JPH0638476B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0638476B2
JPH0638476B2 JP59232870A JP23287084A JPH0638476B2 JP H0638476 B2 JPH0638476 B2 JP H0638476B2 JP 59232870 A JP59232870 A JP 59232870A JP 23287084 A JP23287084 A JP 23287084A JP H0638476 B2 JPH0638476 B2 JP H0638476B2
Authority
JP
Japan
Prior art keywords
type
epitaxial layer
pnp transistor
region
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59232870A
Other languages
Japanese (ja)
Other versions
JPS61111575A (en
Inventor
善夫 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59232870A priority Critical patent/JPH0638476B2/en
Priority to KR1019850007581A priority patent/KR940005447B1/en
Priority to CA000493970A priority patent/CA1254671A/en
Priority to GB08526749A priority patent/GB2167231B/en
Priority to CN85108134.7A priority patent/CN1004845B/en
Priority to AU49315/85A priority patent/AU572005B2/en
Priority to NL8503033A priority patent/NL194711C/en
Priority to FR8516362A priority patent/FR2572850B1/en
Priority to AT0318985A priority patent/AT395272B/en
Priority to DE3539208A priority patent/DE3539208C2/en
Publication of JPS61111575A publication Critical patent/JPS61111575A/en
Publication of JPH0638476B2 publication Critical patent/JPH0638476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0826Combination of vertical complementary transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8224Bipolar technology comprising a combination of vertical and lateral transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0821Combination of lateral and vertical transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はnpnトランジスタとpnpトランジスタとを
それぞれ具備する半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having an npn transistor and a pnp transistor, respectively.

従来の技術 従来、この種の半導体装置として、バイポーラICが知
られている。このバイポーラICを構成する素子として
は、通常npnトランジスタが主として用いられ、回路
構成上混用すると有利な場合にはnpnトランジスタが
併用されている。このpnpトランジスタには、動作方
向が基板表面と平行な横形pnpトランジスタ(または
ラテラルpnpトランジスタ)と、動作方向が基板表面
と垂直な縦形トランジスタ(またはサブpnpトランジ
スタ)とがある。
2. Description of the Related Art Conventionally, a bipolar IC has been known as a semiconductor device of this type. An npn transistor is usually mainly used as an element forming the bipolar IC, and an npn transistor is also used when it is advantageous to mix the two in terms of circuit configuration. The pnp transistor includes a horizontal pnp transistor (or lateral pnp transistor) whose operation direction is parallel to the substrate surface, and a vertical transistor (or sub pnp transistor) whose operation direction is vertical to the substrate surface.

これらのnpnトランジスタ、横形pnpトランジスタ
及び縦形pnpトランジスタを同時に用いたバイポーラ
ICは、従来例えば第5A図〜第5C図に示すような方
法により製造されている。すなわち、まず第5A図に示
すように、p型シリコン基板1にn+型の埋込層2,3を
形成し、次いでこのp型シリコン基板1上にn型のシリ
コンエピタキシヤル層4を形成した後、このシリコンエ
ピタキシヤル層4中にp型シリコン基板1にまで達する
p+型の分散拡散領域5を形成する。次に第5B図に示す
ように、上記シリコンエピタキシヤル層4にnpnトラ
ンジスタ用のp型のベース領域7と、縦形pnpトラン
ジスタ用のp型のエミツタ領域8及びコレクタ取出し領
域9と、横形pnpトランジスタ用のp型のエミツタ領
域10及びコレクタ領域11とをそれぞれ形成する。次
に第5C図に示すように、シリコンエピタキシヤル層4
にnpnトランジスタ用のn+型のエミッタ領域12及び
コレクタ取出し領域13と、縦形pnpトランジスタ用
のn+型のベース取出し領域14と、横形pnpトランジ
スタ用のベース取出し領域15とをそれぞれ形成する。
この後、上記各領域7〜15に電極(図示せず)を形成
して、バイポーラICを完成させる。
A bipolar IC using the npn transistor, the lateral pnp transistor and the vertical pnp transistor at the same time has been conventionally manufactured by a method shown in FIGS. 5A to 5C, for example. That is, as shown in FIG. 5A, first, n + type buried layers 2 and 3 are formed on a p type silicon substrate 1, and then an n type silicon epitaxial layer 4 is formed on the p type silicon substrate 1. And then reach the p-type silicon substrate 1 in the silicon epitaxial layer 4.
A p + type dispersion diffusion region 5 is formed. Next, as shown in FIG. 5B, in the silicon epitaxial layer 4, a p-type base region 7 for an npn transistor, a p-type emitter region 8 and a collector extraction region 9 for a vertical pnp transistor, and a lateral pnp transistor are formed. A p-type emitter region 10 and a collector region 11 are formed respectively. Next, as shown in FIG. 5C, a silicon epitaxial layer 4 is formed.
To the n + -type emitter region 12 and collector take-out region 13 for the npn transistor, the n + -type base extraction region 14 for vertical pnp transistor are formed respectively a base take-out region 15 for lateral pnp transistor.
After that, electrodes (not shown) are formed in the regions 7 to 15 to complete the bipolar IC.

