JPH0638043B2 - Automatic appearance sorter for chip parts - Google Patents

Automatic appearance sorter for chip parts

Info

Publication number
JPH0638043B2
JPH0638043B2 JP62214433A JP21443387A JPH0638043B2 JP H0638043 B2 JPH0638043 B2 JP H0638043B2 JP 62214433 A JP62214433 A JP 62214433A JP 21443387 A JP21443387 A JP 21443387A JP H0638043 B2 JPH0638043 B2 JP H0638043B2
Authority
JP
Japan
Prior art keywords
chip
component
transport path
sorting
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62214433A
Other languages
Japanese (ja)
Other versions
JPS6457106A (en
Inventor
亨 水野
保彦 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62214433A priority Critical patent/JPH0638043B2/en
Priority to KR1019890002517A priority patent/KR0122739B1/en
Publication of JPS6457106A publication Critical patent/JPS6457106A/en
Publication of JPH0638043B2 publication Critical patent/JPH0638043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チップコンデンサ、コイル等のコア部品その
他LC複合部品等のチップ状電子・電気部品を外観検査
するチップ部品自動外観検査・選別装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an automatic visual inspection / selecting device for chip parts for visually inspecting chip-shaped electronic / electrical parts such as core parts such as chip capacitors and coils and other LC composite parts. Regarding

(従来技術) この種の電子部品は、縦、横の長さ、厚み等の外形不良
や部品の各要部の寸法誤差、その他欠け、割れ等がある
と、これが特性に影響し、また実装上も不都合を生じる
ため、製造工程において特性値検査に加えて外観による
検査を行う必要がある。
(Prior Art) This type of electronic component has a defect in external shape such as vertical and horizontal lengths and thickness, a dimensional error in each main part of the component, and other defects and cracks, which affect the characteristics and mounting. Since the above also causes inconvenience, it is necessary to perform an inspection by appearance in addition to the characteristic value inspection in the manufacturing process.

従来チップ部品の外観検査は、肉眼あるいは拡大レンズ
等を用いた目視検査で行っている。一例を挙げれば、第
12図(a)〜(c)の工程図で示すように、まず部品
50をガラスパレット51上に重ならない様に適当な個
数並べ(第12図(a))、拡大レンズ52を用いてこ
のガラスパレット51上の部品50を拡大し、目視で表
面側の良、不良を判別して不良部品50′を取り除き
(同図(b))、さらに部品を並べた前記ガラスパレッ
ト51に別のガラスパレット53を重ねて表裏反転し
(同図(c))、前述と同様にして部品裏面の検査、選
別を行うという方法をとっていた。
Conventionally, the visual inspection of chip parts is performed by visual inspection using the naked eye or a magnifying lens. As an example, as shown in the process charts of FIGS. 12 (a) to 12 (c), first, an appropriate number of components 50 are arranged so as not to overlap with each other on the glass pallet 51 (FIG. 12 (a)), and enlarged. The component 50 on the glass pallet 51 is magnified using the lens 52, and the defective or defective component 50 'is visually determined to remove the defective component 50' (FIG. 2B), and the glass is further arranged. Another glass pallet 53 is overlaid on the pallet 51, the front and back are reversed (FIG. 7C), and the back surface of the component is inspected and selected in the same manner as described above.

(発明が解決しようとする問題点) 上述した従来の肉眼による外観検査は、感覚的な要素が
多く、検査基準の定量化が難しく、検査員の個人差によ
り判定基準が変わり、検査後品質のばらつきが出やす
い。またガラスパレット上の部品の整列、良品、不良品
の選別等すべて手作業によるため、疲労や人為的なミ
ス、そのときの気分的な影響があり、特にチップコンデ
ンサやLC複合部品の場合は検査要員を増大せねばなら
ず、コスト高となる欠点があった。
(Problems to be Solved by the Invention) In the above-described conventional visual inspection with the naked eye, there are many sensory elements, and it is difficult to quantify the inspection standard. It tends to vary. In addition, alignment of parts on the glass pallet, sorting of non-defective products and non-defective products are all done by hand, which may cause fatigue, human error, and a mood effect at that time. Especially in the case of chip capacitors and LC composite parts, inspection is required. The number of personnel must be increased, and there is a drawback that the cost becomes high.

本発明は、このような状況に鑑みてなされたものであっ
て、検査基準の定量化、品質の向上、安定化、および検
査処理の高速化、検査要員の削減を図り得るチップ部品
自動外観選別機を提供することにある。
The present invention has been made in view of such a situation, and is a chip component automatic appearance selection capable of quantifying inspection standards, improving quality, stabilizing, speeding up inspection processing, and reducing inspection personnel. To provide a machine.

