JPH0637567Y2 - Non-aqueous liquid active material battery - Google Patents

Non-aqueous liquid active material battery

Info

Publication number
JPH0637567Y2
JPH0637567Y2 JP8028787U JP8028787U JPH0637567Y2 JP H0637567 Y2 JPH0637567 Y2 JP H0637567Y2 JP 8028787 U JP8028787 U JP 8028787U JP 8028787 U JP8028787 U JP 8028787U JP H0637567 Y2 JPH0637567 Y2 JP H0637567Y2
Authority
JP
Japan
Prior art keywords
battery
groove
battery container
shape
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8028787U
Other languages
Japanese (ja)
Other versions
JPS63188864U (en
Inventor
博和 吉川
佐藤  淳
茂 池成
賢一 横山
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP8028787U priority Critical patent/JPH0637567Y2/en
Publication of JPS63188864U publication Critical patent/JPS63188864U/ja
Application granted granted Critical
Publication of JPH0637567Y2 publication Critical patent/JPH0637567Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は防爆機能を具えた非水液体活物質電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a non-aqueous liquid active material battery having an explosion-proof function.

〔従来の技術〕[Conventional technology]

塩化チオニル−リチウム電池で代表されるような正極活
物質として塩化チオニル、塩化スルフリル、塩化ホスホ
リルなどのオキシハロゲン化物系液体を用い、負極にリ
チウム、ナトリウム、カリウムなどのアルカリ金属を用
いる非水液体活物質電池では、正極活物質やアルカリ金
属などが水と非常に反応しやすいため、電池容器をハー
メチックシールにより封口する完全密封構造が採用され
ている。
Thionyl chloride-A non-aqueous liquid active material that uses an oxyhalide-based liquid such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride as a positive electrode active material typified by a lithium battery, and an alkali metal such as lithium, sodium, or potassium in the negative electrode. In a material battery, a positive electrode active material, an alkali metal, and the like are very likely to react with water, so a completely sealed structure in which a battery container is hermetically sealed is adopted.

このようなハーメチックシールを採用した非水液体活物
質電池では、密閉性が高く、貯蔵性に優れるという長所
を有するものの、その反面、密閉性が高いために、高温
加熱下にさらされたり、高電圧で充電されるなどの異常
事態に遭遇したときに、電池の内部圧力が異常に上昇し
て電池が破裂し、大きな破裂音が発生すると共に、電池
内容物が周囲に飛び散って電池使用機器を汚損するおそ
れがある。
The non-aqueous liquid active material battery adopting such a hermetic seal has the advantages of high sealing property and excellent storability, but on the other hand, due to its high sealing property, it may be exposed to high temperature heating or high temperature. When an abnormal situation such as charging with voltage is encountered, the internal pressure of the battery rises abnormally and the battery explodes, creating a loud popping sound and the battery contents splashing around and There is a risk of contamination.

そこで、同様に、密封構造をとるアルカリ電池に関して
提案されていような、電池容器の底部に十字状に溝を形
成して電池容器の底部に薄肉部を設けることによって電
池に防爆機能をそなえさせることが、この非水液体活物
質電池においても取り入れることが必要になる。
Therefore, similarly, a battery is provided with an explosion-proof function by forming a cross-shaped groove in the bottom of the battery container and providing a thin portion at the bottom of the battery container, as has been proposed for a sealed alkaline battery. However, it is necessary to incorporate it also in this non-aqueous liquid active material battery.

しかしながら、アルカリ電池において提案されている防
爆用の溝は、その断面形状がV字状で、その先端、つま
り溝底部を鋭利な状態にするか(例えば、実公昭58-173
32号公報)、あるいは断面V字状でその溝底部に0.1〜
0.2mmRの丸みをつけたものであり(例えば、実公昭58-2
6460号公報)、これらは、以下に詳述するように、溝形
成用のポンチの耐久性面や、防爆性能面から、非水液体
活物質電池には適用することができない。
However, the explosion-proof groove proposed in the alkaline battery has a V-shaped cross-section, and its tip, that is, the groove bottom, is sharpened (for example, Japanese Utility Model Publication 58-173).
No. 32), or with a V-shaped cross section at the bottom of the groove of 0.1 to
It has a roundness of 0.2mmR (for example
As described in detail below, these cannot be applied to a non-aqueous liquid active material battery in view of the durability of the punch for forming the groove and the explosion-proof performance.