このようにして製造される第5C図に示すバイポーラI
Cにおいては、エミツタ領域12と、ベース領域7と、
このベース領域7と埋込層3との間のシリコンエピタキ
シヤル層4から成るコレクタ領域16とでnpnトラン
ジスタ17が構成されている。またエミツタ領域8と、
このエミツタ領域8の下方のシリコンエピタキシヤル層
4から成るベース領域18と、上記エミツタ領域8の下
方のp型シリコン基板1から成るコレクタ領域19とで
縦形pnpトランジスタ20が構成されている。さらに
エミツタ領域10と、コレクタ領域11と、これらのエ
ミツタ領域10及びコレクタ領域11間のシリコンエピ
タキシヤル層4から成るベース領域21とで横形pnp
トランジスタ22が構成されている。なお縦形pnpト
ランジスタ20の下方に埋込層を設けていないのは、直
流電流増幅率hFEを得るためである。
The bipolar I shown in FIG. 5C manufactured in this way
In C, the emitter region 12, the base region 7,
The base region 7 and the collector region 16 formed of the silicon epitaxial layer 4 between the buried layer 3 form an npn transistor 17. In addition, the emission area 8
A vertical pnp transistor 20 is composed of a base region 18 made of the silicon epitaxial layer 4 below the emitter region 8 and a collector region 19 made of the p-type silicon substrate 1 below the emitter region 8. Further, the emitter region 10, the collector region 11, and the base region 21 formed of the silicon epitaxial layer 4 between the emitter region 10 and the collector region 11 form a lateral pnp.
The transistor 22 is configured. The buried layer is not provided below the vertical pnp transistor 20 in order to obtain the direct current amplification factor h FE .

上述の第5C図に示すバイポーラICは次のような欠点
を有している。すなわち、低電圧、高速バイポーラIC
を得るためには、シリコンエピタキシヤル層4の厚さを
1〜2μm程度に薄くする必要があるが、このようにシ
リコンエピタキシヤル層4を薄くすると横形pnpトラ
ンジスタ22のhFEが低下してしまうので、これを防止
するためにはベース幅Wを小さく設計する必要がある。
しかしながら、Wを例えば2μm程度に小さくすると、
コレクタ・エミツタ間でパンチスルーが起きてしまうと
いう欠点がある。同様に縦形pnpトランジスタ20
も、シリコンエピタキシヤル層4が薄くなると縦方向に
パンチスルーが起きてしまうという欠点がある。
The bipolar IC shown in FIG. 5C has the following drawbacks. That is, low voltage, high speed bipolar IC
In order to obtain the above, it is necessary to reduce the thickness of the silicon epitaxial layer 4 to about 1 to 2 μm. However, when the silicon epitaxial layer 4 is reduced in this way, h FE of the lateral pnp transistor 22 decreases. Therefore, in order to prevent this, it is necessary to design the base width W small.
However, if W is reduced to about 2 μm, for example,
There is a drawback that punch through occurs between the collector and the emitter. Similarly, a vertical pnp transistor 20
However, there is a drawback that punch-through occurs in the vertical direction when the silicon epitaxial layer 4 becomes thin.