(問題点を解決するための手段) 本発明は、光を透過させ得る部品搬送用凹溝を備え、空
気流によってチップ部品が該凹溝内を滑走するようにな
った搬送路と、部品搬送方向に隔置された2体の分離ピ
ンを備え該分離ピンの交互動作で複数の部品を分離し間
欠的に停止させる部品分離・停止機構と、前記部品搬送
用凹溝の表裏両側に配置されたテレビカメラを含む斜光
・透過照明装置と、A/D変換器、ビデオメモリおよび
中央処理装置を含む画像処理装置と、前記傾斜搬送路の
下部に設けられかつ3つの分別シュートおよびシュート
開閉用ゲート部材を備えた選別機構と、前記選別機構の
上段側の搬送路に設けられかつ該搬送路を滑走する部品
を計数する部品計数機構部とを有し、前記シュート開閉
用ゲート部材は前記画像処理装置の出力信号および前記
部品計数機構部からの計数信号により前記分別シュート
を切り換え動作するようにした自動外観選別機を提供す
るものである。
(Means for Solving Problems) The present invention includes a component-conveying concave groove that allows light to pass therethrough, and a conveying path in which a chip component slides in the concave groove by an air flow, and a component conveying groove. And a component separating / stopping mechanism that includes two separating pins that are spaced apart from each other in a direction and that intermittently stops a plurality of components by an alternating operation of the separating pins, and is disposed on both front and back sides of the component transporting concave groove. Oblique illumination / transmissive illumination device including a television camera, an image processing device including an A / D converter, a video memory and a central processing unit, and three sorting chutes and chute opening / closing gates provided at the lower part of the inclined conveyance path. A chute opening / closing gate member, and a chute opening / closing gate member for counting the number of parts sliding on the conveyance path. Device output It is an object of the present invention to provide an automatic appearance sorter in which the sorting chute is switched and operated by a signal and a count signal from the component counting mechanism section.

(実施例) 次に、図面を参照して本発明の実施例を説明する。(Example) Next, the Example of this invention is described with reference to drawings.

以下の実施例は第1図に示すような両端に電極部2をも
つチップコンデンサ1(以下の説明でチップと記したも
のは、このチップコンデンサを指している)を外観検査
する場合である。検査項目としては全長のL寸法、素地
部3の幅W寸法、電極部幅B,B,B,B
法、素地部3の貫通欠け(Wmax.−Wmin.)を対象項目
とする。
The following embodiment is a case where a chip capacitor 1 having electrode portions 2 at both ends as shown in FIG. 1 (a chip described in the following description refers to this chip capacitor) is inspected for appearance. The inspection items are the L dimension of the entire length, the width W dimension of the base portion 3, the electrode widths B 1 , B 2 , B 3 , B 4 dimensions, and the through breakage (W max.- W min. ) Of the base portion 3 . It is an item.

第3図は本発明の実施例に係る画像処理部の概略図であ
り、第4図は被検査部品であるチップコンデンサを光学
照射して外観をテレビカメラで撮像検査する場合の斜
光、透過照明部の概略図である。後述する傾斜搬送路4
のすりガラス5上に保持されたチップコンデンサ1は該
すりガラス5の下側から光源7により透過照明されると
ともに、光源7からコンデンサレンズ8およびスリット
4aを通し、反射板9を介した斜光照明によりカメラ1
0に取り込まれ、ビデオ信号として画像処理部のA/D
変換部に入力される。このような光学系およびカメラ1
0はチップ搬送路に沿って2体設置され、その一方はチ
ップコンデンサ1の表側を、他方はその裏側を検出する
ようになっている。なお、以下の実施例では傾斜搬送路
を用いているが、本発明はこれに限定されるものではな
く、水平面に対し0〜90゜の角度をもつ搬送路が適用
可能である。
FIG. 3 is a schematic diagram of an image processing unit according to an embodiment of the present invention, and FIG. 4 is oblique light and transmitted illumination in a case where a chip capacitor, which is a component to be inspected, is optically irradiated to inspect and image the appearance with a TV camera. It is a schematic diagram of a part. Inclined transport path 4 described later
The chip capacitor 1 held on the frosted glass 5 is illuminated by the light source 7 from the lower side of the frosted glass 5, and the camera is also illuminated by oblique light from the light source 7 through the condenser lens 8 and the slit 4a and the reflector 9. 1
0, and the A / D of the image processing unit as a video signal
Input to the conversion unit. Such an optical system and camera 1
Two 0s are installed along the chip transport path, one of which detects the front side of the chip capacitor 1 and the other of which detects the back side thereof. It should be noted that although the inclined conveying path is used in the following embodiments, the present invention is not limited to this, and a conveying path having an angle of 0 to 90 ° with respect to the horizontal plane can be applied.

画像処理部は第3図の如く上述した斜光、透過照明系を
含むカメラ部11a,11b,A/D変換12a,12
b,ビデオメモリ部13a,13b,画像処理用CPU
14a,14b,総合判定および機構部制御用のCPU
15,および前記各ビデオメモリ部13a,13bにス
イッチ17を通して接続されたCRTモニタ部16を有
している。総合判定および機構部制御用CPU15は画
像処理用CPU14a,14bで得られた表面と裏面の
結果の総合判定および後述するチップ搬送,分離,検査
位置での停止,選別等の機構部の制御機能を受け持つ。
カメラ部11a,11bでとらえたチップ表面,裏面の
ビデオ信号は、それぞれA/D変換部12a,12bで
ディジタル化してビデオメモリ部13a,13bに記憶
され、さらにCPU14a,14bおよびCUP15で
処理される。
The image processing unit is, as shown in FIG. 3, the camera units 11a and 11b including the oblique light and the transillumination system, and the A / D converters 12a and 12 described above.
b, video memory units 13a and 13b, image processing CPU
14a, 14b, CPU for comprehensive judgment and mechanism control
15 and a CRT monitor section 16 connected to each of the video memory sections 13a and 13b through a switch 17. The CPU 15 for comprehensive determination and mechanism section control performs a comprehensive determination of the results of the front and back sides obtained by the image processing CPUs 14a and 14b and control functions of the mechanism section such as chip transportation, separation, stop at inspection position, and sorting. Take charge.
The video signals on the front and back surfaces of the chip captured by the camera units 11a and 11b are digitized by the A / D conversion units 12a and 12b and stored in the video memory units 13a and 13b, and further processed by the CPUs 14a and 14b and the CUP 15. .

