導体基板と
半導体基板内に形成される逆導電型のウェル層とによっ
て生ずるラッチアップを防止するために、ウェル層を高
濃度不純物層に形成する技術が、たとえば、I BDM
、82. TechnicalDigest 第447
頁に託されている。
In 0M6S technology C, in order to prevent latch-up caused by the semiconductor substrate constituting the semiconductor substrate and the well layer of opposite conductivity type formed in the semiconductor substrate, a technology for forming the well layer as a highly doped impurity layer is used. For example, I BDM
, 82. Technical Digest No. 447
It is entrusted to the page.

この技術は、ウェル1内のソース・ドレイン層の存在す
る基板表面のみの不純物濃度を低濃度形成し、かつ表面
以外のウェル層の不純物濃度を高濃度とし、ウェル層の
低抵抗化を図るものである(このような構造を有するウ
ェル層を以下、「逆匂配の濃度分布を有するウェル層」
と称する)。
This technology aims to reduce the resistance of the well layer by forming a low impurity concentration only on the surface of the substrate where the source/drain layer in well 1 exists, and increasing the impurity concentration in the well layer other than the surface. (A well layer with such a structure is hereinafter referred to as a "well layer with an inverse concentration distribution.")
).

ウェル層が低抵抗化すれば、基板とウェル層、および、
ソース・ドレイン層によってつくられる寄生バイポーラ
トランジスタに流れる電流が低下しラッチアップによる
電流破壊が低減する。さらに、ソース・ドレイン層付近
を低濃度化することによりソース・ドレイン層と基板と
の接合容量を小さくすることが出来る。
If the resistance of the well layer is reduced, the substrate, well layer, and
The current flowing through the parasitic bipolar transistor created by the source/drain layer is reduced, reducing current breakdown due to latch-up. Furthermore, by lowering the concentration near the source/drain layer, the junction capacitance between the source/drain layer and the substrate can be reduced.

このような構造を有するC M I S I Cの製造
方法は、まず、基板と逆導電型の高濃度のウェル層を形
成したのち、ウェル層の基板表面を低濃度にするために
、ウェル層とけ逆導電型の不純物をフィールド絶縁膜等
をマスクとして導入し、熱拡散させるものである。
The method for manufacturing CMI SIC having such a structure is to first form a highly doped well layer of conductivity type opposite to that of the substrate, and then to reduce the concentration of the substrate surface of the well layer to a low concentration. In this method, impurities of the opposite conductivity type are introduced using a field insulating film or the like as a mask, and are thermally diffused.

しかしながら、上記構造を有するCM6SICの製造方
法ておいては、ウェル層の基板表面のみ低濃度に形成し
たのち、ウェル層形成領域以外の領域に、ショートチャ
ンネル効果を防ぐための不純物を導入する工程等をあら
ためて行なう必要があり、素子(IC)形成のための全
1程は、はなはだ複雑になる欠点を有していた。
However, in the method for manufacturing a CM6SIC having the above structure, the well layer is formed only on the surface of the substrate at a low concentration, and then impurities are introduced into regions other than the well layer formation region to prevent the short channel effect. However, the entire process for forming the device (IC) has the disadvantage of being extremely complicated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ラッチアップを防止するために逆勾配
の濃度分布を有するウェル層の容易な製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily manufacturing a well layer having a reverse gradient concentration distribution to prevent latch-up.

本発明の上記およびその他の目的ならびに新規な特徴は
本明細書の記述および添付図面からあきらかになるであ
ろう。
The above and other objects and novel features of the present invention will become apparent from the description herein and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、N導電型シリコン基板上に薄い酸化膜を形成
し、前記薄い酸化膜を介して、N型不純物をシリコン基
板全面に導入し、さらにこの領域にP型不純物を選択的
にシリコン基板内に導入する。しかるのちに導入したP
型不純物とN型不純物を、基板内に同時に熱拡散させる
、 この工程により、P型不純物導入領域の表面付近におい
てはP型低濃度不純物層が、深部においてはP型高濃度
不純物層が形成される。つまり、逆勾配の濃度分布を有
するウェル層が形成される。
That is, a thin oxide film is formed on an N-conductivity type silicon substrate, N-type impurities are introduced into the entire surface of the silicon substrate through the thin oxide film, and P-type impurities are selectively introduced into this region into the silicon substrate. Introduce. P introduced later
Through this process of simultaneously thermally diffusing type impurities and N-type impurities into the substrate, a P-type low-concentration impurity layer is formed near the surface of the P-type impurity introduced region, and a P-type high-concentration impurity layer is formed in the deep part. Ru. In other words, a well layer having a concentration distribution with an opposite gradient is formed.