発明が解決しようとする問題点 本発明は、上述の問題にかんがみ、従来のパイポーラI
C等の半導体装置が有する上述のような欠点を是正した
半導体装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In view of the above-mentioned problems, the present invention is based on the conventional PIpolar
An object of the present invention is to provide a semiconductor device in which the above-mentioned drawbacks of a semiconductor device such as C are corrected.

問題点を解決するための手段 本発明に係る半導体装置は、npnトランジスタ(例え
ばnpnトランジスタ17)とpnpトランジスタ(例
えば横型pnpトランジスタ22及び縦型pnpトラン
ジスタ20)とをそれぞれ具備する半導体装置(例えば
バイポーラIC)において、半導体基板(例えばp型シ
リコン基板1)上にn型エピタキシャル層(例えばシリ
コンエピタキシャル層4)を設けると共に、上記n型エ
ピタキシャル層中に上記npnトランジスタを設け、更
に、上記n型エピタキシャル層よりも高いn型不純物濃
度を有するn型半導体領域(例えばn型領域26、2
7)を上記n型エピタキシャル層中に直接設けると共
に、上記n型半導体領域中に上記pnpトランジタを設
けている。
Means for Solving the Problems A semiconductor device according to the present invention includes a semiconductor device (for example, a bipolar device) including an npn transistor (for example, an npn transistor 17) and a pnp transistor (for example, a lateral pnp transistor 22 and a vertical pnp transistor 20). In an IC), an n-type epitaxial layer (eg, silicon epitaxial layer 4) is provided on a semiconductor substrate (eg, p-type silicon substrate 1), the npn transistor is provided in the n-type epitaxial layer, and the n-type epitaxial layer is further provided. N-type semiconductor region having a higher n-type impurity concentration than the layer (for example, n-type regions 26, 2)
7) is directly provided in the n-type epitaxial layer, and the pnp transistor is provided in the n-type semiconductor region.

また、上記npnトランジスタは横形pnpトランジス
タであることが好ましい。
The npn transistor is preferably a lateral pnp transistor.

また、上記n型不純物濃度は、1×1016cm-3以上〜
1×1017cm-3以下の範囲であることが好ましい。
The n-type impurity concentration is 1 × 10 16 cm −3 or more.
It is preferably in the range of 1 × 10 17 cm −3 or less.

実施例 以下本発明に係る半導体装置をバイポーラICに適用し
た一実施例につち図面に基づいて説明する。なお以下の
第1A図〜第1D図においては、第5A図〜第5C図と
同一部分には同一の符号を付し、必要に応じてその説明
を省略する。
Embodiment An embodiment in which the semiconductor device according to the present invention is applied to a bipolar IC will be described below with reference to the drawings. In FIGS. 1A to 1D below, the same parts as those in FIGS. 5A to 5C are designated by the same reference numerals, and the description thereof will be omitted as necessary.

まず本実施例によるバイポーラICの製造方法につき説
明する。
First, a method of manufacturing the bipolar IC according to this embodiment will be described.