本発明では前述の如くテレビカメラで画像をとらえ、選
択番地方式で走引して寸法測定を行い、各箇所の実測値
と設定値を比較し、良否を判別する。まずチップコンデ
ンサの外形検査については、第2図(a)のようにCR
T上の中央部に像が写るようにし、中央部に相当するア
ドレスより画面の両側から上下に走引し、白い部分,黒
い部分に変る境界を検出し、これにより外形を認識す
る。ここでチップの有無,W,L寸法,チップ傾きθ
(第2図(b)参照)および欠けの項目の判別がなされ
る。傾きθはYmin.のXアドレスYmax.のXアドレスの
ずれ量により求める。次にチップコンデンサの電極部2
の検査は、上述の外形認識によって求められたW寸法を
4等分し、そのライン上(第2図(a)の,,,
)における電極の幅を測定する。このときチップの傾
きθの値によって電極の幅検出値が修正される。なお電
極判別の場合、チップの素地部3の状態により素地中央
部が第2図(a)符号Aの如く白く光ることがあるが、
これを電極部分と区別するために白の幅,黒の幅のリミ
ットを設定し、例えば第2図(a)の符号pで示す如
く、連続した黒い部分がリミット内であるとき、それま
での白い部分が電極であると判断する。
In the present invention, as described above, the image is captured by the television camera, the dimension is measured by traveling in the selected address system, and the measured value and the set value at each location are compared to determine the quality. First of all, regarding the external inspection of the chip capacitor, as shown in FIG.
The image is made to appear in the central part on T, and the image is traced from both sides of the screen up and down from the address corresponding to the central part, and the boundaries changing to white and black parts are detected, and the outer shape is recognized. Here, presence / absence of tip, W and L dimensions, tip inclination θ
(See FIG. 2 (b)) and the missing item are determined. The inclination θ is obtained from the shift amount of the X address of Y min. And the X address of Y max . Next, the electrode part 2 of the chip capacitor
In the inspection of, the W dimension obtained by the above-mentioned outer shape recognition is divided into four equal parts, and on the line (Fig. 2 (a) ,,,,
) Measure the width of the electrode. At this time, the electrode width detection value is corrected by the value of the tip inclination θ. In the case of electrode discrimination, depending on the state of the base material portion 3 of the chip, the center portion of the base material may illuminate white as indicated by the symbol A in FIG.
In order to distinguish this from the electrode portion, the limits of the width of white and the width of black are set, and when a continuous black portion is within the limit, for example, as shown by the symbol p in FIG. Judge that the white part is the electrode.

このようにして本発明では単純なシーケンシャル番地走
引でなく、選択番地方式の走引を行うことにより、高速
処理が可能となる。
As described above, according to the present invention, high-speed processing can be performed by performing the selected address method instead of the simple sequential address method.

光学系としては、既述の第4図のようにコンデンサレン
ズおよび反射板を用いるほかに、第5図に示すようなフ
ァイバリングによる照明手段を用いることもできる。ガ
ラス5上のチップコンデンサ1と同芯にかつその表裏側
に透過光用ファイバー20および斜光用ファイバリング
21を設置し、それぞれファイバケーブル22,23で
光源7と結び、これらの透過光用ファイバー20および
斜光用ファイバリング21と同芯上にカメラ10を設置
し、斜光照明と透過照明を組み合せた像を検出する。第
4図のレンズ、反射板の場合と比較し、光学系の調整が
著しく容易となる。
As the optical system, in addition to using the condenser lens and the reflecting plate as shown in FIG. 4 described above, it is possible to use an illuminating means by a fiber ring as shown in FIG. A fiber 20 for transmitted light and a fiber ring 21 for oblique light are installed concentrically with the chip capacitor 1 on the glass 5 and on the front and back sides thereof, and are connected to the light source 7 by fiber cables 22 and 23, respectively. Also, the camera 10 is installed concentrically with the fiber ring 21 for oblique light, and an image obtained by combining oblique light and transmitted light is detected. The adjustment of the optical system becomes significantly easier than in the case of the lens and the reflector shown in FIG.