これと同時に、P型ウェル層以外のN型/リコン基板に
は、ソース・ドレイン層の存在する表面付近を砒素4人
によって、N型高濃度不純物層に形成することができる
At the same time, in the N-type/recon substrate other than the P-type well layer, an N-type high concentration impurity layer can be formed using arsenic in the vicinity of the surface where the source/drain layer is present.

〔実施例〕〔Example〕

第1図は、本発明の製造方法によって形成された、絶縁
ゲート型電界効果トランジスタ(以下、MISFETと
称する)Qt、Qt を有したCMISICの断面図、
第2図は、第1図に示される断面図をAA’線に沿って
もつCMISICの平面図である。
FIG. 1 is a cross-sectional view of a CMISIC having an insulated gate field effect transistor (hereinafter referred to as MISFET) Qt formed by the manufacturing method of the present invention;
FIG. 2 is a plan view of the CMISIC having the cross-sectional view shown in FIG. 1 along line AA'.

第1図、および、第2図において、Pチャンネル型MI
SFETQ+とNチャンネル型MISFFJTQ2とが
、酸化シリコン(Sin、)から成るフィールド絶縁膜
5を介して存在している。3および4はMI 5FET
 Qt 、Q2を存在せしめる活性領域であり、第2図
を横断するように走るゲート8を介して、活性領域4に
は、P 型ソース・ドレイン層6.活性領域3には、N
 型ソース・ドレイン層7が存在している。多結晶シリ
コンからなる°ゲート8には、入力信号が入いり、出力
信号が、ソース・ドレインN6,7を通って、配線13
に出力される。配線14.15は電源電圧を供給するた
めのアルミニウム配線であり、活性領域4゜3で、オー
ミックコンタクトを取っている。
In FIG. 1 and FIG. 2, P-channel type MI
SFETQ+ and N-channel type MISFFJTQ2 exist via a field insulating film 5 made of silicon oxide (Sin). 3 and 4 are MI 5FETs
Qt, Q2 are present in the active region 4 through a gate 8 extending across the plane of FIG. In the active region 3, N
A type source/drain layer 7 is present. An input signal enters the gate 8 made of polycrystalline silicon, and an output signal passes through the source/drain N6, 7 and is sent to the wiring 13.
is output to. Wires 14 and 15 are aluminum wires for supplying power supply voltage, and are in ohmic contact with the active region 4.3.

本発明の製造方法によって形成される素子(IC)の特
徴は、P導電型ウェル層に高濃度のP導電型層2と低濃
度のP導電型N3が、存在し、低濃度のP導電型層3を
形成すると同時に、Pチャンネル型MISFETQ+に
はN導電型半導型基板よりも高濃度なN導電型層を形成
することにある。前述の如く、高濃度のP導電型ウェル
層2を形成することにより、ウェル層は低抵抗となり、
ラッチアンプを防止することができる。又、低濃度のP
導電型ウェル層3が存在することにより、ソース・基板
間の寄生容量を低減せしめることが出来る。さらにまた
、これと同時に形成されるN導電型不純物層4の存在で
Pチャンネル型MISFETQ+のショートチャンネル
効果を抑制することができる。高濃度P導電型ウェル層
2、低濃度P4電型ウェル層3、および高濃度N導市、
型不純物N4の形成方法は、後述で明らかになる。
The characteristics of the device (IC) formed by the manufacturing method of the present invention are that a high concentration P conductivity type layer 2 and a low concentration P conductivity type N3 exist in the P conductivity type well layer; At the same time as layer 3 is formed, an N conductivity type layer having a higher concentration than the N conductivity type semiconductor substrate is formed in the P channel type MISFETQ+. As mentioned above, by forming the highly-concentrated P conductivity type well layer 2, the well layer becomes low in resistance.
Latch amplifier can be prevented. Also, low concentration of P
The presence of the conductive well layer 3 makes it possible to reduce the parasitic capacitance between the source and the substrate. Furthermore, the presence of the N conductivity type impurity layer 4 formed at the same time can suppress the short channel effect of the P channel type MISFETQ+. A high concentration P conductivity type well layer 2, a low concentration P4 conductivity type well layer 3, and a high concentration N conductivity type well layer 2,
The method for forming the type impurity N4 will become clear later.

