JPH07105218B2 - Method for manufacturing battery container used for explosion-proof sealed battery - Google Patents

Method for manufacturing battery container used for explosion-proof sealed battery

Info

Publication number
JPH07105218B2
JPH07105218B2 JP62123144A JP12314487A JPH07105218B2 JP H07105218 B2 JPH07105218 B2 JP H07105218B2 JP 62123144 A JP62123144 A JP 62123144A JP 12314487 A JP12314487 A JP 12314487A JP H07105218 B2 JPH07105218 B2 JP H07105218B2
Authority
JP
Japan
Prior art keywords
groove
battery
battery container
punch
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62123144A
Other languages
Japanese (ja)
Other versions
JPS63285860A (en
Inventor
博和 吉川
久 漆原
佐藤  淳
茂 池成
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP62123144A priority Critical patent/JPH07105218B2/en
Priority to US07/101,259 priority patent/US4842965A/en
Priority to DE8787114076T priority patent/DE3779996T2/en
Priority to EP87114076A priority patent/EP0266541B1/en
Publication of JPS63285860A publication Critical patent/JPS63285860A/en
Publication of JPH07105218B2 publication Critical patent/JPH07105218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆型密閉電池に使用する電池容器の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a battery container used for an explosion-proof sealed battery.

〔従来の技術〕[Conventional technology]

塩化チオニル−リチウム電池に代表されるような正極活
物質として塩化チオニル、塩化スルフリル、塩化ホスホ
リルなどのオキシハロゲン化物系液体を用い、負極にリ
チウム、ナトリウム、カリウムなどのアルカリ金属を用
いる非水液体活物質電池では、ハーメチックシールによ
る完全密閉構造をとっているため、密閉性が非常に優れ
ているが、その反面、密閉性が高いために、高温加熱下
にさらされたり、高電圧で充電されるなどの異常事態に
遭遇したときに、電池の内部圧力が異常に上昇して電池
破裂が生じ、大きな破裂音が発生すると共に、電池内容
物が周囲に飛び散って電池使用機器を汚損するおそれが
ある。
Thionyl chloride-A non-aqueous liquid active material that uses an oxyhalide-based liquid such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride as a positive electrode active material typified by a lithium battery, and an alkali metal such as lithium, sodium, or potassium in the negative electrode. The material battery has a very tight seal because it has a hermetically sealed structure, but on the other hand, due to its high tightness, it is exposed to high temperature heating and is charged at high voltage. When an abnormal situation such as the above is encountered, the internal pressure of the battery rises abnormally and the battery explodes, which may cause a loud popping noise and the battery contents may scatter around and contaminate the battery-using device. .

そこで、同様に密閉構造をとるアルカリ電池に関して、
実公昭58−17332号公報や実公昭58−26460号公報に提案
されているように、電池容器の一部に溝を形成して、電
池容器に薄肉の部分を設け、上記薄肉部のところで電池
容器の耐圧力を部分的に低くし、電池内部の圧力が異常
上昇しはじめたときに、上記薄肉部が破れて電池内部の
圧力を減少させ、高圧での電池破裂を防止する、いわゆ
る溝形成による防爆機能を、このハーメチックシール構
造をとる非水液体活物質電池においても備えさせること
が必要であると考えられる。
Therefore, regarding alkaline batteries that also have a sealed structure,
As proposed in JP-B-58-17332 and JP-B-58-26460, a groove is formed in a part of the battery container to provide a thin portion in the battery container, and the battery is provided at the thin portion. A so-called groove formation that partially lowers the withstand pressure of the container and reduces the internal pressure of the battery by breaking the thin part when the internal pressure of the battery starts to rise abnormally, preventing the battery from bursting at high pressure. It is considered necessary to provide the non-aqueous liquid active material battery having the hermetically sealed structure with the explosion-proof function of (1).

ところで、上記のような防爆用の溝形成にあたっては、
プレス成形による方法が採用されるが、非水液体活物質
電池では正極活物質の強い耐食性に耐えるために電池構
成部材には耐食性が要求され、電池容器には一般にステ
ンレス鋼が採用されるので、電池容器の硬度が高く、こ
れにプレス成形により溝を形成しようとすると、溝形成
用ポンチにかかる荷重が非常に高くなる。
By the way, when forming the explosion-proof groove as described above,
Although the method by press molding is adopted, in non-aqueous liquid active material batteries, corrosion resistance is required for the battery constituent members to withstand the strong corrosion resistance of the positive electrode active material, and since stainless steel is generally used for the battery container, The hardness of the battery container is high, and when a groove is formed in the battery container by press molding, the load applied to the groove forming punch becomes extremely high.

そこで、形成する溝の断面形状としては、前記実公昭58
−17332号公報にも示されるような、V字状でその先
端、つまり溝の底部を鋭利な状態にするのが、最も溝形
成が容易であると考えられるが、溝の底部を鋭利にした
場合、溝形成用のポンチの先端がすぐに損傷を受けるの
で、ポンチの耐久性面から工業的には採用しがたい。そ
のため、前記実公昭58−26460号公報に示されるよう
に、断面はV字状でも溝の底部に0.1〜0.2mmRの丸みを
つけることによって、溝形成用ポンチの耐久性を向上さ
せることも考えられるが、本発明者らの研究によれば、
溝の先端に丸みをつけた場合、単に厚みを薄くしたとい
う効果が発揮されるだけで、切欠効果などの付加的な効
果がほとんど加わらないため、ステンレス鋼のように高
強度の材質を用いた電池容器では、薄肉部の厚みをよほ
ど薄くしないかぎり、薄肉部の破壊圧力が低くならず、
また、薄肉部の破壊による開口部分が狭いため、塩化チ
オニル−リチウム電池などのハーメチックシール構造を
とる非水液体活物質電池では、高温で急速に加熱された
場合に安定した防爆機能が発揮されなかった。
Therefore, regarding the cross-sectional shape of the groove to be formed, see
It is considered that the groove can be formed most easily when the tip of the groove, that is, the bottom of the groove is V-shaped, as shown in Japanese Patent No. 17332, but the bottom of the groove is sharpened. In this case, since the tip of the punch for forming the groove is immediately damaged, it is not industrially applicable from the viewpoint of durability of the punch. Therefore, as shown in Japanese Utility Model Publication No. 58-26460, it is also considered that the durability of the groove forming punch is improved by rounding the groove bottom with 0.1 to 0.2 mmR even if the cross section is V-shaped. However, according to the study by the present inventors,
When the tip of the groove is rounded, the effect of simply reducing the thickness is exhibited, and almost no additional effects such as the notch effect are added, so a high-strength material such as stainless steel was used. In the battery container, unless the thickness of the thin part is made very thin, the breaking pressure of the thin part does not become low,
In addition, the non-aqueous liquid active material battery that has a hermetically sealed structure such as thionyl chloride-lithium battery does not exhibit a stable explosion-proof function when rapidly heated at high temperature because the opening part is narrow due to the destruction of the thin wall part. It was