第1A図に示すように、まずp型シリコン基板1にヒ素
(As)、アンチモン(Sb)等のn型の不純物を高濃度に拡散
させてn+型の埋込層2,3を形成した後、p型シリコン
基板1上に例えば厚さが2μmで比抵抗ρが1Ωcmのn
型のシリコンエピタキシヤル層4を形成する。次にこの
シリコンエピタキシヤル層4の表面にSiO2膜24を形成
した後、このSiO2膜24を介してこのシリコンエピタキ
シヤル層4中にAs等のn型不純物を設定条件で選択的に
イオン注入する(シリコンエピタキシヤル層4中の注入
不純物をOで表す)。
As shown in FIG. 1A, arsenic is first formed on the p-type silicon substrate 1.
After n-type impurities such as (As) and antimony (Sb) are diffused at a high concentration to form n + -type buried layers 2 and 3, a p-type silicon substrate 1 having a thickness of, for example, 2 μm is used. N with resistance ρ of 1Ωcm
A silicon epitaxial layer 4 of the mold is formed. Next, an SiO 2 film 24 is formed on the surface of the silicon epitaxial layer 4, and then an n-type impurity such as As is selectively ionized in the silicon epitaxial layer 4 through the SiO 2 film 24 under a set condition. Implant (impurity impurity in silicon epitaxial layer 4 is represented by O).

次に、第1B図に示すように、SiO2間24の所定部分を
エツチング除去して開口24a〜24dを形成した後、
これらの開口24a〜24dを通じでp型不純物、例え
ばホウ素(B)をシリコンエピタキシヤル層4中に拡散さ
せて、p型シリコン基板1にまで達するp+型の分離拡散
領域5を形成する。この分離拡散領域5を形成するため
の熱処理の際には、シリコンエピタキシヤル層4中の上
記注入不純物が深さ方向に拡散されると共に電気的に活
性化される。その結果、シリコンエピタキシヤル層4中
にこのシリコンエピタキシヤル層4の不純物濃度よりも
高く、また後述のnpnトランジスタ17のベース領域
7の不純物濃度よりも低い不純物濃度、例えば5×10
16cm-3程度のn型領域26〜28を形成する。この後、
SiO2膜24をエツチング除去する。
Next, as shown in FIG. 1B, a predetermined portion of the SiO 2 space 24 is etched and removed to form openings 24a to 24d,
A p-type impurity such as boron (B) is diffused into the silicon epitaxial layer 4 through the openings 24a to 24d to form a p + -type isolation diffusion region 5 reaching the p-type silicon substrate 1. During the heat treatment for forming the isolation diffusion region 5, the implanted impurities in the silicon epitaxial layer 4 are diffused in the depth direction and electrically activated. As a result, the impurity concentration in the silicon epitaxial layer 4 is higher than the impurity concentration of the silicon epitaxial layer 4 and lower than the impurity concentration of the base region 7 of the npn transistor 17 described later, for example, 5 × 10 5.
The n-type regions 26 to 28 of about 16 cm −3 are formed. After this,
The SiO 2 film 24 is removed by etching.

次に第1C図に示すように、上記n型領域26中にそれ
ぞれp型のコレクタ領域11及びエミツタ領域10を、
上記n型領域27中にp型のエミツタ領域8を、また上
記シリコンエピタキシヤル層4中にp型ベース領域7を
形成する。この後、上記ベース領域7にp+型のグラフト
・ベース領域29を、また上記エミツタ領域8,10に
それぞれp+型領域30,31を形成する。
Next, as shown in FIG. 1C, a p-type collector region 11 and an emitter region 10 are formed in the n-type region 26, respectively.
A p-type emitter region 8 is formed in the n-type region 27, and a p-type base region 7 is formed in the silicon epitaxial layer 4. After that, a p + type graft base region 29 is formed in the base region 7, and p + type regions 30 and 31 are formed in the emitter regions 8 and 10, respectively.

次に第1D図に示すように、n型領域26〜28にそれ
ぞれn+型のベース取出し領域15,14、コレクタ取出
し領域13をそれぞれ形成すると共に、ベース領域7中
にn+型のエミツタ領域12を形成した後、各領域9,1
1〜15,29〜31にそれぞれ電極(図示せず)を形
成して、目的とするバイポーラICを完成させる。
Next, as shown in FIG. 1D, n + type base take-out regions 15 and 14 and collector take-out regions 13 are formed in the n type regions 26 to 28, respectively, and the n + type emitter regions are formed in the base region 7. After forming 12, each area 9, 1
Electrodes (not shown) are formed on 1 to 15 and 29 to 31, respectively, to complete the intended bipolar IC.