すなわち、アルカリ電池で提案されている断面形状がV
字状で溝底部が鋭利な溝は、切欠効果は期待できるもの
の、プレス成形により溝を形成する際に、溝形成用のポ
ンチの先端部がすぐに損傷を受け、特に非水液体活物質
電池では、正極活物質の強い腐食性に耐えるために電池
容器にはステンレス鋼などの硬度の高い耐食性金属が使
用されているので、ポンチの損傷が増々激しくなり、ポ
ンチの耐久性面やポンチの損傷によるV字状溝の形状の
バラツキから工業的には到底採用することができない。
一方、断面形状がV字状で溝底部に丸みをつけたもの
は、ポンチの損傷は少なくなると考えられるが、このよ
うな溝底部に丸みをつけた場合は、単に薄肉にしたとい
う効果が発揮されるだけで、切欠効果などの付加的効果
がほとんど加わらないため、薄肉部の厚みをよほど薄く
しないかぎり、安全な圧力範囲内では薄肉部の破壊が生
じず、また、薄肉部の厚みを薄くすると、貯蔵中に薄肉
部が腐食を受けて電器機能が失われるおそれがある。
That is, the cross-sectional shape proposed for alkaline batteries is V
Although a groove with a sharp groove bottom can be expected to have a notch effect, the tip of the groove-forming punch is immediately damaged when the groove is formed by press molding, especially for non-aqueous liquid active material batteries. In order to withstand the strong corrosiveness of the positive electrode active material, the battery container uses a corrosion resistant metal with high hardness such as stainless steel, so the damage to the punch becomes more and more severe, and the durability of the punch and damage to the punch are increased. Due to the variation in the shape of the V-shaped groove due to the above, it cannot be industrially adopted.
On the other hand, a punch with a V-shaped cross section and rounded groove bottom is considered to be less likely to damage the punch. However, when the groove bottom is rounded, the effect of simply reducing the thickness is exhibited. However, the additional effect such as the notch effect is hardly added.Therefore, unless the thickness of the thin-walled part is made extremely thin, the thin-walled part does not break within the safe pressure range, and the thin-walled part is thinned. Then, there is a possibility that the thin wall portion may be corroded during storage and the electrical function may be lost.

そのため、電池容器の底部に形成する溝の形状を底部が
平坦状になった断面倒立台形状にし、溝底部の端部に電
池の内部圧力による引張力と曲げによる引張力とが複合
してかかるようにし、薄肉部の厚さをある程度維持して
も、比較的低い圧力で、溝底部の端部から切裂破壊が生
じるようにして、電池に安全性の高い防爆機能を付与す
ることが開発され、本出願人によって既に特許出願され
ている(特願昭61−228760号)。
Therefore, the shape of the groove formed in the bottom of the battery container is an inverted trapezoidal cross-section with a flat bottom, and the tensile force due to the internal pressure of the battery and the tensile force due to bending are applied to the ends of the groove bottom. Even if the thickness of the thin wall portion is maintained to some extent, it is possible to develop a highly safe explosion-proof function for the battery by causing a fracture fracture from the end of the groove bottom with a relatively low pressure. The applicant has already applied for a patent (Japanese Patent Application No. 61-228760).

しかしながら、電池を使用する立場からは、薄肉部の厚
さをより厚く保った状態で、より低い圧力で安全性がよ
り確実に確保できる圧力範囲内で防爆機能を作動させた
いという要請がある。
However, from the standpoint of using a battery, there is a demand for operating the explosion-proof function within a pressure range where safety can be more reliably ensured at a lower pressure while keeping the thickness of the thin portion thicker.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

この考案は、上記従来製品が持っていた高温加熱下にさ
らされたり、高電圧で充電されたときに電池の内部圧力
が異常に上昇して電池破裂が生じ、大きな破裂音を発生
したり、電池内容物が周囲に飛び散って電池使用機器に
損傷を与えるおそれがあったという問題点を解決し、電
池容器の底部に形成される防爆用の薄肉部の厚さをある
程度厚く保っても、電池が内部圧力の異常上昇を起こし
そうな状況下に置かれたときに、その初期の比較的低い
圧力範囲内で電池容器の一部が確実に切裂破壊して、電
池破裂の原因となる電池内容物を電池外部に放出させて
高圧での電池破裂を防ぐという、安全性の高い防爆機能
を備えた非水液体活物質電池を提供することを目的とす
る。
This device is exposed to the high temperature heating that the conventional product has, or when it is charged with a high voltage, the internal pressure of the battery rises abnormally and the battery bursts, causing a loud popping sound. Solved the problem that the battery contents could scatter around and damage the equipment using the battery, and even if the thickness of the thin explosion-proof part formed at the bottom of the battery container is kept to some extent, When the battery is placed under conditions where it is likely to cause an abnormal rise in internal pressure, the battery container will rupture without fail within the initial relatively low pressure range, causing battery rupture. An object of the present invention is to provide a non-aqueous liquid active material battery having a highly safe explosion-proof function of releasing the contents to the outside of the battery to prevent the battery from bursting under high pressure.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、電池容器の底部に形成する溝の形状を断面形
状がW状のWの中央部分を両端部より低くしかつその先
端部を弧状とする形状にし、かつ上記溝の形成によって
電池容器の底部に設けられる防爆用の薄肉部を断面弧状
にすることによって、電池の内部圧力が上昇したとき
に、溝底部の端部に電池の内部圧力による引張力と曲げ
による引張力とがより鋭く複合してかかるようにし、よ
り低い圧力が溝底部の端部のところが大きく切裂破壊す
るようにして、薄肉部の厚みをある程度厚く保っても、
電池の内部圧力上昇初期の安全性が確保できる圧力範囲
内で防爆機能が作動するようにしたものである。
According to the present invention, a groove formed in a bottom portion of a battery container is formed such that a central portion of W having a W-shaped cross section is lower than both ends and an end portion thereof has an arc shape, and by forming the groove, the battery container is formed. By making the explosion-proof thin-walled part at the bottom of the battery arc-shaped in cross section, when the internal pressure of the battery rises, the tensile force due to the internal pressure of the battery and the tensile force due to bending become sharper at the end of the groove bottom. Even if the thin part is kept thick to a certain extent by applying a combined pressure so that a lower pressure causes a large fracture at the end of the groove bottom.
The explosion-proof function operates within the pressure range where the initial safety of the internal pressure rise of the battery can be secured.