第1図、及び第2図に示されであるCMISFETの構
造をさらに詳細に説明すれば、以下の通りである。1は
N導電型半導体基板であり、この基板中に前記P+型ソ
ース・ドレイン層6. P型つェルfWI2,3.N+
型ソース・ドレイン層7が存在する。本発明で問題とし
ているラノチアップはP十型ソース・ドレイン層6.N
型基板1. P型ウェル層から寄生的に形成されるバイ
ポーラトランジスタと、N型基板1.P型つェル#2.
N1型ンース・ドレインN7から寄生的に形成されるバ
イポーラトランジスタから生ずるものである。
The structure of the CMISFET shown in FIGS. 1 and 2 will be explained in more detail as follows. 1 is an N conductive type semiconductor substrate, in which the P+ type source/drain layer 6. P-type TwelfWI2,3. N+
A type source/drain layer 7 is present. Lanochiup, which is a problem in the present invention, is a P-type source/drain layer 6. N
Mold substrate 1. A bipolar transistor parasitically formed from a P-type well layer and an N-type substrate1. P-type Twel #2.
It arises from a bipolar transistor formed parasitically from the N1 type source drain N7.

基板上には、個々のMISFETを分離するための酸化
シリコンからなるフィールド絶縁膜5が存在し、活性領
域には、多結晶シリコンからなるゲート電極8が存在し
ている。ゲート8と基板1の間には、酸化シリコンから
なるゲート絶縁膜9が存在し、又ゲート8は、その電界
集中を防ぐために、その周囲に酸化シリコン膜11が形
成されである。活性領域に形成されたソース・ドレイン
層又は、ゲートを保護するためにリンシリケートガラス
からなる第1パツシベーシヨン膜12が形成されである
。また、前記入力、出力に寄与するアルミニウム配線1
3〜15は、前記第1パツシベーシヨン膜上に形成され
である。さらに、全体を保護するためにリンシリケート
ガラスからなるファイナルパッジページ運ン膜16が形
成されである。
A field insulating film 5 made of silicon oxide for isolating the individual MISFETs is present on the substrate, and a gate electrode 8 made of polycrystalline silicon is present in the active region. A gate insulating film 9 made of silicon oxide is present between the gate 8 and the substrate 1, and a silicon oxide film 11 is formed around the gate 8 in order to prevent electric field concentration. A first passivation film 12 made of phosphosilicate glass is formed to protect the source/drain layer or gate formed in the active region. In addition, aluminum wiring 1 contributing to the input and output
3 to 15 are formed on the first passivation film. Furthermore, a final page transport film 16 made of phosphosilicate glass is formed to protect the entire structure.

以下、本発明によるCMISICの製造方法を第3図〜
第8図を用いて説明する。
The method for manufacturing a CMISIC according to the present invention will be described below with reference to FIGS.
This will be explained using FIG.

まず、(100)結晶面を有するN−型単結晶シリコン
基板lを用意する。このN−型シリコン基板1上を熱酸
化し、第3図の如く薄い酸化シリコン膜21を形成する
。前記酸化シリコン膜21を介し、N型不純物、たとえ
ば、砒素をシリコン基板内に導入する。この場合、酸化
シリコン膜21は、シリコン基板を保護する役目をする
。基板内に導入した砒素は、基板表面に第3図22の如
く集中している。P型ウェル層を形成するために、P型
ウェル層を形成する領域以外の領域を選択的にフォトレ
ジスト膜で被覆し、これをマスクとしてP型ウェル層3
内のためのP型不純物、たとえばボロンを酸化シリコン
膜21を介して導入する。
First, an N-type single crystal silicon substrate l having a (100) crystal plane is prepared. The N-type silicon substrate 1 is thermally oxidized to form a thin silicon oxide film 21 as shown in FIG. An N-type impurity, for example, arsenic, is introduced into the silicon substrate through the silicon oxide film 21. In this case, the silicon oxide film 21 serves to protect the silicon substrate. The arsenic introduced into the substrate is concentrated on the surface of the substrate as shown in FIG. 322. In order to form the P-type well layer, areas other than the area where the P-type well layer is to be formed are selectively covered with a photoresist film, and using this as a mask, the P-type well layer 3 is coated with a photoresist film.
A P-type impurity, for example, boron, is introduced through the silicon oxide film 21.