そこで、本発明者らは、溝の底部を平坦にすることによ
って、防爆機能が安定して発揮されるようにしたが、そ
のような溝を形成するには、溝形成用ポンチの先端を平
坦にしなければならず、先端を平坦にしたぶんポンチに
かかる荷重が大きくなり、その結果、ポンチの耐久性が
低下するという問題が発生した。
Therefore, the present inventors have made the explosion-proof function stable by flattening the bottom of the groove. However, in order to form such a groove, the tip of the groove forming punch is flattened. Therefore, the load applied to the punch with a flat tip is increased, and as a result, the durability of the punch is reduced.

そのため、本発明者らは、電池容器底部の溝形成部分以
外の部分の厚み方向、つまり溝加工しない部分の構成材
料の厚み方向に拘束力を与えず、かつポンチの溝形成用
凸出部の溝形成角度を50〜80゜にすることによって、形
成される溝の底部構成材料に引張り応力を掛けながらポ
ンチの溝形成用凸出部を電池容器の底部に押し込んで成
形することによって、底部が平坦な溝をステンレス鋼製
の電池容器に対しても低いポンチ荷重で形成することを
可能にし、それについて既に特許出願をした(特願昭61
−228761号〔特開昭63−86244号〕)。
Therefore, the present inventors do not apply a restraining force in the thickness direction of the portion other than the groove forming portion of the battery container bottom, that is, in the thickness direction of the constituent material of the portion that is not grooved, and of the groove forming protrusion of the punch. By setting the groove forming angle to 50 to 80 °, the groove forming protrusion of the punch is pushed into the bottom of the battery container while applying tensile stress to the material forming the bottom of the groove to be formed. A flat groove can be formed on a stainless steel battery container with a low punch load, and a patent application has already been filed (Japanese Patent Application No. 61).
-228761 [JP-A-63-86244]).

しかしながら、上記のように無拘束下、つまり溝加工し
ない部分の構成材料の厚み方向に拘束力を与えずに溝形
成を行うと、該溝形成時の反動で、溝以外の部分が凸出
する。
However, as described above, when the groove is formed without restraint, that is, without giving a restraining force in the thickness direction of the constituent material of the portion where the groove is not processed, the portion other than the groove is projected by the reaction when the groove is formed. .

その凸出の度合は部位によって変動があるが、いずれに
しても、電池容器が予定した高さより高くなり、電池総
高が大きくなって総高不良が発生する原因になり、ま
た、電池容器の高さが高いために、電池の組立工程で、
電池容器がパーツフィーダ機に引っかかって、電池容器
を組立ラインに供給できないなどの問題が発生する。
The degree of protrusion varies depending on the part, but in any case, the height of the battery container becomes higher than the planned height, which causes the total height of the battery to become large and causes the total height failure. Due to its high height, during the battery assembly process,
The battery container gets caught in the parts feeder machine, and there is a problem that the battery container cannot be supplied to the assembly line.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この発明は、電池に防爆機能を付与させるための溝を電
池容器の底部に無拘束下で形成したときに、電池容器底
部の溝以外の部分が部分的に凸出して、電池総高不良を
起こす原因になったり、電池組立中に電池容器を組立ラ
インに供給できなくなることが発生したという問題点を
解決し、無拘束下での溝形成による有位性を保持しなが
ら、電池総高不良や電池組立中でのトラブル発生のない
電池容器の製造を可能ならしめることを目的とする。
According to the present invention, when a groove for imparting an explosion-proof function to a battery is formed in the bottom of a battery container without restraint, a portion other than the groove on the bottom of the battery container partially protrudes to reduce the total height of the battery. Solved the problems that caused the problem and that the battery container could not be supplied to the assembly line during battery assembly, and while maintaining the superiority of the groove formation without restraint, the total battery height was poor. The purpose is to make it possible to manufacture battery containers that do not cause problems during battery assembly.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電池に防爆機能を付与するための溝を電池容
器の底部に無拘束下で形成したのち、電池容器の底部の
溝形成により凸出した部分をプレス成形によって平坦に
することにより、上記目的を達成したものである。
The present invention, after forming a groove for imparting an explosion-proof function to the battery in the bottom portion of the battery container without restraint, by flattening by press molding the portion protruding by the groove formation of the bottom portion of the battery container, The above object is achieved.

溝形成により凸出した部分を平坦にするにあたっては、
電池容器を上面が溝形成前の電池容器の底部内面形状に
適合する形状をした円柱状の下型上にかぶせるようにし
てのせ、該電池容器の底部上に、下面が溝形成前の電池
容器の底部外面形状に適合する形状をした成形用ダイを
下降させ、電池容器の底部を上記下型と成形用ダイとの
間で加圧して所望形状に成形するプレス成形が採用され
る。
To flatten the part that protrudes due to the groove formation,
The battery container is placed so that the upper surface of the battery container is covered with a cylindrical lower mold having a shape conforming to the shape of the inner surface of the bottom of the battery container before the groove is formed, and the lower surface of the battery container is formed on the bottom of the battery container before the groove is formed. Press molding is used in which a molding die having a shape that conforms to the outer surface shape of the bottom is lowered and the bottom of the battery container is pressed between the lower mold and the molding die to form a desired shape.