〔実施例〕〔Example〕

つぎに本考案の実施例を図面に基づいて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本考案において電池容器の底部に形成された
溝、防爆用の薄肉部およびその近傍の拡大断面図であ
り、第2図は本考案の電池に用いられる電池容器を倒立
させた状態で示すもので、第2図(a)はその平面図、
第2図(b)は第2図(a)のX−X線における断面図
である。なお、第1図および第2図は電池容器を倒立さ
せた状態で示しているので、底部が上側にきており、第
2図(a)の平面図は電池容器の底部側から見た図であ
る。
FIG. 1 is an enlarged cross-sectional view of a groove formed at the bottom of the battery container, a thin explosion-proof portion and its vicinity in the present invention, and FIG. 2 is a state in which the battery container used in the battery of the present invention is inverted. , And FIG. 2 (a) is a plan view thereof,
FIG. 2 (b) is a sectional view taken along line XX of FIG. 2 (a). Since FIGS. 1 and 2 show the battery container in an inverted state, the bottom part is located on the upper side, and the plan view of FIG. 2 (a) is a view seen from the bottom part side of the battery container. Is.

電池容器1は、電池組立前は第2図に示すように有底円
筒状をしており(ただし、上記のように第2図は電池容
器を倒立させた状態で示しているので、底部2が上側に
きている)、その底部2の中央部の凸出部2aには、第2
図(a)に示すように平面形状が十字状の溝3が形成さ
れている。溝3は第1図に詳示するように、断面形状が
W状のWの中央部分を両端部より低くしかつその先端部
を弧状とする形状(この断面形状がW状のWの中央部分
を両端部より低くしかつその先端部を弧状とする形状と
いう表現は、溝底部3aが下側に配置したときの形状を表
現したものである)をしており、かつ上記溝3の形成に
より部分的に薄肉にされた部分、つまり溝3の形成によ
って電池容器1の底部2に設けられた防爆用の薄肉部4
は断面が弧状にされている。なお、本実施例では、リー
ド端子の取付位置の選定がしやすいように、第2図に示
すように、電池容器1の底部2の中央部に凸出部2aを設
けているので、溝3は該凸出部2aに形成されているが、
凸出部2aは必ずしも必要なものではなく、電池容器1の
底部2は平坦なものであってもよい。その場合、溝3は
電器容器1の平坦な底部2の中央部に形成すればよい
が、そのようにしても、凸出部2aに溝3を形成した場合
と比較して、特に防爆機能が低下するようなことはな
い。
Before the battery is assembled, the battery container 1 has a cylindrical shape with a bottom as shown in FIG. 2 (however, since the battery container is shown in an inverted state in FIG. 2 as described above, the bottom 2 Is located on the upper side), and the protrusion 2a at the center of the bottom 2 has a second
As shown in FIG. 3A, a groove 3 having a cross shape in a plan view is formed. As shown in detail in FIG. 1, the groove 3 has a shape in which the central portion of W having a W-shaped cross section is lower than both ends and the tip portion thereof has an arc shape (the central portion of W having a W-shaped cross section). Is lower than both ends and the tip is arcuate in shape represents the shape when the groove bottom 3a is arranged on the lower side), and A partially thinned portion, that is, an explosion-proof thin portion 4 provided on the bottom portion 2 of the battery container 1 by forming the groove 3.
Has an arcuate cross section. In this embodiment, since the protrusion 2a is provided at the center of the bottom portion 2 of the battery case 1 as shown in FIG. 2 so that the mounting position of the lead terminal can be easily selected, the groove 3 is formed. Is formed on the protruding portion 2a,
The protruding portion 2a is not always necessary, and the bottom portion 2 of the battery container 1 may be flat. In that case, the groove 3 may be formed in the central portion of the flat bottom portion 2 of the electric container 1, but even in that case, the explosion-proof function is particularly improved as compared with the case where the groove 3 is formed in the protruding portion 2a. There is no such thing as a drop.