上述のようにして製造された第1D図に示すパイポーラ
ICにおける横形pnpトランジスタ22の動作周波数
fTとコレクタ電流ICとの関係をベース幅Wをパラメータ
として第2図に示す。またこの横形pnpトランジス2
2の直流電流増幅率hFE及びコレクタ・エミツタ間耐圧
CEOとベース幅Wとの関係を第3図に示す。
Operating frequency of the lateral pnp transistor 22 in the bipolar IC shown in FIG. 1D manufactured as described above.
The relationship between f T and collector current I C is shown in FIG. 2 with the base width W as a parameter. Also this horizontal pnp Transis 2
The relationship between the direct current amplification factor h FE, the collector-emitter breakdown voltage V CEO, and the base width W of No. 2 is shown in FIG.

この第3図から明らかなように、W=2μmにすると、
従来ではVCEOが5V以下となつてパンチスルーが起き
てしまうのに対して、本実施例によればhFEをあまり低
下させることなくVCEOを10V程度と従来に比べて高
くすることができる。このため、第2図から明らかなよ
うに、50〜60MHz程度の地のfTを得ることができ
る。
As is clear from FIG. 3, when W = 2 μm,
Conventionally, punch-through occurs when V CEO is 5 V or less, but according to the present embodiment, V CEO can be increased to about 10 V as compared with the prior art without significantly reducing h FE. . Therefore, as is clear from FIG. 2, it is possible to obtain a ground f T of about 50 to 60 MHz.

次に上述の実施例によるバイポーラICにおける縦形p
npトランジスタ20のfTとICとの関係を第4図に示
す。この第4図から明らかなように、従来のバイポーラ
ICにおける縦形pnpトランジスタ20においてもパ
ンチスルーが起きない厚さ(5μm以上)のシリコンエ
ピタキシヤル層4を用いた場合には20MHz程度の地の
fTしか得られないのに対して、本実施例によれば、厚さ
2μmのシリコンエピタキシヤル層4を用いることによ
り10MHz程度の値のfTを得ることができ、しかもV
CEOを15V以上とすることができる。
Next, the vertical p in the bipolar IC according to the above-described embodiment
The relationship between f T and I C of the np transistor 20 is shown in FIG. As is apparent from FIG. 4, when the vertical epitaxial pnp transistor 20 in the conventional bipolar IC also uses the silicon epitaxial layer 4 having a thickness (5 μm or more) at which punch-through does not occur, it is about 20 MHz.
While only f T can be obtained, according to the present embodiment, by using the silicon epitaxial layer 4 having a thickness of 2 μm, f T of about 10 MHz can be obtained, and V
CEO can be 15V or higher.

このように、上述の実施例によれば、シリコンエピタキ
シヤル層4の厚さを例えば2μmと極めて薄くした場合
においても、横形pnpトランジスタ22及び縦形pn
pトランジスタ20のVCEOを十分に高くすることがで
きるので、パンチスルーを起こすことなく従来に比べて
極めて高いfTを得ることができる。このようにパンチス
ルーが起きるのを防止することができるのは、次のよう
な理由による。すなわちシリコンエピタキシヤル層4中
にこのシリコンエピタキシヤル層4よりも不純物濃度の
高いn型領域26,27を形成し、これらのn形領域2
6,27中にそれぞれ横形pnpトランジスタ22及び
縦形pnpトランジスタ20を形成しているので、コレ
クタ・ベース間の接合における空乏層のベース側への広
がりを不純物濃度が高い分だけ従来に比べて小さくする
ことができるためである。
As described above, according to the above-described embodiment, even when the thickness of the silicon epitaxial layer 4 is extremely thin, for example, 2 μm, the lateral pnp transistor 22 and the vertical pnp transistor 22 are formed.
Since V CEO of the p-transistor 20 can be made sufficiently high, an extremely high f T can be obtained as compared with the conventional one without causing punch through. The reason why punch through can be prevented in this way is as follows. That is, n-type regions 26 and 27 having an impurity concentration higher than that of the silicon epitaxial layer 4 are formed in the silicon epitaxial layer 4, and these n-type regions 2 are formed.
Since the lateral pnp transistor 22 and the vertical pnp transistor 20 are formed in 6 and 27, respectively, the expansion of the depletion layer at the junction between the collector and the base toward the base side is made smaller than that of the conventional one due to the higher impurity concentration. This is because it is possible.