次に上述の外観検査方法を実施するのに適した本発明の
自動外観検査・選別機を説明する。第6図はこの外観選
別機の概略的な側面図であり、第7図は第6図の矢視F
方向からみたチップ搬送部およびチップ選別部の拡大正
面図である。装置本体30の上側前面に、この実施例で
は水平面に対してほぼ45゜に傾斜したチップ搬送路2
4が形成され、該搬送路の上端にチップフィーダ25が
設けられている。搬送路24上にはチップ分離機構部2
6,表面側検査部27a,裏面側検査部27b,計数機
構部28,および選別機構部29が設けられている。
Next, an automatic appearance inspection / sorting machine of the present invention suitable for carrying out the above-described appearance inspection method will be described. FIG. 6 is a schematic side view of the appearance sorter, and FIG. 7 is a view F of FIG.
FIG. 3 is an enlarged front view of a chip transport unit and a chip selection unit as seen from the direction. On the upper front surface of the apparatus main body 30, in this embodiment, the chip transfer path 2 inclined at about 45 ° with respect to the horizontal plane.
4 is formed, and a chip feeder 25 is provided at the upper end of the transport path. The chip separation mechanism unit 2 is provided on the transport path 24.
6, a front surface side inspection unit 27a, a back surface side inspection unit 27b, a counting mechanism unit 28, and a sorting mechanism unit 29 are provided.

まず搬送路24は、装置本体30の上端から最下方の選
別機構部29まで延在しており、搬送路全体が強化ガラ
ス等の透明または半透明部材で形成され、その中央に搬
送方向全長にのびた鋭利なエッジをもつ凹溝31が形成
されている。チップフィーダ25から供給されたチップ
コンデンサ1はこの搬送路24の凹溝31に沿って、該
凹溝に開口したエアジェットノズルからの噴出エアの流
れ(エアジェット)により、搬送される。以下、このエ
アジェットによる搬送動作を説明する。
First, the transport path 24 extends from the upper end of the apparatus main body 30 to the lowermost sorting mechanism portion 29, and the entire transport path is formed of a transparent or translucent member such as tempered glass, and has the entire length in the transport direction at the center thereof. A concave groove 31 having a sharpened edge is formed. The chip condenser 1 supplied from the chip feeder 25 is conveyed along the concave groove 31 of the conveying path 24 by a flow of air (air jet) ejected from an air jet nozzle opened in the concave groove. Hereinafter, the transport operation by this air jet will be described.

第8図はチップ搬送用エアジェットノズルの開口位置に
おける搬送路凹溝部分の縦断面(凹溝に沿った断面)図
である。凹溝31の上面は強化ガラス等の透明または半
透明部材の蓋板60で蓋閉されているが、エアジェット
が導入される部分の蓋板には、凹溝底面に対して15゜
以下の、具体的な例としては約8゜の角度をもつエアジ
ェットノズル55が形成されており、このエアジェット
ノズルから凹溝内へエアジェット49が噴出する。この
エアジェット49のために、凹溝31内はエアジェット
ノズル55の開口位置より上流側(符号Uで示す)でチ
ップ吸引作用が生じ、また該ノズルの開口位置より下流
側(符号Dで示す)でチップ押し出しの作用が生じる。
凹溝内のチップ1はしたがってノズル位置より上流側で
は前記吸引作用で搬送されノズル位置を通過するとエア
ジェットに押されて搬送される。なおエアジェットノズ
ルは前記蓋板に設けずに凹溝の底面側に設けてもよい。
FIG. 8 is a vertical cross-sectional view (cross-section along the concave groove) of the concave groove portion of the conveying path at the opening position of the chip conveying air jet nozzle. The upper surface of the groove 31 is covered with a cover plate 60 made of a transparent or semi-transparent material such as tempered glass. However, the cover plate of the portion into which the air jet is introduced has an angle of 15 ° or less with respect to the bottom surface of the groove. As a concrete example, an air jet nozzle 55 having an angle of about 8 ° is formed, and an air jet 49 is ejected from this air jet nozzle into the concave groove. Due to this air jet 49, a tip suction action occurs in the groove 31 on the upstream side (indicated by symbol U) of the opening position of the air jet nozzle 55, and on the downstream side (indicated by symbol D) of the nozzle opening position. ) Causes chip extrusion.
Therefore, the chip 1 in the concave groove is transported by the suction action on the upstream side of the nozzle position, and is pushed by the air jet to be transported when passing the nozzle position. The air jet nozzle may be provided on the bottom surface side of the concave groove instead of being provided on the cover plate.