つまり、電池容器の底部に端子接続を容易にするために
突出部を設け、該突出部に溝を形成している場合には、
下型の上面はその中央部に上記電池容器底部の突出部の
内面形状に適合する形状の突出部を設けた形状にし、成
形用ダイの下面はその中央部に上記電池容器底部の突出
部の外面形状に適合する形状の凹部を設けた形状にし
て、電池容器を上記下型上にかぶせるようにしてのせ、
その上に上記成形用ダイを下降させて加圧し、溝の形成
により凸出した部分を平坦にする。そして、電池容器の
底部にそのような突出部を設けていない場合には、下型
の上面は平面状にし、また成形用ダイの下面も平面状に
して、上記と同様にプレス成形すればよい。
That is, in the case where a protrusion is provided on the bottom of the battery container to facilitate the terminal connection and a groove is formed in the protrusion,
The upper surface of the lower mold has a shape in which a protrusion having a shape conforming to the inner surface shape of the protrusion of the battery container bottom is provided in the center thereof, and the lower surface of the molding die has the protrusion of the battery container bottom in the center thereof. With a shape having a recessed portion conforming to the outer surface shape, and placing the battery container on the lower mold,
Then, the molding die is lowered and pressed to flatten the projected portion due to the formation of the groove. When the bottom of the battery container is not provided with such a protrusion, the upper surface of the lower mold is flat and the lower surface of the molding die is flat, and press molding may be performed as described above. .

本発明において、電池容器の底部への溝形成を無拘束下
で行うには、溝形成用ポンチの基盤部が電池容器に接触
しないようにするため、ポンチの溝形成用凸出部の高さ
は形成される溝の深さより大きくすることが必要であ
る。特に無拘束下で溝形成を安定して行うためには、後
に第1図に基づいて説明するように、溝形成用ポンチの
溝形成用凸出部の高さHが、電池容器の溝構成材料の厚
み、すなわち、電池容器の肉厚Tおよび溝の形成によっ
て設けられた薄肉部の厚みtに対して、H≧1.5(T−
t)であることが好ましい。またポンチの溝形成用凸出
部の溝形成角度θ(第1図参照)を50〜80゜にするの
は、溝形成角度が50゜未満では溝の底部構成材料に与え
る引張り応力が不充分となり、ポンチの溝形成用凸出部
にかかる荷重が大きくなるため、溝形成が困難になり、
また溝形成角度が80゜を超えた場合は溝形成そのものは
可能であるが、電池内部の圧力上昇による電池内部から
の加圧力に対する抵抗が大きくなるため、防爆機能の優
れた電池が得られにくくなるからである。
In the present invention, in order to carry out unconstrained formation of the groove on the bottom of the battery container, in order to prevent the base portion of the groove forming punch from coming into contact with the battery container, the height of the groove forming protrusion of the punch is set. Must be larger than the depth of the groove to be formed. In particular, in order to stably form the groove without restraint, the height H of the groove forming protrusion of the groove forming punch is determined by the groove structure of the battery container, as will be described later with reference to FIG. With respect to the thickness of the material, that is, the thickness T of the battery container and the thickness t of the thin portion provided by forming the groove, H ≧ 1.5 (T−
t) is preferred. Further, the groove forming angle θ (see FIG. 1) of the groove forming protrusion of the punch is set to 50 to 80 ° because the tensile stress applied to the material forming the bottom of the groove is insufficient when the groove forming angle is less than 50 °. Therefore, since the load applied to the groove forming protrusion of the punch becomes large, it becomes difficult to form the groove.
If the groove formation angle exceeds 80 °, it is possible to form the groove itself, but the resistance to the pressure applied from the inside of the battery due to the pressure rise inside the battery increases, so it is difficult to obtain a battery with excellent explosion-proof function. Because it will be.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面に基づいて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

第1〜4図は本発明の方法により電池容器の底部に溝を
形成し、かつ溝形成により凸出した部分を平坦にする際
の状態を示す断面図であり、第1図は溝形成用のポンチ
を下降させポンチの溝形成用凸出部を電池容器の底部に
押し込んだ状態の要部拡大断面図で、第2図はポンチの
下降前の状態における全体の断面図である。第3図は第
1〜2図に示す方法により溝を形成したときの電池容器
の断面図である。第4図は溝の形成により凸出した部分
を平坦にする際の状態を示す断面図であり、平坦にする
ための成形用ダイを下降させる前の状態を示すものであ
る。そして、第5図は溝の形成により凸出した部分を平
坦にした後の電池容器の断面図である。
1 to 4 are cross-sectional views showing a state in which a groove is formed in the bottom of a battery container by the method of the present invention, and a portion protruding by the groove is flattened. FIG. FIG. 2 is an enlarged cross-sectional view of an essential part of a state in which the punch is lowered and the groove forming protrusion of the punch is pushed into the bottom of the battery container, and FIG. 2 is an overall cross-sectional view before the punch is lowered. FIG. 3 is a cross-sectional view of the battery container when the groove is formed by the method shown in FIGS. FIG. 4 is a cross-sectional view showing a state in which the protruding portion due to the formation of the groove is flattened, and shows a state before the molding die for flattening is lowered. FIG. 5 is a cross-sectional view of the battery container after flattening the protruding portion by forming the groove.