以上本発明を実施例につき説明したが、本発明は上述の
実施例に限定されるものではなく、本発明の技術的思想
に基づく種々の変形が可能である。例えば、上述の実施
例においてはn型領域26〜28の不純物濃度を5×1
16cm-3としたが、必要に応じて不純物濃度をこれより
も高くすることも低くすることも可能である。しかし、
パンチスルーを効果的に防止すること等のためには、1
×1016〜1×1017cm-3の範囲の不純物濃度とするの
が好ましい。
Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the above embodiment, the impurity concentration of the n-type regions 26 to 28 is set to 5 × 1.
Although it is set to 0 16 cm −3 , the impurity concentration can be set higher or lower than this as required. But,
To effectively prevent punch-through, etc., 1
The impurity concentration is preferably in the range of x10 16 to 1x10 17 cm -3 .

発明の効果 本発明に係る半導体装置によれば、半導体基板上に設け
られているn型エピタキシヤル層中にnpnトランジス
タを設けると共に、上記n型エピタキシヤル成長層中に
設けられかつこのn型エピタキシヤル層よりも不純物濃
度の高いn型半導体領域中にpnpトランジスタを設け
ているので、n型エピタキシヤル層を薄くした場合にお
いてもpnpトランジスタのパンチスルーが起きるのを
防止することが可能であり、従つて高速動作の半導体装
置を提供することが可能である。
According to the semiconductor device of the present invention, the npn transistor is provided in the n-type epitaxial layer provided on the semiconductor substrate, and the npn transistor is provided in the n-type epitaxial growth layer. Since the pnp transistor is provided in the n-type semiconductor region having an impurity concentration higher than that of the jar layer, punch-through of the pnp transistor can be prevented even when the n-type epitaxial layer is thinned. Therefore, it is possible to provide a high-speed operation semiconductor device.

【図面の簡単な説明】[Brief description of drawings]