この状態を第4図に示す。This state is shown in FIG.

P型ウェル層を形成する領域にνいては、P型不純物、
たとえばボロンの層24と、N型不純物、たとえば砒素
の層22が混存している。
In the region where the P-type well layer is formed, P-type impurities,
For example, a layer 24 of boron and a layer 22 of N-type impurity, for example arsenic, coexist.

次に、フォトレジスト膜23を除去し、導入したP型不
純物、たとえばボロンとN型不純物、砒素とを熱拡散さ
せる。この際、ボロンと砒素との基板1への拡散速度が
異なるため、熱拡散処理を行なうと、第5図の如く深さ
が異なった層が形成される。ボロンは、砒素に較べて、
拡散速度が速いため、深いP型ウェル層2を形成する。
Next, the photoresist film 23 is removed, and the introduced P-type impurities, such as boron, and N-type impurities, arsenic, are thermally diffused. At this time, since the diffusion rates of boron and arsenic into the substrate 1 are different, when thermal diffusion treatment is performed, layers with different depths are formed as shown in FIG. 5. Compared to arsenic, boron is
Since the diffusion rate is fast, a deep P-type well layer 2 is formed.

砒素は、ボロンに較べて拡散速度が遅いため、ボロンの
拡散に較べ浅い領域に広がり、N−型シリコン基板内で
はシリコン基板1よりも不純物濃度の濃いN型不純物w
I4を形成する。このN型不純物層4は、Pチャンネル
MISFETのショートチャンネル効果を抑制するもの
である。また、P型ウェル層内においては、砒素はボロ
ンと混り合うことによりP型ウェル層内に、P型ウェル
領域2に較べてP型溝電性の低い領域3を形成する。N
チャンネル型MISFgTはこのP−型ウェル層3内に
形成されるため、ソースとP型ウェル層3との寄生容量
を小さく形成でき、高速化を得ることが可能である。又
、高濃度に形成したP型ウェル層2は、P型つェル/i
12の抵抗を下げる役目をし、CMISICにおけるラ
ッテアップを防止することが出来る。本発明における、
N型不純物層4.pHリウゴル/j’J2.P−型ウェ
ル層3の形成は、〔背景技術〕の項で示した以前の形成
方法に較べて、非常に容易に形成出来そのメリットは多
大なものがある。
Since arsenic has a slower diffusion rate than boron, it spreads over a shallower region than boron, and in the N-type silicon substrate, the N-type impurity w has a higher impurity concentration than the silicon substrate 1.
Form I4. This N-type impurity layer 4 suppresses the short channel effect of the P-channel MISFET. Further, in the P-type well layer, arsenic mixes with boron to form a region 3 in the P-type well layer that has a lower P-type trench electric property than the P-type well region 2. N
Since the channel type MISFgT is formed within this P-type well layer 3, the parasitic capacitance between the source and the P-type well layer 3 can be made small, and high speed operation can be achieved. In addition, the P-type well layer 2 formed at a high concentration has a P-type well/i
It serves to lower the resistance of 12, and can prevent latte-up in CMISIC. In the present invention,
N-type impurity layer 4. pH Liugol/j'J2. The formation of the P-type well layer 3 is much easier than the previous formation method described in the Background Art section, and has many advantages.