まず、溝形成にあたり、第2図に基づき全体を説明する
と、図中、1は電池容器で、この電池容器1は直径が14
mmで、高さが47mmである。21は溝形成用のポンチであ
り、21aはポンチの溝形成用凸出部、21bはポンチの基盤
部である。上記電池容器1は、有底円筒状をしており、
図面では倒立させた状態で下型22上にかぶせるようにし
てのせられている。そして、23はその基台である。電池
容器1への溝形成は、第2図に示す状態からポンチ21を
下降させ、第1図に示すようにポンチ21の溝形成用凸出
部21aを電池容器1の底部2に押し込むことによって溝
3が形成される。ポンチ21の溝形成用凸出部21aの先端2
1a1は平坦面に形成されており、それによって形成さる
溝3の底部は平坦面になる。ポンチ21の溝形成用凸出部
21aの溝形成角度θは50〜80゜に形成されており、その
ため、このポンチ21の溝形成用凸出部21aの先端21a1
押圧された溝底部の構成材料には第1図に示すように引
張り応力fがかかり、しかも溝加工しない部分には拘束
力を与えず、無拘束下にしているので、電池容器1の底
部2の被成形部分が変形しやすくなり、該部分の変形抵
抗およびポンチの溝形成用凸出部21aと電池容器1の被
成形部分との摩擦力は小さくなり、比較的低いポンチ荷
重で溝3の形成が可能になる。
First, in forming the groove, the whole will be described based on FIG. 2. In the figure, 1 is a battery container, and the battery container 1 has a diameter of 14 mm.
mm and height is 47 mm. Reference numeral 21 is a groove forming punch, 21a is a groove forming protrusion, and 21b is a punch base. The battery container 1 has a bottomed cylindrical shape,
In the drawing, it is placed so as to cover the lower mold 22 in an inverted state. And 23 is the base. The groove is formed in the battery case 1 by lowering the punch 21 from the state shown in FIG. 2 and pushing the groove forming protrusion 21a of the punch 21 into the bottom part 2 of the battery case 1 as shown in FIG. The groove 3 is formed. Tip 2 of groove forming protrusion 21a of punch 21
1a 1 is formed as a flat surface, and the bottom of the groove 3 formed thereby becomes a flat surface. Groove forming protrusion of punch 21
The groove forming angle θ of the groove 21a is formed to be 50 to 80 °. Therefore, the constituent material of the groove bottom portion pressed by the tip 21a 1 of the groove forming protrusion 21a of the punch 21 is shown in FIG. As described above, since the tensile stress f is applied and the portion not grooved is not restrained and is not restrained, the portion to be molded of the bottom portion 2 of the battery container 1 is easily deformed, and the deformation resistance of the portion is increased. Also, the frictional force between the groove forming protrusion 21a of the punch and the molded portion of the battery container 1 becomes small, and the groove 3 can be formed with a relatively low punch load.

しかし、上記のような無拘束下での溝形成では、溝の形
成によって電池容器の底部は、第3図に示すように凸出
し、総高が47.5mmになっており、そのままでは前記した
ように電池総高不良の発生や電池組立時における電池容
器の組立ラインへの供給ができなくなるなどの原因にな
る。
However, in the unconstrained groove formation as described above, due to the formation of the groove, the bottom of the battery container is projected as shown in FIG. 3, and the total height is 47.5 mm. In addition, this may cause the total height of the battery to be defective, or make it impossible to supply the battery container to the assembly line during battery assembly.

そのため、本発明では、溝形成によって凸出した部分を
第4図に示すようにして平坦にする。
Therefore, in the present invention, the portion that is projected by the groove formation is flattened as shown in FIG.

第4図において、31は成形用ダイ、31aは成形用ダイの
下面、つまり押圧面で、31a1は成形用ダイの下面31aに
形成された凹部であり、この凹部31a1は溝形成前の電池
容器1の底部2の突出部2aの外面形状に適合する形状に
形成されている。そして、32は下型、33は基台である。
下型32は円柱状をしており、その上面は溝形成前の電池
容器1の底部2の内面形状に適合する形状にされてお
り、その中央部には突出部32aを有していて、電池容器
1はこの円柱状の下型32上にかぶせるようにしてのせら
れている。
In FIG. 4, 31 is a molding die, 31a is a lower surface of the molding die, that is, a pressing surface, 31a 1 is a concave portion formed in the lower surface 31a of the molding die, and this concave portion 31a 1 is before the formation of the groove. It is formed in a shape that matches the outer surface shape of the protruding portion 2a of the bottom portion 2 of the battery container 1. 32 is a lower mold and 33 is a base.
The lower die 32 has a columnar shape, the upper surface of which has a shape conforming to the inner surface shape of the bottom portion 2 of the battery container 1 before groove formation, and the central portion of which has a protrusion 32a. The battery case 1 is placed so as to cover the cylindrical lower mold 32.

そして、成形用ダイ31を下型32上の電池容器1の底部2
に下降させ、20kg/cm2でプレス成形することにより、溝
形成時に凸出した部分を平坦にし、第5図に示すような
電池容器1を得た。この電池容器1の高さは47mmであ
り、溝形成前と同じ高さである。
Then, the molding die 31 is attached to the bottom portion 2 of the battery container 1 on the lower die 32.
By lowering the pressure to 20 kg / cm 2 and press-molding at 20 kg / cm 2 , the protruding portion at the time of forming the groove was flattened to obtain a battery container 1 as shown in FIG. The height of the battery container 1 is 47 mm, which is the same height as before the groove formation.

なお、本実施例では、第5図(a)に示すように、溝3
はその平面形状が十字状になるように形成するので、溝
形成用ポンチ21の溝形成用凸出部21aは十字状になって
いるが、第1〜2図では簡略化のため、そのようには示
しておらず、溝が直線状に1本形成されるような態様で
示している。
In addition, in this embodiment, as shown in FIG.
The groove forming protrusion 21a of the groove forming punch 21 has a cross shape because it is formed to have a cross shape in a plan view. However, in FIG. However, it is not shown in the figure, but is shown in a mode in which one groove is linearly formed.