第1A図〜第1D図は本発明の一実施例によるバイポー
ラICの製造方法の一例を工程順に示す断面図、第2図
は横形pnpトランジスタの動作周波数fTとコレクタ電
流ICとの関係をベース幅Wをパラメータとして示すグラ
フ、第3図は横形pnpトランジスタの直流電流増幅率
hFE及びコレクタ・エミツタ間耐圧VCEOとベース幅Wと
の関係を示すグラフ、第4図は縦形pnpトランジスタ
の動作周波数fTとコレクタ電流ICとの関係を示すグラ
フ、第5A図〜第5C図は従来のバイポーラICの製造
方法を工程順に示す断面図である。 なお図面に用いた符号において、 1……p型シリコン基板 4……シリコンエピタキシヤル層 5……分散拡散領域 7,8,21……ベース領域 8,10,12……エミツタ領域 11,16,19……コレクタ領域 17……npnトランジスタ 20……縦形pnpトランジスタ 22……横形pnpトランジスタ 26,27,28……n型領域 である。
1A to 1D are sectional views showing an example of a method of manufacturing a bipolar IC according to an embodiment of the present invention in the order of steps, and FIG. 2 shows the relationship between the operating frequency f T of a lateral pnp transistor and the collector current I C. A graph showing the base width W as a parameter, and FIG. 3 shows a direct current amplification factor of a lateral pnp transistor.
A graph showing the relationship between h FE and the collector-emitter breakdown voltage V CEO and the base width W, FIG. 4 is a graph showing the relationship between the operating frequency f T of the vertical pnp transistor and the collector current I C, and FIGS. 5A to 5A. FIG. 5C is a cross-sectional view showing the method of manufacturing the conventional bipolar IC in the order of steps. In the reference numerals used in the drawings, 1 ... p-type silicon substrate 4 ... silicon epitaxial layer 5 ... dispersion diffusion region 7,8,21 ... base region 8,10,12 ... emitter region 11,16, 19 ... Collector region 17 ... npn transistor 20 ... Vertical pnp transistor 22 ... Horizontal pnp transistor 26, 27, 28 ... N-type region.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】npnトランジスタとpnpトランジスタ
とをそれぞれ具備する半導体装置において、 半導体基板上にn型エピタキシャル層を設けると共に、 上記n型エピタキシャル層中に上記npnトランジスタ
を設け、 更に、上記n型エピタキシャル層よりも高いn型不純物
濃度を有するn型半導体領域を上記n型エピタキシャル
層中に直接設けると共に、 上記n型半導体領域中に上記pnpトランジスタを設け
たことを特徴とする半導体装置。
1. A semiconductor device comprising an npn transistor and a pnp transistor, respectively, wherein an n-type epitaxial layer is provided on a semiconductor substrate, and the npn transistor is provided in the n-type epitaxial layer. A semiconductor device, wherein an n-type semiconductor region having an n-type impurity concentration higher than that of the layer is directly provided in the n-type epitaxial layer, and the pnp transistor is provided in the n-type semiconductor region.
【請求項2】上記pnpトランジスタは横形pnpトラ
ンジスタであることを特徴とする特許請求の範囲第1項
に記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the pnp transistor is a lateral pnp transistor.
【請求項3】上記n型不純物濃度は、1×1016cm-3
以上〜1×1017cm-3以下の範囲であることを特徴と
する特許請求の範囲第1項に記載の半導体装置。
3. The n-type impurity concentration is 1 × 10 16 cm −3.
The semiconductor device according to claim 1, wherein the range is from 1 to 10 17 cm −3 or less.
JP59232870A 1984-11-05 1984-11-05 Semiconductor device Expired - Lifetime JPH0638476B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59232870A JPH0638476B2 (en) 1984-11-05 1984-11-05 Semiconductor device
KR1019850007581A KR940005447B1 (en) 1984-11-05 1985-10-15 Semiconductor device
CA000493970A CA1254671A (en) 1984-11-05 1985-10-28 Semiconductor device with npn and pnp transistors
GB08526749A GB2167231B (en) 1984-11-05 1985-10-30 Semiconductor devices
CN85108134.7A CN1004845B (en) 1984-11-05 1985-11-02 Semiconductor device
AU49315/85A AU572005B2 (en) 1984-11-05 1985-11-04 Semiconductor device with npn and pnp transistors
NL8503033A NL194711C (en) 1984-11-05 1985-11-05 Semiconductor device with a lateral pnp transistor and a vertical pnp transistor.
FR8516362A FR2572850B1 (en) 1984-11-05 1985-11-05 DEVICE OF A SEMICONDUCTOR COMPONENT, IN PARTICULAR A BIPOLAR INTEGRATED CIRCUIT, COMPRISING NPN AND PNP, LATERAL AND VERTICAL TRANSISTORS
AT0318985A AT395272B (en) 1984-11-05 1985-11-05 SEMICONDUCTOR DEVICE WITH VERTICAL AND LATERAL NPN AND PNP TRANSISTORS ON A COMMON SUBSTRATE
DE3539208A DE3539208C2 (en) 1984-11-05 1985-11-05 Semiconductor device with a lateral and a vertical pnp transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59232870A JPH0638476B2 (en) 1984-11-05 1984-11-05 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5279026A Division JP2777054B2 (en) 1993-10-01 1993-10-12 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61111575A JPS61111575A (en) 1986-05-29
JPH0638476B2 true JPH0638476B2 (en) 1994-05-18