この電池容器1は、例えば第4図に示すような塩化チオ
ニル−リチウム電池の組立に供されるが、電池組立後、
電池の内部圧力が上昇したとき、この断面形状がW状の
Wの中央部分を両端部より低くしかつその先端部を弧状
する形状の溝3を形成した電池容器1には、第3図に示
すように、電池の内部圧力P1により、溝底部3aの端部3a
1に内圧により引張力Paと曲げによる引張力Pbとが複合
してかかり、該溝底部3aの端部3a1のところが大きく切
裂破壊するようになる。特に、溝3の断面形状がW状の
Wの中央部分を両端部より低くしかつその先端部を弧状
とする形状であり、しかも薄肉部4の断面形状が弧状を
しているので、電池に内圧がかかったときに、弧状をし
た薄肉部4の中央部が大きく変形するので、溝底部3aの
端部3a1には内圧による引張力Paと曲げによる引張力Pb
とが、先に出願した断面倒立台形状の溝を設けた場合よ
りも、より鋭く集中してかかるようになり、断面倒立台
形状の溝を形成した場合よりも、より低い圧力で溝底部
3aの端部3a1のところが大きく切裂破壊するようにな
る。
The battery container 1 is used for assembling a thionyl chloride-lithium battery as shown in FIG. 4, for example.
When the internal pressure of the battery rises, the battery container 1 having the groove 3 in which the central portion of the W having a W-shaped cross section is lower than both ends and the tip portion thereof is arcuate is shown in FIG. As shown, the internal pressure P 1 of the battery causes the end 3a of the groove bottom 3a to
The tensile force Pa and the tensile force Pb due to bending are applied to 1 by a combination of the internal pressure, and the end portion 3a 1 of the groove bottom portion 3a is greatly fractured. In particular, the groove 3 has a W-shaped cross section in which the central portion of the W is lower than both ends and the tip portion thereof is arcuate, and the thin portion 4 has an arcuate cross-sectional shape. When the internal pressure is applied, the central portion of the arc-shaped thin portion 4 is largely deformed, so that the end portion 3a 1 of the groove bottom portion 3a has a tensile force Pa due to the internal pressure and a tensile force Pb due to the bending.
Is more sharply concentrated than in the case of forming the inverted cross-section trapezoidal groove filed earlier, and the groove bottom portion is lower in pressure than in the case of forming the inverted trapezoid cross-section groove.
At the end 3a 1 of 3a, a large fracture occurs.

つぎの第1表は上記電池容器に空気圧を導入してその防
爆機能の作動試験を行ったものである。電池容器1の材
質は、ステンレス鋼で、その厚みは0.3mmである。溝3
は第1図に示すような断面形状がW状でWの中央部分を
両端部より低くしかつその先端部を弧状とする形状で、
その溝形成角度θは60°であり、溝3の底部の幅D(た
だし水平方向の幅)は0.15mmである。薄肉部4は第1図
に示すように断面が弧状で、その中央部の下面高さhは
50μmであり、薄肉部4の厚みtは80μmである。この
電池容器を試料No.1とする。
The following Table 1 shows the operation test of the explosion-proof function by introducing air pressure into the battery container. The material of the battery container 1 is stainless steel, and its thickness is 0.3 mm. Groove 3
Is a shape having a W-shaped cross-section as shown in FIG. 1, in which the central portion of W is lower than both ends and the tip portion is arc-shaped,
The groove forming angle θ is 60 °, and the width D (however in the horizontal direction) of the bottom of the groove 3 is 0.15 mm. The thin portion 4 has an arcuate cross section as shown in FIG. 1, and the lower surface height h of the central portion is
The thickness t is 50 μm, and the thickness t of the thin portion 4 is 80 μm. This battery container is referred to as Sample No. 1.

比較のため、アルカリ電池で採用されているような底部
に丸みをつけた溝を形成した電池容器(試料No.2)につ
いても、防爆機能の作動試験を行った。この試料No.2の
電池容器の溝の形状は第7図に示すとおりであり、溝3
の形成角度θは90°で、先端には0.1mmRの丸みをつけ、
薄肉部4の厚みtは80μmである。
For comparison, an explosion proof operation test was also performed on a battery container (Sample No. 2) having a rounded groove at the bottom as used in alkaline batteries. The shape of the groove of the battery container of this sample No. 2 is as shown in FIG.
The forming angle θ is 90 °, and the tip has a roundness of 0.1 mmR,
The thickness t of the thin portion 4 is 80 μm.

また、対照品として本出願人が先に出願した場合のよう
な断面倒立台形状の溝を形成した電池容器(試料No.3)
についても防爆機能の作動試験を行った。この試料No.3
の電池容器の溝とその近傍の形状は第6図に示すとおり
であり、溝3の形成角度θは60°で、溝3の底部3aの幅
Dは0.15mmであり、薄肉部4の厚みtは80μmである。
In addition, as a control product, a battery container with a groove having an inverted trapezoidal cross section as in the case where the applicant previously applied (Sample No. 3)
Also, the operation test of the explosion-proof function was conducted. This sample No.3
The shape of the groove of the battery container and its vicinity are as shown in FIG. 6, the formation angle θ of the groove 3 is 60 °, the width D of the bottom 3a of the groove 3 is 0.15 mm, and the thickness of the thin portion 4 is t is 80 μm.