本実施例では、電池容器1は厚さ0.3mmのステンレス鋼
板で形成されており、ポンチの溝形成用凸出部21aの角
度θは60゜で、該溝形成用凸出部21aの先端21a1は平坦
で、その幅が0.15mmであり、溝3の深さは0.23mmで、溝
の形成によって薄肉にされた部分、つまり溝3の形成に
よって電池容器1の底部2に設けられた薄肉部4の厚み
は0.07mmで、該薄肉部4の幅は0.15mmに形成されている
が、一般の潤滑油(例えばマシン油など)を使用してプ
レスを行っても、ポンチの溝形成用凸出部21a先端にか
かる荷重は240kg/mm2以下にすることができ、生産性高
く溝形成を行うことができる。なお、ポンチの溝形成用
凸出部21aの高さは0.7mmであり、溝形成時の押し込みに
より電池容器底部の溝加工しない部分が凸出するが、そ
れでも該凸出部分の上面とポンチ21の基盤部21bとの間
に0.07mmの空間があいていて無拘束下でのプレス成形が
可能である。また、形成された溝3の断面形状は第6図
に示すように倒立台形状( 形状で、この倒立台形状という表現は、溝底部3aが下側
に配置したときの形状を表現したものである)である。
In this embodiment, the battery case 1 is formed of a stainless steel plate having a thickness of 0.3 mm, the groove forming protrusion 21a of the punch has an angle θ of 60 °, and the groove forming protrusion 21a has a tip 21a. 1 is flat, its width is 0.15 mm, the depth of the groove 3 is 0.23 mm, the thinned portion by the formation of the groove, that is, the thin wall provided on the bottom 2 of the battery container 1 by the formation of the groove 3. The thickness of the portion 4 is 0.07 mm, and the width of the thin portion 4 is 0.15 mm. However, even if pressing is performed using general lubricating oil (such as machine oil), it is for forming the groove of the punch. The load applied to the tip of the protruding portion 21a can be set to 240 kg / mm 2 or less, and the groove can be formed with high productivity. The height of the groove forming protrusion 21a of the punch is 0.7 mm, and the ungrooved portion of the battery container bottom is protruded by the pressing when forming the groove, but the upper surface of the protrusion and the punch 21 are still formed. Since there is a space of 0.07 mm between the base portion 21b and the base portion 21b, press molding without constraint is possible. The cross-sectional shape of the formed groove 3 is an inverted trapezoidal shape ( In terms of shape, the expression "inverted trapezoidal shape" represents the shape when the groove bottom portion 3a is arranged on the lower side).

無拘束下での溝形成を安定して行うには、第1図に示す
ように溝形成用ポンチ21の溝形成用凸出部21aの高さを
H、電池容器1の肉厚をT、薄肉部4の厚みをtとする
とき、ポンチ21の溝形成用凸出部21aの高さHが、電池
容器の肉厚Tおよび薄肉部の厚みtに対して、H≧1.5
(T−t)であることが好ましい。これは、溝形成時に
溝形成部分の近傍が変形して凸出するので、それら溝形
成部分以外の部分に対してポンチの基盤部などによる拘
束力を与えず、ポンチの溝形成用凸出部21aにかかる荷
重を安定して小さくするためには、ポンチの溝形成用凸
出部21aの高さHを形成される溝の深さより大きくして
おくことが好ましいからである。
In order to stably form the groove without restraint, as shown in FIG. 1, the height of the groove forming protrusion 21a of the groove forming punch 21 is H, the wall thickness of the battery container 1 is T, When the thickness of the thin portion 4 is t, the height H of the groove forming protrusion 21a of the punch 21 is H ≧ 1.5 with respect to the thickness T of the battery container and the thickness t of the thin portion.
It is preferably (T-t). This is because the vicinity of the groove forming portion is deformed and protrudes at the time of forming the groove, and thus the punch base forming portion of the punch is not applied to the portions other than the groove forming portion by the restraining force of the punch base. This is because, in order to stably reduce the load applied to the groove 21a, it is preferable to make the height H of the groove forming protrusion 21a of the punch larger than the depth of the groove to be formed.

また、安定した防爆機能を発揮させるためには、溝3は
溝底部3aの下に形成される薄肉部4の幅Wを薄肉部4の
厚みtの1.4〜15倍にするのが好ましい。すなわち、薄
肉部4の幅Wが薄肉部4の厚みtの1.4倍以上では、電
池の内部圧力が上昇したとき、溝底部3aの端部に内部圧
力による引張力と曲げによる引張力とが複合してかかる
ようになり、電池内部の圧力上昇に鋭敏に対応して溝底
部3aの端部のところで引裂破壊が生じ、安定した防爆機
能が発揮されるようになり、また、薄肉部4の幅Wが薄
肉部の厚みtの15倍以下では、電池外部からの力が薄肉
部にかかって薄肉部が破壊されるようなことがないから
である。
Further, in order to exert a stable explosion-proof function, it is preferable that the width W of the thin portion 4 formed under the groove bottom portion 3a of the groove 3 is 1.4 to 15 times the thickness t of the thin portion 4. That is, when the width W of the thin portion 4 is 1.4 times or more the thickness t of the thin portion 4, when the internal pressure of the battery rises, the tensile force due to the internal pressure and the tensile force due to the bending are combined at the end of the groove bottom 3a. As a result, tear breakage occurs at the end of the groove bottom 3a in response to the pressure increase inside the battery, and a stable explosion-proof function is exhibited. This is because if W is 15 times or less the thickness t of the thin portion, the force from the outside of the battery is not applied to the thin portion and the thin portion is not broken.

溝形成により凸出した部分の平坦化は、溝を除き他の部
分を溝形成以前の状態にもどすだけのものであって、そ
のプレス成形は通常のプレス成形と何ら変わるところが
なく、通常のプレス成形どおり10〜50kg/cm2程度の圧力
で行えばよい。
The flattening of the part protruding by the groove formation is only to return the other parts to the state before the groove formation except the groove, and the press molding is no different from the normal press molding. The pressure may be as high as 10 to 50 kg / cm 2 as it is molded.

なお、本実施例では、リード端子の取付位置が安定しや
すいように、電池容器1の底部2の中央部に突出部2aを
設けているので、溝3を突出部2aに形成したが、突出部
2aは必ずしも必要ではなく、電池容器1の底部2は平坦
なものであってもよい。その場合においては、溝3は電
池容器1の平坦な底部2の中央部に設ければよいが、そ
のようにしても、突出部2aに溝3を設ける場合と比較し
て、防爆機能が低下するようにこともないし、また、プ
レス成形による溝形成に関しても作業性面などで低下を
招くこともない。
In this embodiment, the protrusion 2a is provided at the center of the bottom 2 of the battery case 1 so that the lead terminals can be easily attached at a stable position. Therefore, the groove 3 is formed in the protrusion 2a. Department
2a is not always necessary, and the bottom portion 2 of the battery container 1 may be flat. In that case, the groove 3 may be provided in the central portion of the flat bottom portion 2 of the battery container 1, but even in that case, the explosion-proof function is reduced as compared with the case where the groove 3 is provided in the protrusion 2a. In addition, the workability and the like of the groove formation by press molding do not deteriorate.