以下、基板」二に素子(IC)を形成する方法は、周知
の製造方法によって行なう。捷ずフィールド絶縁膜を形
成するために、薄い酸化シリコン膜(図示せず)をシリ
コン基板全面に形成し、さらにその上にたとえば、気相
化学反応法(以下、CVD法と称する)によって窒化シ
リコン膜(図示せず)を選択的に形成する。この窒化シ
リコン膜(図示せず)をマスクとして、シリコン基板表
面を熱酸化することにより、酸化シリコンからなる厚い
フィールド絶縁膜5を形成する7これは隣接するMIS
FETを絶縁するための絶縁膜である。さらにフィール
ド絶縁膜5形成のためのシリコン基板上に形成した薄い
酸化シリコン膜(図示せず)と窒化シリコン膜(図示せ
ず)を除去し、酸化シリコンからなる薄いゲート絶縁膜
9を第6図に示す如く形成する。
Hereinafter, a well-known manufacturing method will be used to form an element (IC) on the substrate. In order to form a field insulating film without cutting, a thin silicon oxide film (not shown) is formed on the entire surface of the silicon substrate, and then a silicon nitride film is deposited on top of it by, for example, a vapor phase chemical reaction method (hereinafter referred to as CVD method). A membrane (not shown) is selectively formed. By thermally oxidizing the silicon substrate surface using this silicon nitride film (not shown) as a mask, a thick field insulating film 5 made of silicon oxide is formed.
This is an insulating film for insulating the FET. Furthermore, the thin silicon oxide film (not shown) and silicon nitride film (not shown) formed on the silicon substrate for forming the field insulating film 5 are removed, and a thin gate insulating film 9 made of silicon oxide is formed as shown in FIG. Form as shown.

この薄いゲート絶縁膜9形成の際は、その清浄さを得る
ために、一度シリコン基板を熱酸化し、表面に形成され
た薄い酸化膜を除去し、そののちに形成するものである
When forming this thin gate insulating film 9, in order to obtain cleanliness, the silicon substrate is once thermally oxidized to remove the thin oxide film formed on the surface, and then the gate insulating film 9 is formed.

次に、このゲート絶縁膜9、およびフィールド絶縁膜5
上の全面に、たとえはCVD法を用いてゲート形成のた
めの多結晶シリコン膜を形成する。
Next, this gate insulating film 9 and field insulating film 5
A polycrystalline silicon film for forming a gate is formed on the entire surface using, for example, a CVD method.

さらに、このちと多結晶シリコン膜の導電性を得るため
に多結晶シリコン層に不純物、たとえばリン(pi ?
イオン打ち込み法によって導入する。さらにゲートが形
成されるべき領域以外にある多結晶シIJコン層を除去
するために、フォトレジスト膜(図示せず)を選択的に
形成し、このフォトレジスト膜をマスクとして、ゲート
として働く多結晶シリコン層8を形成する。さらに、ソ
ース・ドレイン層を形成するために、ゲートを形成する
多結晶シリコン層8をマスクとしてM I S F E
T Q+及びQ2 の領域に、夫々に適合した不純物を
打ちこむ。これは、以下の方法によっておこなう。
Furthermore, in order to obtain conductivity of the polycrystalline silicon film, impurities such as phosphorus (pi?) are added to the polycrystalline silicon layer.
Introduced by ion implantation method. Furthermore, in order to remove the polycrystalline silicon IJ layer in areas other than the area where the gate is to be formed, a photoresist film (not shown) is selectively formed, and using this photoresist film as a mask, the A crystalline silicon layer 8 is formed. Furthermore, in order to form source/drain layers, M I S F E is applied using the polycrystalline silicon layer 8 that forms the gate as a mask.
Impurities suitable for each are implanted into the T Q+ and Q2 regions. This is done in the following way.

まず、たとえは高温低圧雰囲気中で、酸化シリコン(8
102)膜(図示せず)を、P型ウェル層以外の領竣に
選択的に形成し、これをマスクとして、P型つェル膚内
KN型不純物たとえば、リンを打ちこみ熱拡散させて、
N型ソース・ドレイン庵を形成する。さらにこれとは逆
にP型ウェル層上に酸化シリコン膜を選択的に形成し、
これをマスクきしてPチャンネル型MISFETQ、の
ソース・ドレイン層形成のために、P型不純物たとえば
、ボロンを打ちこみ熱拡散させてP型ソースドレインN
6を形成する。この処理の後、素子表面を洗浄しゲート
の端部における電界集中を防ぐために、多結晶シリコン
層8の表面に薄い酸化シリコン膜8を形成する。このよ
うに形成したものを第7図に示す。
First, let's take the example of silicon oxide (8) in a high temperature, low pressure atmosphere.
102) A film (not shown) is selectively formed in areas other than the P-type well layer, and using this as a mask, KN-type impurities in the P-type well skin, such as phosphorus, are implanted and thermally diffused.
Form an N-type source/drain hermitage. Furthermore, in contrast to this, a silicon oxide film is selectively formed on the P-type well layer,
Using this as a mask, a P-type impurity such as boron is implanted and thermally diffused to form the source/drain layer of the P-channel MISFETQ.
form 6. After this treatment, a thin silicon oxide film 8 is formed on the surface of the polycrystalline silicon layer 8 in order to clean the device surface and prevent electric field concentration at the edge of the gate. A structure formed in this manner is shown in FIG.