第1表に示すように、溝の断面形状をW状のWの中央部
分を両端部より低くしかつその先端部を弧状とする形状
にし、薄肉部の断面形状を弧状にした試料No.1の電池容
器は、アルカリ電池に使用されているような先端に丸み
をつけた断面V字状の溝を形成した試料No.2の電池容器
に比べて防爆機能の作動圧力が低く、また、溝の断面形
状が倒立台形状で薄肉部が平坦な試料No.3の電池容器よ
りも防爆機能が低かった。この結果から、本考案におけ
るように溝の断面形状をW状のWの中央部分を両端部よ
り低くしかつその先端部を弧状とする形状にし、薄肉部
の断面形状を弧状にすることによって、これまでのもの
より薄肉部を厚く保っても、より低い圧力、つまり安全
性がより確実に確保できる圧力範囲内で防爆機能を作動
させることができることがわかる。
As shown in Table 1, the cross-sectional shape of the groove is sample No. 1 in which the central portion of the W-shaped W is lower than both ends and the tip is arcuate, and the thin-walled portion is arcuate in cross-section. The battery container of No. 2 has a lower explosion-proof operating pressure than the battery container of Sample No. 2 which has a groove with a rounded V-shaped cross section, which is used in alkaline batteries. The explosion-proof function was lower than that of the battery container of Sample No. 3, which had an inverted trapezoidal cross section and a flat thin wall. From this result, as in the present invention, the cross-sectional shape of the groove is such that the central portion of the W-shaped W is lower than both ends and the tip portion thereof is arcuate, and the cross-sectional shape of the thin portion is arcuate. It can be seen that the explosion-proof function can be operated at a lower pressure, that is, within a pressure range where safety can be more reliably ensured, even if the thinner portion is kept thicker than the conventional one.

第4図は上記第1〜2図に示す電池容器を用いて組み立
てた塩化チオニル−リチウム電池を示すもので、図中、
1は前述のような溝3および防爆用の薄肉部4を設けた
電池容器である。11はアルカリ金属よりなる負極で、本
実施例ではリチウム板を上記電池容器1の内周面に圧着
することにより形成されており、そのため、この電池で
は、電池容器1は負極端子としての機能を有している。
12はセパレータであり、このセパレータ12はガラス繊維
不織布からなり、円筒状をしていて、前記円筒状の負極
11と円柱状の正極13とを隔離している。正極13はアセチ
レンブラックを主成分とする炭素質で形成された炭素多
孔質成形体よりなり、14は正極集電体で、ステンレス鋼
棒よりなる。15は電池蓋で、ステンレス鋼で形成されて
いて、その立ち上がった外周部が電池容器1の開口端部
と溶接により接合され、電池蓋15の内周側には正極端子
17との間にガラス層16が介設されている。ガラス層16は
電池蓋15と正極端子17とを絶縁するとともに、その外周
面でその構成ガラス電池蓋15の内周面に融着し、その内
周面でその構成ガラスが正極端子17の外周面に融着し
て、電池蓋15と正極端子17との間をシールし、電池容器
1の開口部はいわゆるハーメチックシールにより封口さ
れている。正極端子17はステンレス鋼製で電池組立時は
パイプ状をしていて、電解液注入口として使用され、そ
の上端部を電解液注入後にその中空部内に挿入された正
極集電体14の上部と溶接して封止したものである。18は
電解液で、この電解液18は塩化チオニルに支持電解質と
して四塩化アルミニウムリチウムを1.2mol/l溶解したも
ので、塩化チオニルは上記のように電解液の溶媒である
と共に、この電池では正極活物質でもあり、正極13の表
面で、この塩化チオニルと負極11からイオン化して溶出
してきたリチウムイオンとが反応を起こす。そして、19
および20はそれぞれガラス繊維不織布からなる底部隔離
材と上部隔離材であり、21は電池内の上部に設けられた
空気室である。
FIG. 4 shows a thionyl chloride-lithium battery assembled using the battery container shown in FIGS. 1-2 above.
Reference numeral 1 is a battery container provided with the groove 3 and the explosion-proof thin portion 4 as described above. Reference numeral 11 denotes a negative electrode made of an alkali metal, which is formed by pressing a lithium plate onto the inner peripheral surface of the battery container 1 in this embodiment. Therefore, in this battery, the battery container 1 functions as a negative electrode terminal. Have
12 is a separator, and this separator 12 is made of glass fiber nonwoven fabric and has a cylindrical shape, and the cylindrical negative electrode.
11 and the cylindrical positive electrode 13 are separated. The positive electrode 13 is made of a carbon porous molded body formed of carbonaceous material containing acetylene black as a main component, and 14 is a positive electrode current collector made of a stainless steel rod. Reference numeral 15 denotes a battery lid, which is made of stainless steel, and the raised outer peripheral portion is joined to the open end of the battery container 1 by welding, and the positive electrode terminal is provided on the inner peripheral side of the battery lid 15.
A glass layer 16 is provided between the glass layer 16 and The glass layer 16 insulates the battery lid 15 and the positive electrode terminal 17 from each other, and the outer peripheral surface thereof is fused to the inner peripheral surface of the constituent glass battery lid 15, and the inner peripheral surface of the constituent glass is the outer periphery of the positive electrode terminal 17. It is fused to the surface to seal between the battery lid 15 and the positive electrode terminal 17, and the opening of the battery container 1 is sealed by a so-called hermetic seal. The positive electrode terminal 17 is made of stainless steel and has a pipe shape at the time of battery assembly, and is used as an electrolyte injection port, and its upper end is connected to the upper part of the positive electrode current collector 14 inserted into the hollow part after the electrolyte is injected. It is welded and sealed. 18 is an electrolytic solution, and this electrolytic solution 18 is a solution of lithium aluminum tetrachloride 1.2 mol / l dissolved in thionyl chloride as a supporting electrolyte.Thionyl chloride is a solvent of the electrolytic solution as described above, and in this battery, it is a positive electrode. It is also an active material, and on the surface of the positive electrode 13, this thionyl chloride reacts with the lithium ions ionized and eluted from the negative electrode 11. And 19
Reference numerals 20 and 20 are a bottom separator and an upper separator made of glass fiber non-woven fabric, respectively, and 21 is an air chamber provided in the upper portion of the battery.