Family

ID=16946115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59232870A Expired - Lifetime JPH0638476B2 (en) 1984-11-05 1984-11-05 Semiconductor device

Country Status (10)

Country Link
JP (1) JPH0638476B2 (en)
KR (1) KR940005447B1 (en)
CN (1) CN1004845B (en)
AT (1) AT395272B (en)
AU (1) AU572005B2 (en)
CA (1) CA1254671A (en)
DE (1) DE3539208C2 (en)
FR (1) FR2572850B1 (en)
GB (1) GB2167231B (en)
NL (1) NL194711C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768183B2 (en) * 2001-04-20 2004-07-27 Denso Corporation Semiconductor device having bipolar transistors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1520515A (en) * 1967-02-07 1968-04-12 Radiotechnique Coprim Rtc Integrated circuits incorporating transistors of opposite types and methods of making them
JPS5710964A (en) * 1980-06-25 1982-01-20 Fujitsu Ltd Manufacture of semiconductor device
JPS58212159A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device
DE3361832D1 (en) * 1982-04-19 1986-02-27 Matsushita Electric Ind Co Ltd Semiconductor ic and method of making the same

Also Published As

Publication number Publication date
AU4931585A (en) 1986-05-15
NL194711B (en) 2002-08-01
AU572005B2 (en) 1988-04-28
FR2572850A1 (en) 1986-05-09
JPS61111575A (en) 1986-05-29
DE3539208A1 (en) 1986-05-15
GB2167231A (en) 1986-05-21
KR940005447B1 (en) 1994-06-18
CN85108134A (en) 1986-07-02
NL194711C (en) 2002-12-03
KR860004472A (en) 1986-06-23
GB2167231B (en) 1988-03-02
FR2572850B1 (en) 1988-09-09
CA1254671A (en) 1989-05-23
CN1004845B (en) 1989-07-19
NL8503033A (en) 1986-06-02
DE3539208C2 (en) 1998-04-09
GB8526749D0 (en) 1985-12-04
ATA318985A (en) 1992-03-15
AT395272B (en) 1992-11-10

Similar Documents

Publication Publication Date Title
US4283236A (en) Method of fabricating lateral PNP transistors utilizing selective diffusion and counter doping
US4137109A (en) Selective diffusion and etching method for isolation of integrated logic circuit
US4210925A (en) I2 L Integrated circuit and process of fabrication
JPH06151723A (en) Bipolar transistor structure of monolithic semiconductor element and manufacture of said monolithic semiconductor element
US4780425A (en) Method of making a bipolar transistor with double diffused isolation regions
US4255209A (en) Process of fabricating an improved I2 L integrated circuit utilizing diffusion and epitaxial deposition
US5218227A (en) Semiconductor device and method of manufacturing same
EP0341461B1 (en) Process for making a bipolar integrated circuit
US5837590A (en) Isolated vertical PNP transistor without required buried layer
US4819049A (en) Method of fabricating high voltage and low voltage transistors using an epitaxial layer of uniform thickness
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
JPH0638476B2 (en) Semiconductor device
EP0718891B1 (en) High performance, high voltage non-epi bipolar transistor
JP2777054B2 (en) Semiconductor device
JPH0582534A (en) Semiconductor device
JP3068510B2 (en) Semiconductor device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
EP0296771A2 (en) Semiconductor device with a buried layer, and method of manufacture
JPS6140140B2 (en)
JP3226232B2 (en) Semiconductor device and manufacturing method thereof
JPH05308077A (en) Bipolar semiconductor device and manufacture thereof
JPS639667B2 (en)
JPH0230143A (en) Semiconductor integrated circuit device
JPH07183308A (en) Manufacture of vertical bipolar transistor
JPH05206153A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term