チップフィーダ25からのチップ供給部に続き、適当な
搬送方向距離Sをおいて設けられた分離機構部26は、
第10図(a)〜(c)に示すように、搬送路24に対
して垂直に上昇、下降して前記凹溝31内に出入する一
対のクッションを有した分離ピン32,33が設けら
れ、凹溝内を連続して滑落してきたチップコンデンサを
1個づつ所定の間隔に分離して次段の検査部27a,2
7bへ送り出すようになっている。一対の分離ピン3
2,33の中間位置で搬送路24の凹溝31には、チッ
プ分離用エアジェットノズル34が該凹溝の底面に対し
て垂直に開口しており、前記分離ピンと連動した所定の
タイミングでチップ分離用エアが吹き出すようになって
いる。第10図(a)の段階ではチップフィーダ側分離
ピン32が上昇、検査部側分離ピン33が下降すること
により、該分離ピン33より上方(チップフィーダ側)
にあるチップコンデンサ1が隙間なく搬送路24にため
られる。次にフィーダ側分離ピン32が下降してその先
端でチップ(チップコンデンサ)を押え付け、これによ
り該分離ピン32位置のチップが固定される(第10図
(b))。次に第10図(c)のように検査部側分離ピ
ン33が上昇し、同時に前記チップ分離用エアジェット
ノズル34からエアが吹き出すことにより、該分離ピン
33にせき止められていた先端の1個のチップが下方へ
滑走し、チップの分離がなされる。その後、再び分離ピ
ン33の下降、分離ピン32の上昇で第10図(a)の
状態に戻り、このサイクルを繰り返してチップが所定の
間隔で1個づつ後段の検査部へ送られる。以上からも分
るように、分離ピン32,33の間隔Tは適用するチッ
プ1個の長さ以上でかつ2個の長さ以下の間隔に設定さ
れる。チップ分離用エアジェットノズル34はチップ搬
送路24の凹溝31および隣接チップとの間で密着(静
電気等による)して走行不能となってチップ供給の歯抜
けが生じるのを防止するためのものである。なお第8図
で説明したチップ搬送を目的としたエアジェットノズル
55は、チップの移動と停止部の間、具体的には前記分
離機構部26と裏面側検査部27bの間、表面側および
裏面側検査部27a,27bの中間位置、表面側検査部
27aと計数機構部28の中間位置に設けられ、また同
様に搬送を目的とした補助エアジェットノズル54が分
離機構部26の上方Sの区間に設けられている(第7図
参照)。
Following the chip supply unit from the chip feeder 25, the separation mechanism unit 26 provided with an appropriate transport direction distance S is
As shown in FIGS. 10 (a) to 10 (c), separation pins 32 and 33 having a pair of cushions that rise and fall vertically with respect to the transport path 24 and move into and out of the concave groove 31 are provided. , The chip capacitors that have continuously slid in the concave groove are separated into predetermined intervals one by one, and the inspection units 27a, 2 in the next stage are separated.
It is designed to be sent to 7b. A pair of separation pins 3
An air jet nozzle 34 for chip separation opens perpendicularly to the bottom surface of the groove in the groove 31 of the transport path 24 at an intermediate position between 2, 33, and the chip is operated at a predetermined timing in conjunction with the separation pin. Separation air is blown out. At the stage of FIG. 10A, the separation pin 32 on the chip feeder side rises and the separation pin 33 on the inspection section side descends, so that the separation pin 33 is located above the separation pin 33 (on the chip feeder side).
The chip capacitor 1 located at is stored in the transport path 24 without a gap. Next, the feeder-side separation pin 32 descends and presses the chip (chip capacitor) at its tip, whereby the chip at the position of the separation pin 32 is fixed (FIG. 10 (b)). Next, as shown in FIG. 10 (c), the separation pin 33 on the inspection portion side rises, and at the same time, air is blown out from the air jet nozzle 34 for chip separation, so that one of the tips that has been stopped by the separation pin 33 is stopped. Chips slide downward, and the chips are separated. Thereafter, the separating pin 33 is lowered again and the separating pin 32 is raised to return to the state of FIG. 10A, and this cycle is repeated, and the chips are sent one by one at a predetermined interval to the subsequent inspection unit. As can be seen from the above, the distance T between the separating pins 32 and 33 is set to be equal to or more than the length of one chip to be applied and equal to or less than the length of two chips. The chip separation air jet nozzle 34 is provided to prevent the chip supply tooth gap from being generated due to inability to run due to close contact (due to static electricity or the like) between the concave groove 31 of the chip transport path 24 and the adjacent chip. Is. The air jet nozzle 55 for the purpose of chip transportation described in FIG. 8 is provided between the chip movement and the stop portion, specifically between the separating mechanism portion 26 and the back surface side inspection portion 27b, the front surface side and the back surface side. The auxiliary air jet nozzle 54, which is provided at an intermediate position between the side inspection parts 27a and 27b and an intermediate position between the front surface side inspection part 27a and the counting mechanism part 28, and similarly has the purpose of transport, is located above the separation mechanism part 26 in the section S. (See FIG. 7).

表面側検査部27a,裏面側検査部27bには第4図,
第5図で説明したような斜光・透過照明装置35a,3
5b(第6図参照),テレビカメラ部11a,11bが
搬送路24をはさんで設けられ、既述した画像処理部に
よりチップ表面,裏面の外観検査がなされる。各検査部
には、第9図に示すように、1個づつ落下してきたチッ
プ1を光学中心位置に一時停止させるためのシャッタ1
8およびシャッタ確認センサ36(第7図)が設けられ
る。このシャッタ18は、強化ガラスまたは鏡面仕上げ
ステンレス板等で構成されている。ステンレス板の場合
はその鏡面により照射光が全反射し、画像上でこれが白
く写り、チップ外観判別に影響を与えないようにしてい
る。
The front surface side inspection unit 27a and the back surface side inspection unit 27b are shown in FIG.
Oblique / transmissive illumination devices 35a, 3 as described with reference to FIG.
5b (see FIG. 6), television camera units 11a and 11b are provided across the transport path 24, and the image processing unit described above performs visual inspection of the front and back surfaces of the chip. As shown in FIG. 9, each inspection unit has a shutter 1 for temporarily stopping the chips 1 dropped one by one at the optical center position.
8 and a shutter confirmation sensor 36 (FIG. 7) are provided. The shutter 18 is made of tempered glass or a mirror-finished stainless plate. In the case of a stainless steel plate, its mirror surface totally reflects the irradiation light so that this light appears white in the image and does not affect the appearance of the chip.