上記電池を火中に投入し、電池が大きな破裂音を伴って
破裂するか否かを調べた結果を第2表に示す。たの電池
の電池容器は、その底部に前記のように断面形状がW状
のWの中央部分を両端部より低くしかつその先端を弧状
とする形状の溝を形成し、薄肉部の断面形状を弧状にし
た試料No.1の電池容器である。また、比較のため、アル
カリ電池を使用されているような先端に丸みをつけた断
面略V字状の溝を形成した試料No.2の電池容器を用いた
ほかは上記と同様の構成で作製した電池(比較品)を火
中に投入し、電池が大きな破裂音を伴って破裂するか否
かを調べた結果も第2表に併せて記載する。供試個数は
いずれの電池も10個ずつであり、第2表中の火中破裂電
池個数における数値の分母は試験に供した電池個数を示
し、分子は火中に破裂が生じた電池個個を示す。
Table 2 shows the results of investigating whether or not the battery bursts with a loud popping noise when the battery was placed in a fire. In the battery container of the other battery, a groove having a shape in which the center portion of W having a W-shaped cross section is lower than both ends and the tip is arcuate at the bottom as described above is formed, and the cross-sectional shape of the thin wall portion is formed. It is the battery container of sample No. 1 in which the arc is formed. For comparison, the same construction as above was used except that the battery container of Sample No. 2 in which a groove with a rounded V-shaped cross section was formed as in the case of using an alkaline battery was used. Table 2 also shows the results of investigating whether or not the battery (comparative product) was put into a fire and exploded with a loud popping noise. The number of samples tested was 10 for each battery. The denominator of the number of burst batteries in fire in Table 2 indicates the number of batteries used in the test, and the numerator is the number of batteries that burst during fire. Indicates.

第2表に示すように、本考案の電池は、火中破裂を起こ
すものがまったくなく、安定した防爆機能を発揮した。
As shown in Table 2, the battery of the present invention has no explosion in the fire and exhibits a stable explosion-proof function.

なお、本考案では、薄肉部の断面形状を弧状と表現した
が、この弧状とは、薄肉部の中央上面が凸出し、かつ薄
肉部の中央下面が凸出しているものであればよく、した
がって、この弧状という表現には例えば逆V字状や逆U
字状のような多少の変形形状も含むものである。
In the present invention, the cross-sectional shape of the thin portion is expressed as an arc shape, but this arc shape may be such that the central upper surface of the thin portion projects and the central lower surface of the thin portion projects. , In this expression of arcuate shape, for example, inverted V shape or inverted U shape
It also includes some deformed shapes such as a letter shape.

また、上記実施例では溝3の形成角度θを60°とし、薄
肉部4の幅Dを0.15mmとしたが、溝3の形成角度は一般
に50〜90°の範囲にするのが好ましく、また薄肉部4の
幅Dは一般に0.09〜0.5mmの範囲にするのが好ましい。
そして、薄肉部4の厚さtは80μmにしたが、薄肉部4
の厚さは一般に30〜100μmの範囲にするのが好まし
い。特に本考案では、溝の形状を断面形状がW状のWの
中央部分を両端部より低くしかつその先端部を弧状とす
る形状にし、薄肉部の断面形状を弧状にしたことによ
り、防爆機能の作動圧陸を低くすることができたので、
薄肉部の厚みを70〜100μm程度と厚くしても、安全性
の確保できる圧力範囲内で防爆機能を作動させることが
できるようになった。
Further, in the above embodiment, the forming angle θ of the groove 3 is set to 60 °, and the width D of the thin portion 4 is set to 0.15 mm. However, it is preferable that the forming angle of the groove 3 is generally in the range of 50 to 90 °. Generally, the width D of the thin portion 4 is preferably in the range of 0.09 to 0.5 mm.
The thickness t of the thin portion 4 is set to 80 μm.
In general, the thickness is preferably in the range of 30 to 100 μm. In particular, in the present invention, the explosion-proof function is achieved by making the groove shape such that the central portion of W having a W-shaped cross section is lower than both end portions and the tip end portion thereof is arcuate, and the thin-walled portion is arcuate in cross-sectional shape. Since we were able to lower the operating pressure of
Even if the thickness of the thin portion is increased to 70-100 μm, the explosion-proof function can be activated within the pressure range where safety can be secured.