第7図は第1〜4図に基づいて説明した溝形成方法によ
り防爆用の溝が形成され、かつ溝形成により凸出した部
分を平坦にした電池容器を用いて組み立てた塩化チオニ
ル−リチウム電池を示すもので、図中、1は前述のよう
な溝3の形成により電池に防爆機能を備えさせるように
した電池容器である。11はアルカリ金属よりなる負極
で、本実施例ではリチウム板を上記電池容器1の内周面
に圧着することにより形成されており、そのため、この
電池では、電池容器1は負極端子としての機能を有して
いる。12はセパレータであり、このセパレータ12はガラ
ス繊維不織布からなり、円筒状をしていて、前記円筒状
の負極11と円柱状の正極13とを隔離している。正極13は
アセチレンブラックを主成分とする炭素質で形成された
炭素多孔質成形体よりなり、14は正極集電体で、ステン
レス鋼棒よりなる。15は電池蓋で、ステンレス鋼で形成
されていて、その立ち上がった外周部が電池容器1の開
口端部と溶接により接合され、電池蓋15の内周側には正
極端子17との間にガラス層16が介設されている。ガラス
層16は電池蓋15と正極端子17との間を絶縁すると共に、
その外周面でその構成ガラスが電池蓋15の内周面に融着
し、その内周面でその構成ガラスが正極端子17の外周面
に融着して、電池蓋15と正極端子17との間をシールし、
電池容器1の開口部はいわゆるハーメチックシールによ
り封口されている。正極端子17はステンレス鋼製で電池
組立時はパイプ状をしていて、電解液注入口として使用
され、その上端部を電解液注入後にその中空部内に挿入
された正極集電体14の上部と溶接して封止したものであ
る。18は電解液で、この電解液18は塩化チオニルに支持
電解質としての四塩化アルミニウムリチウムを1.2mol/
溶解したもので、塩化チオニルは上記のように電解液
の溶媒であると共に、この電池では正極活物質であり、
正極13の表面で、この塩化チオニルと負極11からイオン
化したリチウムイオンとが反応を起こす。そして、電解
液18の上部は空間になっており、19および20はそれぞれ
ガラス繊維不織布からなる底部隔離材と上部隔離材であ
る。
FIG. 7 is a thionyl chloride-lithium battery assembled using a battery container in which an explosion-proof groove is formed by the groove forming method described with reference to FIGS. 1 to 4 and the protruding portion of the groove is flattened. In the figure, 1 is a battery container in which the battery is provided with an explosion-proof function by forming the groove 3 as described above. Reference numeral 11 denotes a negative electrode made of an alkali metal, which is formed by pressing a lithium plate onto the inner peripheral surface of the battery container 1 in this embodiment. Therefore, in this battery, the battery container 1 functions as a negative electrode terminal. Have Reference numeral 12 denotes a separator, which is made of glass fiber non-woven fabric and has a cylindrical shape, and separates the cylindrical negative electrode 11 and the cylindrical positive electrode 13 from each other. The positive electrode 13 is made of a carbon porous molded body formed of carbonaceous material containing acetylene black as a main component, and 14 is a positive electrode current collector made of a stainless steel rod. Reference numeral 15 denotes a battery lid, which is made of stainless steel and whose rising outer peripheral portion is joined to the opening end portion of the battery container 1 by welding, and the inner peripheral side of the battery lid 15 is connected to the positive electrode terminal 17 by a glass. The layer 16 is interposed. The glass layer 16 insulates between the battery lid 15 and the positive electrode terminal 17, and
The constituent glass is fused to the inner peripheral surface of the battery lid 15 on the outer peripheral surface thereof, and the constituent glass is fused to the outer peripheral surface of the positive electrode terminal 17 on the inner peripheral surface of the battery lid 15 and the positive electrode terminal 17. Seal the space between
The opening of the battery container 1 is closed by a so-called hermetic seal. The positive electrode terminal 17 is made of stainless steel and has a pipe shape at the time of battery assembly, and is used as an electrolyte injection port. It is welded and sealed. 18 is an electrolytic solution, and this electrolytic solution 18 contains 1.2 mol / L of lithium aluminum tetrachloride as a supporting electrolyte in thionyl chloride.
Thionyl chloride is a solvent of the electrolytic solution as described above, and is a positive electrode active material in this battery.
On the surface of the positive electrode 13, this thionyl chloride reacts with the lithium ions ionized from the negative electrode 11. The upper portion of the electrolytic solution 18 is a space, and 19 and 20 are a bottom separator and an upper separator made of glass fiber nonwoven fabric, respectively.

上記のように底部に防爆用の溝を形成した電池容器を用
いた塩化チオニル−リチウム電池を火中に投入し、電池
が大きな破裂音を伴って破裂するか否かを調べた結果を
第1表に示す。比較のため、アルカリ電池で提案されて
いるような底部に丸みをつけた溝(溝形成角度90゜で、
溝底部の丸み0.2mmR、薄肉部の厚さ0.07mm)を形成した
電池容器を用いた電池についても火中破裂試験を行い、
その結果を第1表に示した。なお、第1表中の「火中破
裂電池個数」の欄の分母は試験に供した電池個数を示
し、分子は火中破裂(防爆機能が作動せず、高圧で大き
な破裂音を伴った電池破裂するもの)を生じた電池個数
を示す。
As described above, the thionyl chloride-lithium battery using the battery container with the explosion-proof groove formed in the bottom was put into a fire, and it was investigated whether or not the battery exploded with a loud popping sound. Shown in the table. For comparison, a groove with a rounded bottom as proposed in alkaline batteries (with a groove forming angle of 90 °,
A burst test was also conducted on a battery using a battery container with rounded groove bottom 0.2 mm R and thin portion thickness 0.07 mm).
The results are shown in Table 1. The denominator in the "Number of burst batteries in fire" column in Table 1 indicates the number of batteries used in the test, and the numerator is a burst in fire (batteries with large explosion noise at high pressure without the explosion-proof function working). The number of batteries that caused a burst) is shown.

第1表に示すように、本発明により溝形成を行った電池
容器を用いて作製した電池では、火中破裂がまったくな
く、優れた防爆機能が発揮された。
As shown in Table 1, the battery produced by using the battery container in which the groove was formed according to the present invention showed no explosion in fire and exhibited an excellent explosion-proof function.