チップ表裏面の光学検査後、例えば光電検出器および可
動ストッパピン(図示省略)から成るチップ計数機構部
28を経て最下段の選別機構部29で良品,不良,検査
不能(RI)の3分別がなされる。第11図は第7図の
X−X線に沿った選別機構部の拡大断面図である。ここ
において搬送路24は中央の良品排出路37と、その両
側のRI排出路38,不良品排出路39の3通路に分け
られ、この通路を切り換えるための一対のゲートプレー
ト40,41が回転可能に設けられている。各ゲートプ
レートの枢軸43は、カム46と係合するカムフロア4
5にレバー44を介して連結されるとともにソレノイド
47に連結されており、カム46の動作で変形正弦回転
運動を行い、前記画像処理部からの信号およびチップ計
数機構部28による当該チップ部品の計数済み信号によ
りソレノイド47のON,OFFで起動,停止の動作を
行って上記3通路の切り換えを行う。なお、第7図でゲ
ートプレートが実線位置にある場合は良品排出路37が
開となっており、またゲートプレート40が破線位置に
倒れたときRI排出路38のみが開となってチップ搬送
路42と連通する。各排出路37〜39の上面はカバー
板48で閉塞されていることは勿論である。なおソレノ
イド47の動作として、通常の停止や緊急の停止の場合
に、ゲートプレートは、検査部の結果に拘らず、チップ
コンデンサが必ずRI排出路に落ちるような位置で停止
し、これによって何らかの異常で良品にRIまたは不良
チップが混入することがないようにしている。また不良
の信号が或る回数(例えば5回)連続して出力されたと
きには装置全体が停止するようになっており、これによ
ってゴミ付着等による誤検出を排除するようにしてい
る。
After the optical inspection of the front and back surfaces of the chip, for example, a chip counting mechanism unit 28 including a photoelectric detector and a movable stopper pin (not shown) is used, and a sorting mechanism unit 29 at the lowermost stage is used to separate the good product, the defective product, and the uninspectable (RI) into three parts. Done. FIG. 11 is an enlarged sectional view of the sorting mechanism section taken along line XX of FIG. Here, the transport path 24 is divided into three passages of a non-defective product discharge passage 37 in the center, an RI discharge passage 38 and defective product discharge passage 39 on both sides thereof, and a pair of gate plates 40 and 41 for switching these passages are rotatable. It is provided in. The pivot 43 of each gate plate has a cam floor 4 that engages a cam 46.
5 is connected to the solenoid 5 via a lever 44 and is also connected to a solenoid 47. The cam 46 operates to perform a modified sinusoidal rotational motion, and counts the signal from the image processing unit and the chip component by the chip counting mechanism unit 28. By the completion signal, the solenoid 47 is turned on and off to start and stop, thereby switching the above three passages. In FIG. 7, when the gate plate is in the solid line position, the non-defective product discharge path 37 is open, and when the gate plate 40 falls to the broken line position, only the RI discharge path 38 is open and the chip transfer path is opened. It communicates with 42. Of course, the upper surfaces of the discharge paths 37 to 39 are closed by the cover plate 48. As for the operation of the solenoid 47, in the case of a normal stop or an emergency stop, the gate plate stops at a position where the chip capacitor always falls into the RI discharge path regardless of the result of the inspection unit, which causes some abnormality. In order to prevent RI or defective chips from being mixed in with good products. Further, when a defective signal is continuously output a certain number of times (for example, 5 times), the entire apparatus is stopped, thereby eliminating erroneous detection due to dust adhesion or the like.