また、上記実施例では、十字状の溝を形成した場合につ
いて説明したが、防爆機能上、溝としては複数本でそれ
らの溝が少なくとも1箇所で交わるものが好ましく、そ
の平面形状としては、実施例で示した十字状以外にも、
例えば第5図に示すように、X字状(第5図(a)参
照)、Y字状(第5図(b)参照)、アスタリスク
(*)状(第5図(c)参照)、H字状(第5図(d)
参照)などがとり得る。特に電池に内圧がかかったとき
に電池容器の底部中心部の変形が最も大きくなるので、
電池容器の底部中心部に交点を持つ十字状、その変形で
あるX字状、Y字状、アスタリスク状などが好ましい。
また、溝はその中間部が交わっていることは要求され
ず、Y字状のごとく、溝の端部が交わっているものであ
ってもよい。そして、上記溝の形成によって電池容器の
底部に設けられる防爆用の薄肉部も、実施例に例示の十
字状のものに限られることなく、溝と同様の各種平面形
状がとり得る。
Further, in the above-mentioned embodiment, the case where the cross-shaped groove is formed has been described. However, in view of the explosion-proof function, it is preferable that a plurality of grooves are formed and the grooves intersect at at least one place, and the planar shape is Besides the cross shape shown in the example,
For example, as shown in FIG. 5, an X shape (see FIG. 5A), a Y shape (see FIG. 5B), an asterisk (*) shape (see FIG. 5C), H shape (Fig. 5 (d)
See) can be used. Especially when the internal pressure is applied to the battery, the deformation of the center of the bottom of the battery container becomes the largest,
A cross shape having an intersection at the center of the bottom of the battery container, and variations thereof such as an X shape, a Y shape, and an asterisk shape are preferable.
Further, it is not required that the middle portions of the grooves intersect each other, and the ends of the grooves may intersect such as a Y shape. The explosion-proof thin-walled portion provided at the bottom of the battery container by forming the groove is not limited to the cross shape illustrated in the embodiment, and may have various planar shapes similar to the groove.

なお、本考案において、溝は複数本形成し、該複数本の
溝が少なくとも1箇所交わるようにするのが好ましいと
したのは、溝を複数本にして、それらの溝が交点を持つ
ようにしておくと、電池の内部圧力が該交点に集中して
かかるようになり、電池の内部圧力上昇に正確に対応し
て防爆機能が作動するようになるからである。
In the present invention, it is preferable that a plurality of grooves are formed and the plurality of grooves intersect at at least one place, and the reason is that there are a plurality of grooves and the grooves have intersections. This is because the internal pressure of the battery concentrates on the intersection, and the explosion-proof function operates in accordance with the increase in the internal pressure of the battery.

〔考案の効果〕[Effect of device]

以上説明したように、本考案では、電池容器の底部に、
断面形状がW状のWの中央部分を両端部より低くしかつ
その先端部を弧状とする形状の溝を形成し、該溝の形成
により電池容器の底部に設けられる防爆用の薄肉部の断
面形状を弧状にすることによって、薄肉部の厚みをある
程度厚く保っても、低い、つまり安全性が確保できる圧
力範囲内で防爆機能が作動する安全性の高い非水液体活
物質電池を提供することができた。
As described above, in the present invention, at the bottom of the battery container,
A cross section of a thin wall portion for explosion proof provided at the bottom of the battery container is formed by forming a groove having a shape in which the center portion of W having a W-shaped cross section is lower than both end portions and the tip end portion thereof has an arc shape. To provide a highly safe non-aqueous liquid active material battery in which the explosion-proof function operates within a pressure range that is low, that is, safety can be maintained even if the thickness of the thin portion is kept to some extent by making the shape into an arc shape. I was able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の電池に用いられる電池容器の底部に形
成された溝、薄肉部およびその近傍の拡大断面図であ
る。第2図は本考案の電池に用いられる電池容器を倒立
させた状態で示すもので、第2図(a)はその平面図
で、第2図(b)は第2図(a)のX−X線における断
面図である。第3図は第1図に示す電池容器の底部に電
池容器内部から圧力がかかったときの状態を示す部分拡
大断面図である。第4図は本考案の一実施例を示す塩化
チオニル−リチウム電池の断面図である。第5図は本考
案の電池に使用する電池容器の十字状溝以外の溝の平面
形状を概略的に例示するもので、上段はそれぞれの電池
容器の概略正面図で、下段はそれぞれの概略底面図であ
る。第6〜7図は本考案とは構成が異なる電池の電池容
器に形成された溝、薄肉部およびその近傍を示す拡大断
面図であり、第6図は溝が断面倒立台形状の場合を示
し、第7図はアルカリ電池で採用されているような溝が
断面V字状で先端に丸みを付けている場合を示す。 1…電池容器、2…底部、3…溝、4…薄肉部、11…負
極、12…セパレータ、13…正極、15…電池蓋、16…ガラ
ス層、18…電解液
FIG. 1 is an enlarged cross-sectional view of a groove formed in a bottom portion of a battery container used in the battery of the present invention, a thin portion and its vicinity. FIG. 2 shows the battery container used in the battery of the present invention in an inverted state, FIG. 2 (a) is a plan view thereof, and FIG. 2 (b) is an X of FIG. 2 (a). It is a sectional view taken along the line X-. FIG. 3 is a partially enlarged sectional view showing a state when pressure is applied to the bottom of the battery container shown in FIG. 1 from the inside of the battery container. FIG. 4 is a sectional view of a thionyl chloride-lithium battery showing an embodiment of the present invention. FIG. 5 schematically illustrates the planar shape of the grooves other than the cross-shaped groove of the battery container used in the battery of the present invention. The upper stage is a schematic front view of each battery container, and the lower stage is a schematic bottom view of each. It is a figure. 6 to 7 are enlarged cross-sectional views showing a groove, a thin portion and its vicinity formed in a battery container of a battery having a configuration different from that of the present invention, and FIG. 6 shows a case where the groove has an inverted trapezoidal cross-section. FIG. 7 shows a case where the groove is V-shaped in cross section and has a rounded tip as used in alkaline batteries. DESCRIPTION OF SYMBOLS 1 ... Battery container, 2 ... Bottom part, 3 ... Groove, 4 ... Thin part, 11 ... Negative electrode, 12 ... Separator, 13 ... Positive electrode, 15 ... Battery lid, 16 ... Glass layer, 18 ... Electrolyte solution