以上のよって素子を形成したのち、周知の方法により第
1パツシベーシヨン膜、所望のパターンのアルミニウム
配線およびフアイナルパツシベーシヨン膜を形成する。
After forming the device as described above, a first passivation film, a desired pattern of aluminum wiring, and a final passivation film are formed by a well-known method.

すなわち、たとえばCVD法によりリンシリケートガラ
ス膜を全面に設はコンタクトホール、17〜20を有す
る、第1パツシベーシヨン膜12を形成する。第8図お
よび第2図に示す如く、入出力信号、電源冨1圧等にか
かるアルミニウム配線14〜15を形成する。最後に第
1図の如く、たとえばリンシリケートガラス等を用いて
ファイナルパッシベーション膜を形5yする。
That is, a first passivation film 12 having contact holes 17 to 20 is formed by disposing a phosphosilicate glass film over the entire surface by, for example, the CVD method. As shown in FIGS. 8 and 2, aluminum wirings 14 to 15 for input/output signals, power supply voltage, etc. are formed. Finally, as shown in FIG. 1, a final passivation film is formed into a shape 5y using, for example, phosphosilicate glass.

〔効果〕〔effect〕

砒素(As )とボロン(B)をほぼ同時にシリコン基
板内に打ち込むことにより、ランチアノブ耐圧向上のた
めのP型ウェル構造が、容易に形成出来るとともにPチ
ャンネルllMISFETのショートチャンネル効果を
抑制する高濃度のN型不純物1が、P型ソース・ドレイ
ン付近に形成することが可能である。従って、従来のラ
ッチアップ耐圧向上のためのP型ウェル構造の製造方法
に比較すれば、多大な工程を削減することができる。
By implanting arsenic (As) and boron (B) into the silicon substrate almost simultaneously, a P-type well structure for improving the Lanthia knob breakdown voltage can be easily formed, and a high concentration can be used to suppress the short channel effect of P-channel MISFETs. It is possible to form an N-type impurity 1 near the P-type source/drain. Therefore, compared to the conventional manufacturing method of a P-type well structure for improving latch-up breakdown voltage, a large number of steps can be reduced.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は、上記実施例に限定される
ものでなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。fcとえば、基板内に導
入する砒素はアンチモンでも、本発明の効果を損なうも
のではない。又、第1パツシベーシヨンは、酸什シリコ
ンで形成しテモ良< 、 PJ4MIC7アイナルハソ
シベーシヨン膜も酸化シリコン等で形成しても良い。
Although the invention made by the present inventor has been specifically explained based on Examples above, the present invention is not limited to the above Examples, and it should be noted that various changes can be made without departing from the gist of the invention. Not even. For example, even if the arsenic introduced into the substrate is antimony, the effects of the present invention will not be impaired. Further, the first passivation film may be formed of silicon oxide, and the PJ4 MIC7 insulating film may also be formed of silicon oxide or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、互いに相補型のMISFETQ+。 Q2 を有したCMISICの断面図、第2図は、第1
図に示される断面図1をAA’線に沿ってもつCMIS
ICの平面図、 第3図〜第8図は、本発明によるCMI S I Cの
製造過程を示す、第2図のAA’線に沿った断面図であ
る。 1・・・N−導電型シリコン半導体基板、2・・・P導
電型ウェル層、3・・・本発明により導入したP−導電
型ウェル層、4・・・本発明によシ導入したN4亀型拡
散領域、5・・・酸イヒシリコンからなるフィールド絶
縁膜、6・・・P+型ンソー・ドレイン層、7・・・N
+型ンソー・ドレイン1.8・・・多結晶シリコンから
なるゲート電極、9・・・酸化シリコンからなるゲート
絶縁膜、10・・・酸化シリコン膜、11・・・ゲート
電極を保護する酸化シリコン膜、12・・・リンシリケ
ートガラスからなる第1パツシベーシヨン膜、13〜1
5・・・アルミニウム配線、16・・・リンシリケート
ガラスからなるファイナルパッシベーション膜、17〜
20・・・コンタクトホール、21・・・酸化シリコン
膜、22・・砒素導入領域、23・・・フォトレジスト
膜、24・・・ボロン導入領域。 代理人 弁理士 高 橋 明 夫
Figure 1 shows mutually complementary MISFETQ+. A cross-sectional view of the CMISIC with Q2, FIG.
CMIS with cross-sectional view 1 shown in the figure along line AA'
The plan view of the IC and FIGS. 3 to 8 are cross-sectional views taken along line AA' in FIG. 2, showing the manufacturing process of the CMI SIC according to the present invention. DESCRIPTION OF SYMBOLS 1...N-conductivity type silicon semiconductor substrate, 2...P-conductivity type well layer, 3...P-conductivity type well layer introduced according to the present invention, 4...N4 introduced according to the present invention Tortoise-shaped diffusion region, 5... Field insulating film made of oxidized silicon, 6... P+ type drain layer, 7... N
+ type drain 1.8...Gate electrode made of polycrystalline silicon, 9...Gate insulating film made of silicon oxide, 10...Silicon oxide film, 11...Silicon oxide that protects the gate electrode Film, 12... First passivation film made of phosphosilicate glass, 13-1
5... Aluminum wiring, 16... Final passivation film made of phosphosilicate glass, 17-
20... Contact hole, 21... Silicon oxide film, 22... Arsenic doped region, 23... Photoresist film, 24... Boron doped region. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、N導電型シリコン基板上に薄い酸化膜を形成し、前
記薄い酸化膜を介してヒ素を基板内に導入する工程と、
P導電型ウェル層を形成すべき領域に選択的にボロンを
導入する工程と、導入した、ヒ素とボロンを基板内に熱
括散させる工程とを含む半導体装置の製造方法。 2 ヒ素がアンチモンであること(r−特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
[Claims] 1. A step of forming a thin oxide film on an N-conductivity type silicon substrate and introducing arsenic into the substrate through the thin oxide film;
A method for manufacturing a semiconductor device, which includes a step of selectively introducing boron into a region where a P-conductivity type well layer is to be formed, and a step of thermally dissipating the introduced arsenic and boron into a substrate. 2. The method for manufacturing a semiconductor device according to claim 1, wherein the arsenic is antimony (r-).
JP58143849A 1983-08-08 1983-08-08 Manufacture of semiconductor device Pending JPS6035563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143849A JPS6035563A (en) 1983-08-08 1983-08-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143849A JPS6035563A (en) 1983-08-08 1983-08-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6035563A true JPS6035563A (en) 1985-02-23

Family

ID=15348385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143849A Pending JPS6035563A (en) 1983-08-08 1983-08-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6035563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135879U (en) * 1986-02-20 1987-08-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135879U (en) * 1986-02-20 1987-08-26

Similar Documents

Publication Publication Date Title
JPS62174966A (en) Manufacture of semiconductor device
JPH0410226B2 (en)
JPH05326854A (en) Manufacture of bicmos semiconductor element
US4409725A (en) Method of making semiconductor integrated circuit
JPH04348065A (en) Semiconductor device and its manufacture
JP3443069B2 (en) Method for manufacturing semiconductor device
JPS6035563A (en) Manufacture of semiconductor device
GB2107117A (en) Semiconductor integrated circuit devices
JPS62181458A (en) Complementary type mos transistor and manufacture thereof
JP3097095B2 (en) Method for manufacturing semiconductor device
KR930008022B1 (en) Semiconductor device
EP0281032B1 (en) Semiconductor device comprising a field effect transistor
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPS6244862B2 (en)
KR100259586B1 (en) Method for manufacturing semiconductor device
JPH02237024A (en) Semiconductor device and manufacture thereof
JP2508218B2 (en) Complementary MIS integrated circuit
JPS6226850A (en) Manufacture of integrated circuit device
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH0653423A (en) Semiconductor device and fabrication thereof
JP2002313948A (en) Mos semiconductor device and its manufacturing method
JPS59144168A (en) Bipolar mos semiconductor device and manufacture thereof
JPS59138363A (en) Semiconductor device and manufacture thereof
JP2793207B2 (en) Method for manufacturing semiconductor device
KR0147386B1 (en) Method of making a sram cell having diodes