(発明の効果) 以上説明したように本発明によれば、斜光照明と透過照
明を組み合せた方式を採用したので、チップ部品の高精
度画像の取り込みがなされ、ビデオメモリ上の画像を選
択番地方式で走引し、これをCPUにて処理するため、
高速画像処理が可能となる。チップコンデンサ等のチッ
プ部品は搬送路上をエアジェットによって滑走し、しか
も1個づつ光学検査部を通過し、画像処理部の判別信号
を用いて選別機構により自動的に良,不良を振り分ける
ようにしたので、高速かつ正確な自動外観選別がなされ
る。搬送路に対する部品の摩擦、静電気発生等による部
品付着はエアジェット搬送を用いることにより防止さ
れ、スムーズに被検査部品の投入、搬送ができる。実施
例のように搬送路を傾斜形とした場合は、部品の自重滑
走をエアジェット搬送に加えて補助的に利用でき、保守
性、稼動安定性が向上する。機構全体もきわめてシンプ
ルで、誤動作が少なく、従来の目視検査による非能率、
検査レベルのバラツキ等の問題が解消されるといった種
々の効果が得られる。
(Effect of the invention) As described above, according to the present invention, since a system combining oblique illumination and transmitted illumination is adopted, a high-precision image of a chip component is captured, and an image on a video memory is selected by an address system. In order to process this with the CPU,
High-speed image processing becomes possible. Chip parts such as chip capacitors slide on the transport path by an air jet, pass through the optical inspection section one by one, and the sorting mechanism automatically sorts good and bad by using the discrimination signal of the image processing section. So fast and accurate automatic appearance sorting is done. Adhesion of parts to the transfer path due to friction of the parts and generation of static electricity is prevented by using air jet transfer, and the parts to be inspected can be smoothly introduced and transferred. When the transport path is inclined as in the embodiment, the component's own weight sliding can be used as an auxiliary in addition to the air jet transport, and the maintainability and operation stability are improved. The whole mechanism is extremely simple, there are few malfunctions, inefficiency due to conventional visual inspection,
Various effects such as elimination of problems such as variations in inspection level can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に適用されるチップ部品の一例(チップ
コンデンサ)を示した正面図、第2図(a)は本発明に
よる画像走引形態を示した図、第2図(b)はチップコ
ンデンサの傾き角を示した図、第3図は本発明に係る画
像処理部のブロック図、第4図は平行光レンズおよび反
射板による斜光・透過照明装置の概略図、第5図はファ
イバリングおよびファイバケーブルを用いた斜光・透過
照明装置の概略図、第6図は本発明の1実施例による自
動外観検査・選別機の部分的な側面図、第7図は第6図
の矢視F方向からみたチップ搬送路の拡大正面図、第8
図はチップ搬送用エアジェットノズル部分における搬送
路凹溝部の縦断面図、第9図は搬送路の検査部における
シャッタを示した正面図、第10図(a)〜(c)はチ
ップ分離機構部を分離ピンの動作順序にしたがって示し
た側面断面図、第11図は第7図のX−X線に沿った選
別機構部の概略的な拡大断面図、第12図(a)〜
(c)は従来のチップ外観検査形態を動作順に示した斜
視図である。 1……チップコンデンサ(チップ)、 4,24……傾斜搬送路、 11……カメラ部、 12a,12b……A/D変換部、 13a,13b……ビデオメモリ部、 14a,14b,15……CPU(中央処理装置)、 16……CRTモニタ部、18……シャッタ、 25……チップフィーダ、 26……チップ分離機構部、 27a,27b……検査部、 28……計数機構部、29……選別機構部、 30……装置本体、31……凹溝、 32,33……分離ピン、 34……チップ分離用エアジェットノズル、 35a,35b……斜光・透過照明装置、 37……良品排出路、38……RI排出路、 39……不良品排出路、 40,41……ゲートプレート、 46……円板カム、47……ソレノイド、 55……チップ搬送用エアジェットノズル。
FIG. 1 is a front view showing an example of a chip component (chip capacitor) applied to the present invention, FIG. 2 (a) is a view showing an image scanning mode according to the present invention, and FIG. 2 (b) is FIG. 3 is a diagram showing the inclination angle of the chip capacitor, FIG. 3 is a block diagram of an image processing unit according to the present invention, FIG. 4 is a schematic view of an oblique light / transmissive illumination device using a parallel light lens and a reflection plate, and FIG. 5 is a fiber. FIG. 6 is a schematic view of an oblique light / transmissive illumination device using a ring and a fiber cable, FIG. 6 is a partial side view of an automatic visual inspection / sorting machine according to an embodiment of the present invention, and FIG. 8 is an enlarged front view of the chip transfer path as seen from the F direction.
FIG. 9 is a vertical cross-sectional view of a concave groove portion of a conveying path in an air jet nozzle portion for chip conveying, FIG. 9 is a front view showing a shutter in an inspection portion of the conveying path, and FIGS. 10A to 10C are chip separating mechanisms. 11 is a side cross-sectional view showing the parts according to the operation sequence of the separating pin, FIG. 11 is a schematic enlarged cross-sectional view of the sorting mechanism part taken along line XX in FIG. 7, and FIG.
(C) is a perspective view showing a conventional chip appearance inspection mode in order of operation. DESCRIPTION OF SYMBOLS 1 ... Chip capacitor (chip), 4, 24 ... Inclined conveyance path, 11 ... Camera section, 12a, 12b ... A / D conversion section, 13a, 13b ... Video memory section, 14a, 14b, 15 ... ... CPU (central processing unit), 16 ... CRT monitor section, 18 ... Shutter, 25 ... Chip feeder, 26 ... Chip separating mechanism section, 27a, 27b ... Inspecting section, 28 ... Counting mechanism section, 29 ...... Sorting mechanism section, 30 ...... Device body, 31 ...... Concave groove, 32,33 ...... Separation pin, 34 ...... Chip separation air jet nozzle, 35a, 35b ...... Slanting / transmissive illumination device, 37 ...... Good product discharge path, 38 ... RI discharge path, 39 ... Defective product discharge path, 40, 41 ... Gate plate, 46 ... Disc cam, 47 ... Solenoid, 55 ... Chip conveying air jet nozzle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光を透過させ得る透明または半透明の部品
搬送用凹溝を備え、空気流によってチップ部品が該凹溝
内を滑走するようになった搬送路と、部品搬送方向に隔
置された2本の分離ピンを備え該分離ピンの交互動作で
複数の部品を分離し間欠的に停止させる部品分離・停止
機構と、前記部品搬送用凹溝の表裏両側に配置されたテ
レビカメラを含む斜光・透過照明装置と、A/D変換
器、ビデオメモリおよび中央処理装置を含む画像処理装
置と、前記搬送路の下部に設けられかつ3つの分別シュ
ートおよびシュート開閉用ゲート部材を備えた選別機構
と、前記選別機構の上段側の搬送路に設けられかつ該搬
送路を滑走する部品を計数する部品計数機構部とを有
し、前記シュート開閉用ゲート部材は前記画像処理装置
の出力信号および前記部品計数機構部からの計数信号に
より前記分別シュートを切り換え動作することを特徴と
するチップ部品の自動外観選別機。
1. A conveying path provided with a transparent or semi-transparent concave groove for transmitting a component capable of transmitting light, wherein a chip component slides in the concave groove by an air flow, and is separated in a component conveying direction. A component separating / stopping mechanism that includes two separated pins that are separated from each other and that intermittently stops a plurality of components by alternating operation of the separating pins; An oblique light / transmissive illumination device including the above, an image processing device including an A / D converter, a video memory, and a central processing unit, and a selection provided at the lower portion of the transport path and provided with three sorting chutes and a chute opening / closing gate member. A chute opening / closing gate member, which has a mechanism and a component counting mechanism section which is provided in the upper transport path of the sorting mechanism and counts the components sliding on the transport path. The above Automatic visual sorter chip component, characterized by operating switching the sorting chute by counting signals from the goods counting mechanism.
【請求項2】前記搬送路は水平面に対し概ね40゜〜5
0゜の勾配を有した傾斜搬送路であることを特徴とする
特許請求の範囲第1項に記載したチップ部品の自動外観
選別機。
2. The transport path is approximately 40 ° to 5 ° with respect to a horizontal plane.
The automatic appearance sorting machine for chip parts according to claim 1, characterized in that it is an inclined conveying path having a gradient of 0 °.
JP62214433A 1987-08-28 1987-08-28 Automatic appearance sorter for chip parts Expired - Fee Related JPH0638043B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62214433A JPH0638043B2 (en) 1987-08-28 1987-08-28 Automatic appearance sorter for chip parts
KR1019890002517A KR0122739B1 (en) 1987-08-28 1989-02-28 Method and measuring device for classification of chip-type component and checking of chip-type component's aspect by optical