───────────────────────────────────────────────────── フロントページの続き (72)考案者 横山 賢一 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)考案者 渡辺 修 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Yokoyama, 1-88, Tora, Ibaraki-shi, Osaka Prefecture Hitachi Maxell Co., Ltd. (72) Osamu Watanabe, 1-88, Tora, Ibaraki-shi, Osaka Hitachi Maxel Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】正極活物質として塩化チオニル、塩化スル
フリル、塩化ホスホリルなどのオキシハロゲン化物系液
体を用い、負極(11)にリチウム、ナトリウム、カリウ
ムなどのアルカリ金属を用い、電池容器(1)をハーメ
チックシールにより封口する非水液体活物質電池におい
て、電池容器(1)の底部(2)に断面形状がW状のW
の中央部分を両端部より低くしかつその先端部を弧状と
する形状の溝(3)を形成し、該溝(3)の形成により
電池容器(1)の底部(2)に防爆用の薄肉部(4)を
設け、該薄肉部(4)の断面形状を弧状にしたことを特
徴とする非水液体活物質電池。
1. A battery container (1) is prepared by using an oxyhalide-based liquid such as thionyl chloride, sulfuryl chloride or phosphoryl chloride as a positive electrode active material and an alkali metal such as lithium, sodium or potassium as a negative electrode (11). In a non-aqueous liquid active material battery sealed by a hermetic seal, a W-shaped cross section is formed on the bottom (2) of the battery container (1).
Forming a groove (3) having a central portion lower than both ends and an arc-shaped tip portion, and forming the groove (3) at the bottom (2) of the battery container (1) for explosion-proof thin wall A non-aqueous liquid active material battery, characterized in that a portion (4) is provided and the thin-walled portion (4) has an arc-shaped cross section.
JP8028787U 1987-05-27 1987-05-27 Non-aqueous liquid active material battery Expired - Lifetime JPH0637567Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8028787U JPH0637567Y2 (en) 1987-05-27 1987-05-27 Non-aqueous liquid active material battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8028787U JPH0637567Y2 (en) 1987-05-27 1987-05-27 Non-aqueous liquid active material battery

Publications (2)

Publication Number Publication Date
JPS63188864U JPS63188864U (en) 1988-12-05
JPH0637567Y2 true JPH0637567Y2 (en) 1994-09-28

Family

ID=30930956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8028787U Expired - Lifetime JPH0637567Y2 (en) 1987-05-27 1987-05-27 Non-aqueous liquid active material battery

Country Status (1)

Country Link
JP (1) JPH0637567Y2 (en)

Also Published As

Publication number Publication date
JPS63188864U (en) 1988-12-05

Similar Documents

Publication Publication Date Title
US4842965A (en) Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
US6159631A (en) Overcharge safety vents on prismatic cells
US5004656A (en) Flat type sealed battery with hermetic sealing structure
JP2010238672A (en) Secondary battery
US6569562B1 (en) Electrochemical cell with novel header assembly
JPH04349347A (en) Sealed battery
JPH0637567Y2 (en) Non-aqueous liquid active material battery
JPH07105217B2 (en) Non-aqueous liquid active material battery
JPH07105220B2 (en) Non-aqueous liquid active material battery
JP2521441B2 (en) Hermetically sealed liquid active material battery
JP2002141028A (en) Sealed cell and manufacturing method of the same
JPH07105219B2 (en) Non-aqueous liquid active material battery
JPS6213329Y2 (en)
JPH07105221B2 (en) Method for manufacturing non-aqueous liquid active material battery
JP2870067B2 (en) Sealed battery
JPH0789482B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery
JPH07105216B2 (en) Non-aqueous liquid active material battery
JPS60198051A (en) Sealed battery
JPH0620704A (en) Hermetic seal liquid active material battery
JPS587758A (en) Nonrelealable safety gas vent hole for electrochemical battery
JPH07105218B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery
JPH09167605A (en) Safety structure of sealed battery
JPH055642Y2 (en)
JPH0625889Y2 (en) Explosion-proof battery
JP2792947B2 (en) Sealed battery