なお、第8図は防爆用薄肉部の厚みと該防爆用薄肉部の
開裂圧力との関係を示すものであり、第8図中の実線a
は電池容器の底部に溝形成後、溝形成により凸出した部
分を平坦にした電池容器の場合を示し、第8図中の点線
bは底部に溝形成しただけで溝形成によって凸出した部
分を平坦にしていない電池容器の場合を示している。こ
の第8図から明らかなように、溝形成によって凸出した
部分を平坦にした方が、溝形成によって凸出した部分を
平坦にしていない場合に比べて、同じ厚み(防爆用薄肉
部の厚み)で比較した場合、薄肉部の開裂圧力が低い。
このことから、溝形成によって凸出した部分を平坦にす
ることにより、同じ厚みでも、より低い圧力で防爆機能
を作動させることができ、より安定して防爆機能を発揮
させ得ることがわかる。
Note that FIG. 8 shows the relationship between the thickness of the explosion-proof thin-walled portion and the cleavage pressure of the explosion-proof thin-walled portion, and the solid line a in FIG.
Shows the case of a battery container in which a groove is formed on the bottom of the battery container, and the protruding portion due to the groove formation is flattened. The dotted line b in FIG. Shows the case of a battery container in which is not flat. As is clear from FIG. 8, the flattened portion formed by the groove formation has the same thickness (thickness of the thin explosion-proof portion as compared to the case where the portion formed by the groove formation is not flattened). The cleavage pressure of the thin part is low when compared with).
From this, it can be seen that by flattening the protruding portion by forming the groove, it is possible to operate the explosion-proof function at a lower pressure even with the same thickness, and to exhibit the explosion-proof function more stably.

なお、上記実施例では、溝は平面形状が十字状になるよ
うに形成したが、溝の平面形状はそのような十字状のも
ののみに限られることなく、例えば第9図に示すよう
に、Y字状(第9図(a)参照)、アスタリスク(星
印)状(第9図(b)参照)、H字状(第9図(c)参
照)、さらにはX字状など、溝が複数本でそれらの溝が
少なくとも1箇所交わっているものがとり得る。特に電
池に内圧がかかったときに電池容器の底部で最も変形が
大きいのは、中心部であるため、底部中心に交点を持つ
平面形状が十字状、X字状、Y字状、アスタリスク状の
溝が好ましい。
In addition, in the above-mentioned embodiment, the groove is formed so that the planar shape is a cross shape. However, the planar shape of the groove is not limited to such a cross shape, and as shown in FIG. 9, for example, Grooves such as a Y shape (see FIG. 9 (a)), an asterisk (star) shape (see FIG. 9 (b)), an H shape (see FIG. 9 (c)), and an X shape. It is possible that a plurality of grooves are provided and the grooves intersect at at least one position. In particular, when the internal pressure is applied to the battery, the largest deformation at the bottom of the battery container is at the center, so the planar shape having the intersection at the center of the bottom is cross-shaped, X-shaped, Y-shaped, or asterisk-shaped. Grooves are preferred.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、無拘束下、溝形成角
度を50〜80゜として、プレス成形で電池容器の底部に溝
形成を行うことにより、溝の底部を構成する材料に引張
り応力をかけ、被成形材料の変形抵抗および溝形成用ポ
ンチと被成形材料との間の摩擦力を小さくして、底部が
平坦な溝を量産可能なポンチ寿命で形成するとともに、
上記溝形成により凸出した部分を平坦にすることによっ
て、溝形成に伴う凸出部分によって引き起こされる電池
総高不良の発生や電池組立中における電池容器の組立ラ
インへの供給トラブルを解消することができた。
As described above, in the present invention, the groove forming angle is 50 to 80 ° without restraint, and the groove forming is performed on the bottom of the battery container by press molding, so that the tensile stress is applied to the material forming the bottom of the groove. By reducing the deformation resistance of the material to be molded and the frictional force between the groove forming punch and the material to be molded, a groove with a flat bottom is formed with a punch life that enables mass production.
By flattening the protruding portion due to the groove formation, it is possible to eliminate the occurrence of the total height defect of the battery caused by the protruding portion due to the groove formation and the trouble of supplying the battery container to the assembly line during the battery assembly. did it.

【図面の簡単な説明】[Brief description of drawings]

第1〜4図は本発明の方法により電池容器の底部に防爆
用の溝を形成し、かつ溝形成により凸出した部分を平坦
にする際の状態を示すもので、第1図は溝形成用のポン
チを下降させポンチの溝形成用凸出部を電池容器の底部
に押し込んだ状態を示す要部拡大断面図であり、第2図
は溝形成用ポンチの下降前の状態における全体の断面図
である。第3図は第1〜2図に示す方法により溝を形成
したときの電池容器の断面図である。第4図は溝の形成
により凸出した部分を平坦にする際の状態を示す断面図
であり、平坦にするための成形用ダイを下降させる前の
状態を示すものである。第5図は本発明の方法により防
爆用の溝が形成され、かつ溝形成により凸出した部分を
平坦にした電池容器の一例を示すもので、第5図(a)
はその平面図、第5図(b)は第5図(a)のX−X線
における断面図である。第6図は第5図(b)のA部拡
大断面図である。第7図は本発明の方法により防爆用の
溝が形成され、かつ溝形成により凸出した部分を平坦に
した電池容器を用いた塩化チオニル−リチウム電池の一
例を示す断面図である。第8図は防爆用の薄肉部の厚み
と該薄肉部の開裂圧力との関係を示す図である。第9図
は本発明の方法により形成される溝の他の例の平面形状
を示すためのもので、上段はそれぞれの電池容器の概略
正面図を示し、下段はそれらの概略底面図を示す。 1……電池容器、2……底部、3……溝、 3a……溝の底部、4……薄肉部、21……溝形成用ポン
チ、21a……溝形成用凸出部、 21a1……先端、31……成形用ダイ、32……下型
1 to 4 show a state in which an explosion-proof groove is formed on the bottom of a battery container by the method of the present invention, and the protruding portion is flattened by the groove formation. FIG. 1 shows the groove formation. FIG. 2 is an enlarged cross-sectional view of an essential part showing a state in which the groove punch is lowered and the groove forming protrusion of the punch is pushed into the bottom of the battery container. FIG. 2 is an overall cross section of the groove forming punch before being lowered. It is a figure. FIG. 3 is a cross-sectional view of the battery container when the groove is formed by the method shown in FIGS. FIG. 4 is a cross-sectional view showing a state in which the protruding portion due to the formation of the groove is flattened, and shows a state before the molding die for flattening is lowered. FIG. 5 shows an example of a battery container in which an explosion-proof groove is formed by the method of the present invention, and the protruding portion is flattened by forming the groove.
Is a plan view thereof, and FIG. 5 (b) is a sectional view taken along line XX of FIG. 5 (a). FIG. 6 is an enlarged sectional view of part A in FIG. 5 (b). FIG. 7 is a cross-sectional view showing an example of a thionyl chloride-lithium battery using a battery container in which an explosion-proof groove is formed by the method of the present invention, and a convex portion formed by the groove formation is flat. FIG. 8 is a diagram showing the relationship between the thickness of the explosion-proof thin-walled portion and the cleavage pressure of the thin-walled portion. FIG. 9 is for showing the planar shape of another example of the groove formed by the method of the present invention, the upper stage shows a schematic front view of each battery container, and the lower stage shows a schematic bottom view thereof. 1 ... Battery container, 2 ... bottom, 3 ... groove, 3a ... groove bottom, 4 ... thin-walled portion, 21 ... groove forming punch, 21a ... groove forming protrusion, 21a 1 ... … Tip, 31 …… Molding die, 32… Lower mold

フロントページの続き (72)発明者 池成 茂 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 横山 賢一 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内Front Page Continuation (72) Inventor Shigeru Ikenari 1-88, Torora, Ibaraki-shi, Osaka, Hitachi Maxel Co., Ltd. (72) Inventor Kenichi Yokoyama 1-88, Torora, Ibaraki, Osaka Within the corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電池に防爆機能を備えさせるための溝を電
池容器の底部に形成するにあたり、溝形成用ポンチとし
て、先端が平坦で、かつ溝形成角度が50〜80゜の溝形成
用凸出部を有するポンチを用い、電池容器の底部の溝形
成部分以外の部分の厚み方向に拘束力を与えずに、電池
容器の底部に上記ポンチの溝形成用凸出部を押し込ん
で、底部が平坦な溝を電池容器の底部に形成し、ついで
電池容器の底部の上記溝形成により凸出した部分をプレ
ス成形により平坦にすることを特徴とする防爆型密閉電
池に使用する電池容器の製造方法。
1. A groove forming punch having a flat tip and a groove forming angle of 50 to 80 ° is formed as a groove forming punch for forming a groove for providing an explosion proof function to a battery. Using a punch having a protrusion, without applying a restraining force in the thickness direction of the portion other than the groove forming portion of the bottom of the battery container, the groove forming protrusion of the punch is pushed into the bottom of the battery container, A method for producing a battery container for use in an explosion-proof closed battery, characterized in that a flat groove is formed on the bottom of the battery container, and then the portion of the bottom of the battery container that is projected by the groove is flattened by press molding. .
JP62123144A 1986-09-27 1987-05-19 Method for manufacturing battery container used for explosion-proof sealed battery Expired - Lifetime JPH07105218B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62123144A JPH07105218B2 (en) 1987-05-19 1987-05-19 Method for manufacturing battery container used for explosion-proof sealed battery
US07/101,259 US4842965A (en) 1986-09-27 1987-09-25 Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
DE8787114076T DE3779996T2 (en) 1986-09-27 1987-09-26 EXPLOSION-PROTECTED ARRANGEMENT FOR A NON-AQUEOUS ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF.
EP87114076A EP0266541B1 (en) 1986-09-27 1987-09-26 Explosion-proof arrangement for a non-aqueous electrochemical cell, and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123144A JPH07105218B2 (en) 1987-05-19 1987-05-19 Method for manufacturing battery container used for explosion-proof sealed battery

Publications (2)

Publication Number Publication Date
JPS63285860A JPS63285860A (en) 1988-11-22
JPH07105218B2 true JPH07105218B2 (en) 1995-11-13

Family

ID=14853281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123144A Expired - Lifetime JPH07105218B2 (en) 1986-09-27 1987-05-19 Method for manufacturing battery container used for explosion-proof sealed battery

Country Status (1)

Country Link
JP (1) JPH07105218B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2792097B2 (en) * 1989-04-25 1998-08-27 松下電器産業株式会社 Manufacturing method of battery case used for explosion-proof sealed battery

Also Published As

Publication number Publication date
JPS63285860A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
US4842965A (en) Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
CN100440602C (en) Cylindrical lithium rechargeable battery and method for fabricating the same
EP2733778B1 (en) Jelly-roll with improved processability and battery cell including same
EP0360039B1 (en) A flat typed sealed battery with hermetic sealing structure
US6207319B1 (en) Cap assembly for secondary battery
EP3859851A1 (en) Secondary battery
JP2003151514A (en) Cap assembly and square secondary battery provided with it
JPS63175345A (en) Organic electrolyte battery
JP3691268B2 (en) Sealed battery
JPH07105218B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery
US20040258989A1 (en) Secondary battery having safety valve and method of manufacturing same
JP2006066308A (en) Coin-shaped cell
JPH0789482B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery
JPH07105217B2 (en) Non-aqueous liquid active material battery
JPH03203157A (en) Manufacture of sealed battery
JPH0637567Y2 (en) Non-aqueous liquid active material battery
CN220585277U (en) Button lithium ion battery and electronic product
JPH07105219B2 (en) Non-aqueous liquid active material battery
KR200228355Y1 (en) Cap assembly for a rectangular battery
JP2521441B2 (en) Hermetically sealed liquid active material battery
JP2870067B2 (en) Sealed battery
JPH10261392A (en) Sealing structure of battery
JPS63294665A (en) Non-liquid active material battery
JPS6213329Y2 (en)
JP2792097B2 (en) Manufacturing method of battery case used for explosion-proof sealed battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12