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62214433A JPH0638043B2 (en) 1987-08-28 1987-08-28 Automatic appearance sorter for chip parts

Publications (2)

Publication Number Publication Date
JPS6457106A JPS6457106A (en) 1989-03-03
JPH0638043B2 true JPH0638043B2 (en) 1994-05-18

Family

ID=16655702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62214433A Expired - Fee Related JPH0638043B2 (en) 1987-08-28 1987-08-28 Automatic appearance sorter for chip parts

Country Status (1)

Country Link
JP (1) JPH0638043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239964B2 (en) * 1993-01-14 2001-12-17 東芝エンジニアリング株式会社 Parts sorting equipment
JPH06288721A (en) * 1993-04-01 1994-10-18 Masahide Matsuda Automatic inspection device
JP2696658B2 (en) * 1993-04-19 1998-01-14 エヌティエヌ株式会社 Parts feeder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243303A (en) * 1985-04-22 1986-10-29 Hitachi Denshi Ltd Visual inspection system for mounted substrate
JPS61177500U (en) * 1985-04-24 1986-11-05
JPH0774724B2 (en) * 1985-08-30 1995-08-09 富士通株式会社 Inspection method
JPS62127616A (en) * 1985-11-29 1987-06-09 Toppan Printing Co Ltd Method and device for detecting curved surface contour image of transparent container
JPH0711410B2 (en) * 1985-11-29 1995-02-08 富士通株式会社 Parts inspection device

Also Published As

Publication number Publication date
JPS6457106A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
JPH0577475B2 (en)
US5432600A (en) Systems for optically inspecting cylindrical surfaces
CA1065436A (en) Method and apparatus for video inspection of articles of manufacture
CA2317906C (en) Vision system for industrial parts
US4915237A (en) Comprehensive container inspection system
US5405015A (en) System and method for seeking and presenting an area for reading with a vision system
CN107076680B (en) Inspection apparatus and method for transmission light inspection of containers
JPH0654226B2 (en) Automatic visual inspection machine for chip parts
JPH01269034A (en) Package inspection system
WO2004036198A1 (en) Method and device for preparing reference image in glass bottle inspection device
KR101779974B1 (en) System for inspecting defects of glass
JP2006142236A (en) Sorting apparatus
CA2377332A1 (en) System and method for inspecting cans
JPH0736004B2 (en) Inspection method and device
US5991017A (en) Inspecting the surface of an object
CN207881650U (en) A kind of glass contours size detecting system
EP0019489A1 (en) Apparatus for detecting the presence of surface irregularities in articles made of transparent material
JPH0638043B2 (en) Automatic appearance sorter for chip parts
KR101366188B1 (en) Vision inspection apparatus having side surface and head surface inspecting function
KR20090041568A (en) Apparatus for electronic part inspection
JPH02257044A (en) Device for inspecting bottle
JPH065614Y2 (en) Component transport mechanism for automatic chip component visual inspection machine
KR200337386Y1 (en) Coin inspection system
JP2000346813A (en) Inspection device for surface of article
JP2758550B2 (en) Appearance inspection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees