JPS63294665A - Non-liquid active material battery - Google Patents

Non-liquid active material battery

Info

Publication number
JPS63294665A
JPS63294665A JP62130246A JP13024687A JPS63294665A JP S63294665 A JPS63294665 A JP S63294665A JP 62130246 A JP62130246 A JP 62130246A JP 13024687 A JP13024687 A JP 13024687A JP S63294665 A JPS63294665 A JP S63294665A
Authority
JP
Japan
Prior art keywords
groove
battery
explosion
thickness
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62130246A
Other languages
Japanese (ja)
Other versions
JPH07105220B2 (en
Inventor
Hirokazu Yoshikawa
吉川 博和
Atsushi Sato
淳 佐藤
Shigeru Ikenari
池成 茂
Kenichi Yokoyama
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62130246A priority Critical patent/JPH07105220B2/en
Priority to US07/101,259 priority patent/US4842965A/en
Priority to EP87114076A priority patent/EP0266541B1/en
Priority to DE8787114076T priority patent/DE3779996T2/en
Publication of JPS63294665A publication Critical patent/JPS63294665A/en
Publication of JPH07105220B2 publication Critical patent/JPH07105220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To achieve explosion-proof function within a safety pressure range by forming a groove shaped in a letter W in section and flattened in its bottom by multipying the thicknes of a portion at the cross point of the groove of an explosion-proof thin portion specific times in comparison with other portions. CONSTITUTION:On a projection portion 2a at the center of the bottom 2 of a battery case 1, a crosslike groove 3 in plane view is formed. The groove 3 is shaped in an inverse trapezoid section having a flat bottom. Namely, an explosion-proof thin portion 4 which is partially thinned due to the formation of the groove 3 is flattened over a large portion 4b except a cross point 3b of the groove 3, while a portion 4a at the cross point 3b protrudes and the thickness t1 of the portion 4a is set larger 1.05 to 1.5 times than that of the flat part 4b. The section of the groove cut by a line Y-Y is shaped approximately as the letter W, and a central portion 3a2 of a groove bottom portion 3a is slightly higher than ends 3a1, 3a1 of both side. When internal pressure rises, it concentrates on the ends 3a1, 3a1 to cut or break same. It is thus possible to give a battery explosion-proof function within a pressure range where safety at the initial stage of internal pressure is ensured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆機能を備えた非水液体活物質電池に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-aqueous liquid active material battery with explosion-proof function.

〔従来の技術〕[Conventional technology]

塩化チオニル−リチウム電池で代表されるような正極活
物質として塩化チオニル、塩化スルフリル、塩化ホスホ
リルなどのオキシハロゲン化物系液体を用い、負極にリ
チウム、ナトリウム、カリウムなどのアルカリ金属を用
いる非水液体活物質電池では、正極活物質やアルカリ金
属などが水と非常に反応しやすいため、電池容器をハー
メチックシールにより封口する完全密閉構造が採用され
ている。
Non-aqueous liquid active materials, such as thionyl chloride-lithium batteries, use oxyhalide-based liquids such as thionyl chloride, sulfuryl chloride, and phosphoryl chloride as the positive electrode active material, and use alkali metals such as lithium, sodium, and potassium for the negative electrode. In material batteries, the cathode active material and alkali metals are highly reactive with water, so a completely sealed structure is used in which the battery container is sealed with a hermetic seal.

このようなハーメチックシールを採用した非水液体活物
質電池では、密閉性が高(、貯蔵性に優れるという長所
を有するものの、その反面、密閉性が高いために、高温
加熱下にさらされたり、−高電圧で充電されるなどの異
常事態に遭遇したときに、電池の内部圧力が異常に上昇
して電池が破裂し、大きな破裂音が発生すると共に、電
池内容物が周囲に飛び散って電池使用機器を汚損するお
それがある。
Non-aqueous liquid active material batteries that use such hermetic seals have the advantage of being highly hermetic (and have excellent storage stability), but on the other hand, because of their high hermetic sealing, they cannot be exposed to high-temperature heating, - When an abnormal situation occurs, such as being charged at a high voltage, the internal pressure of the battery increases abnormally, causing the battery to burst, making a loud bursting sound, and causing the contents of the battery to scatter all over the place, causing the battery to become unusable. There is a risk of contaminating the equipment.

そこで、同様に密閉構造をとるアルカリ電池に関して提
案されているような、電池容器の底部に十字状に溝を形
成して電池容器の底部に薄肉部を設けることによって電
池に防爆機能を備えさせることが、この非水液体活物質
電池においても取り入れることが必要になる。
Therefore, it is proposed to equip the battery with an explosion-proof function by forming a cross-shaped groove at the bottom of the battery container and providing a thin wall part at the bottom of the battery container, as has been proposed for alkaline batteries that similarly have a sealed structure. However, it is necessary to incorporate this into this non-aqueous liquid active material battery as well.

しかしながら、アルカリ電池において提案されている防
爆用の溝は、その断面形状がV字状で、その先端、つま
り溝底部を鋭利な状態にするか(例えば、実公昭58−
17332号公報)、あるいは断面V字状でその溝底部
に0.1〜0.2 +mmHの丸みをつけたものであり
(例えば、実公昭58−26460号公報)、これらは
、以下に詳述するように、溝形成用のポンチの耐久性面
や、防爆性能面から、非水液体活物質電池には適用する
ことができない。
However, the explosion-proof groove proposed for alkaline batteries has a V-shaped cross-section, and the tip, or bottom of the groove, is sharp (for example,
(Japanese Utility Model Publication No. 17332), or a V-shaped cross section with a groove bottom rounded by 0.1 to 0.2 +mmH (for example, Japanese Utility Model Publication No. 58-26460), which are detailed below. As such, the groove-forming punch cannot be applied to non-aqueous liquid active material batteries due to its durability and explosion-proof performance.

すなわち、アルカリ電池で提案されている断面形状がV
字状で溝底部が鋭利な溝は、切欠効果は期待できるもの
の、プレス成形により溝を形成する際に、溝形成用のポ
ンチの先端部がすぐに損傷を受け、特に残水液体活物質
電池では、正極活物質の強い腐食性に耐えるために電池
容器にはステンレス鋼などの硬度の高い耐食性金属が使
用されているので、ポンチの損傷が増々激しくなり、ポ
ンチの耐久性面やポンチの損傷によるV字状溝の形状バ
ラツキから工業的には到底採用することができない、一
方、断面形状がV字状で溝底部に丸みをつけたものは、
ポンチの損傷は少なくなると考えられるが、このような
溝底部に丸みをつけた場合は、単に薄肉にしたという効
果が発揮されるだけで、切欠効果などの付加的効果がほ
とんど加わらないため、薄肉部の厚みをよほど薄くしな
いかぎり、安全な圧力範囲内での薄肉部の破壊が生じず
、また薄肉部の厚みを薄くすると、貯蔵中に薄肉部が腐
食を受けて電池機能が失われるおそれがある。
In other words, the cross-sectional shape proposed for alkaline batteries is V
A groove with a sharp groove bottom can be expected to have a notch effect, but when forming the groove by press molding, the tip of the groove forming punch is easily damaged, especially in batteries with residual water liquid active material. In order to withstand the strong corrosivity of the positive electrode active material, hard and corrosion-resistant metals such as stainless steel are used for battery containers, so damage to the punch becomes more and more severe, resulting in damage to the punch and durability. Due to the variation in the shape of the V-shaped groove due to the
It is thought that damage to the punch will be reduced, but if the bottom of the groove is rounded like this, the effect of making the groove thinner will only be achieved, and additional effects such as the notch effect will hardly be added. Unless the thickness of the thin wall part is made extremely thin, the thin wall part will not break within a safe pressure range, and if the thickness of the thin wall part is made thin, there is a risk that the thin wall part will be corroded during storage and the battery function will be lost. be.

そのため、電池容器の底部に形成する溝の形状を底部が
平坦状になった断面倒立台形状にし、溝底部の端部に電
池の内部圧力による引張力と曲げによる引張力とが複合
してかかるようにし、薄肉部の厚さをある程度維持して
も、比較的低い圧力で、溝底部の端部から切裂破壊が生
じるようにして、電池に安全性の高い防爆機能を付与す
ることが開発され、本出願人によって既に特許出願され
ている(特願昭61−228760号)。
Therefore, the shape of the groove formed at the bottom of the battery container is made into a truncated cross-sectional truncated shape with a flat bottom, and the tensile force due to the internal pressure of the battery and the tensile force due to bending are combined at the end of the groove bottom. A new technology has been developed to give batteries highly safe explosion-proof functionality by allowing rupture to occur from the edge of the bottom of the groove at a relatively low pressure even if the thickness of the thin wall part is maintained to a certain degree. The present applicant has already filed a patent application (Japanese Patent Application No. 228760/1983).

しかしながら、電池を使用する立場からは、薄肉部の厚
さをある程度厚く保った状態で、より低い圧力で安全性
がより確実に確保できる圧力範囲内で防爆機能を作動さ
せたいという要請がある。
However, from the viewpoint of battery users, there is a desire to operate the explosion-proof function within a pressure range where safety can be more reliably ensured at a lower pressure while maintaining the thickness of the thin part to a certain degree.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、上記従来製品が持っていた高温加熱下にさ
らされたり、高電圧で充電されたときに電池の内部圧力
が異常に上昇して電池破裂が生じ、大きな破裂音を発生
したり、電池内容物が周囲に飛び散って電池使用機器に
損傷を与えるおそれがあったという問題点を解決し、電
池容器の底部に形成される防爆用の薄肉部の厚みをある
程度厚く保った状態でも、電池が内部圧力の異常上昇を
起こしそうな状況下に置かれたときに、その初期の比較
的低い圧力範囲内で電池容器の一部が確実に切裂破壊し
て、電池破裂の原因となる電池内容物を電池外部に放出
させて高圧での電池破裂を防ぐという、安全性の高い防
爆機能を備えた非水液体活物質電池を提供することを目
的とする。
This invention eliminates the problems that the conventional products had, such as when exposed to high temperature heating or charged at high voltage, the internal pressure of the battery rises abnormally and causes the battery to burst, producing a loud bursting sound. This solves the problem of battery contents scattering around and causing damage to equipment using batteries, and even when the thickness of the explosion-proof thin section formed at the bottom of the battery container is maintained to a certain degree, the battery When a battery is placed in a situation where its internal pressure is likely to rise abnormally, part of the battery container will definitely break and break within the relatively low initial pressure range, causing the battery to explode. The purpose of the present invention is to provide a non-aqueous liquid active material battery that has a highly safe explosion-proof function that prevents the battery from bursting under high pressure by releasing the contents to the outside of the battery.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電池容器の底部に形成する溝の形状を底部が
平坦な断面倒立台形状にし、かつ上記溝を複数本にして
それらが少なくとも1箇所の交点を有するようにし、該
溝の形成によって電池容器の底部に設けられる防爆用の
薄肉部の溝の交点に位置する部分の厚さを溝の交点以外
のところに位置する部分の厚さの1.05〜1.5倍に
することにより、電池の内部圧力が上昇したときに、交
点近傍の溝底部の端部に電池の内部圧力による引張力と
曲げによる引張力とがより鋭く複合してかかるようにし
、より低い圧力で溝底部の端部のところが大きく切裂破
壊するようにして、薄肉部の厚みをある程度厚く保って
も、電池の内部圧力上昇初期の安全性が確保できる圧力
範囲内で防爆機能が作動するようにしたものである。
According to the present invention, the shape of the groove formed at the bottom of the battery container is made into a truncated cross-sectional truncated shape with a flat bottom, and a plurality of grooves are formed so that they have at least one intersection point, and by forming the groove, By making the thickness of the part located at the intersection of the grooves of the thin explosion-proof part provided at the bottom of the battery container 1.05 to 1.5 times the thickness of the part located at a place other than the intersection of the grooves. , when the internal pressure of the battery increases, the tensile force due to the internal pressure of the battery and the tensile force due to bending are more sharply combined and applied to the edge of the groove bottom near the intersection, and the groove bottom is increased at a lower pressure. Even if the thin wall part is kept thick to a certain extent by causing a large amount of rupture at the end, the explosion-proof function is activated within the pressure range that ensures safety when the battery's internal pressure rises in the early stages. be.

本発明において、薄肉部の溝の交点に位置する部分の厚
さを溝の交点以外のところに位置する部分(以下、簡略
化のため、「それ以外の部分」と表現する場合がある)
の厚さの1.05〜1.5倍にするのは、溝の交点にお
ける薄肉部の厚さがそれ以外の部分の厚さの1.05倍
より小さい場合は溝の交点近傍の溝底部の端部の切裂破
壊をより低い圧力で起こさせる効果が充分に発揮させる
ことができず、一方、薄肉部の溝の交点に位置する部分
の厚さがそれ以外の部分の厚さより厚くなればなるほど
溝の交点近傍の溝底部の端部の切裂破壊をより低い圧力
で起こさせるようになるが、薄肉部の溝の交点に位置す
る部分の厚さをそれ以外の部分の厚さの1.5倍より大
きく作製することが技術的にむつかしいからである。
In the present invention, the thickness of the portion of the thin wall portion located at the intersection of the grooves is defined as the portion located at a location other than the intersection of the grooves (hereinafter, for simplicity, may be expressed as "other portion").
The thickness should be 1.05 to 1.5 times the thickness of the groove bottom near the groove intersection if the thickness of the thin part at the groove intersection is less than 1.05 times the thickness of the other part. On the other hand, the effect of causing tearing failure at the edge of the thin section at a lower pressure cannot be sufficiently exhibited, and on the other hand, the thickness of the part located at the intersection of the grooves of the thin part becomes thicker than the thickness of the other part. The lower the pressure becomes, the lower the pressure will be required to cause tearing failure at the end of the groove bottom near the intersection of the grooves, but if the thickness of the thin-walled part located at the intersection of the grooves is made smaller than the thickness of the other parts. This is because it is technically difficult to produce a size larger than 1.5 times.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明において電池容器の底部に形成された溝
、防爆用の薄肉部およびその近傍の拡大断面図であり、
第2図は本発明の電池に用いられる電池容器を倒立させ
た状態で示すもので、第2図(a)はその平面図、第2
図(ロ)は第2図(a)のX−X線における断面図であ
る。なお、第1図および第2図は電池容器を倒立させた
状態で示しているので、底部が上側にきており、第2図
(a)の平面図は電池容器の底部側から見た図である。
FIG. 1 is an enlarged sectional view of the groove formed at the bottom of the battery container, the explosion-proof thin wall part, and the vicinity thereof in the present invention;
Fig. 2 shows the battery container used in the battery of the present invention in an inverted state; Fig. 2(a) is a plan view thereof;
Figure (b) is a sectional view taken along the line X--X in Figure 2 (a). Note that FIGS. 1 and 2 show the battery container upside down, so the bottom is on the top, and the plan view in FIG. 2(a) is a view from the bottom side of the battery container. It is.

電池容器1は、電池組立前は第2図に示すように有底円
筒状をしており(ただし、上記のように第2図は電池容
器を倒立させた状態で示しているので、底部2が上側に
きている)、その底部2の中央部の凸出部2aには、第
2図(萄に示すように平面形状が十字状の溝3が形成さ
れている。溝3は、第3図に示すように、断面形状が底
部3aが平坦な倒立台形状(υ形状で、この倒立台形状
という表現は、溝底部3aが下側に配置したときの形状
を表現したものである)をしており、かつ上記溝3の形
成により部分的に薄肉にされた部分、つまり溝3の形成
によって電池容器1の底部2に設けられた防爆用の薄肉
部4は、その大部分、つまり溝3の交点3b以外のとこ
ろに位置する部分4bは平坦状にされている。ただし、
第1図に示すように、薄肉部4の溝3の交点3b、に位
置する部分4aは凸出しており、この部分4aの厚さt
lは薄肉部の溝3の交点3b以外のところに位置する部
分4bの厚さ1.の11.05〜1.5倍にされている
。そして、この電池容器1の底部2を第2図のY−Y線
、つまり溝3の交点3bを斜めに横切る線で切断したと
きの断面図は第4図に示すとおりであり、この断面にお
ける溝3の断面形状は略W字状をしており、溝底部3a
の中央部3azは両側の端部3a+、3a、、より若干
高くなっている。なお、本実施例では、リード端子の取
付位置の選定がしやすいように、第2図に示すように、
電池容器1の底部2の中央部に凸出部2aを設けている
ので、溝3は該凸出部2aに形成されているが、凸出部
2aは必ずしも必要なものではなく、電池容器1の底部
2は平坦なものであってもよい、その場合、溝3は電池
容器1の平坦な底部2の中央部に形成すればよいが、そ
のようにしても、凸出部2aに溝3を形成した場合と比
較して、特に防爆機能が低下するようなことはない。
Before the battery is assembled, the battery container 1 has a cylindrical shape with a bottom as shown in FIG. The protrusion 2a at the center of the bottom 2 is formed with a groove 3 having a cross-shaped planar shape as shown in FIG. As shown in Figure 3, the cross-sectional shape is an inverted trapezoidal shape with a flat bottom 3a (υ shape, and the term "inverted trapezoidal" refers to the shape when the groove bottom 3a is placed on the lower side). , and the portion partially made thin due to the formation of the groove 3, that is, the explosion-proof thin wall portion 4 provided on the bottom 2 of the battery container 1 due to the formation of the groove 3, is mostly The portion 4b of the groove 3 located outside the intersection 3b is flat.However,
As shown in FIG. 1, a portion 4a of the thin wall portion 4 located at the intersection 3b of the grooves 3 protrudes, and the thickness of this portion 4a is t.
l is the thickness 1. 11.05 to 1.5 times. A cross-sectional view of the bottom part 2 of the battery container 1 taken along the Y-Y line in FIG. 2, that is, a line that diagonally crosses the intersection 3b of the grooves 3, is as shown in FIG. The cross-sectional shape of the groove 3 is approximately W-shaped, and the groove bottom 3a
The center portion 3az is slightly higher than the end portions 3a+, 3a, on both sides. In addition, in this embodiment, in order to facilitate selection of the mounting position of the lead terminal, as shown in Fig. 2,
Since the protrusion 2a is provided at the center of the bottom 2 of the battery container 1, the groove 3 is formed in the protrusion 2a, but the protrusion 2a is not necessarily necessary. The bottom 2 of the battery container 1 may be flat. In that case, the groove 3 may be formed in the center of the flat bottom 2 of the battery container 1. There is no particular deterioration in the explosion-proof function compared to the case where a

この電池容器1は、例えば第6図に示すような塩化チオ
ニル−リチウム電池の組立に供されるが、電池組立後、
電池の内部圧力が上昇したとき、この電池容器lには、
第5図に示すように、電池の内部圧力P1により、溝底
部3aの端部3a、に内圧による引張力Paと曲げによ
る引張力pbとが複合してかかり、該溝底部3aの端部
3a、のところが大きく切裂破壊するようになる。特に
、薄肉部4の溝3の交点3hに位置する部分4aがそれ
以外の部分4bより厚く形成されているので、第4図に
示すような断面では、溝3の断面形状はW字状をしてお
り、電池に内部側から圧力がかかったときに、溝底部3
aの端部3a、には該端部3a、を切裂くように内圧に
よる引張力Paと曲げによる引張力pbとがより鋭く集
中してかかるようになり、薄肉部4の溝3の交点3をに
位置する部分4aの厚さがそれ以外の部分4bと同じ厚
さに形成されている場合よりも、より低い圧力で溝底部
3aの端部3a+のところが切裂破壊するようになる。
This battery container 1 is used for assembling a thionyl chloride-lithium battery as shown in FIG. 6, for example, but after assembling the battery,
When the internal pressure of the battery increases, this battery container l will
As shown in FIG. 5, due to the internal pressure P1 of the battery, a tensile force Pa due to the internal pressure and a tensile force Pb due to bending are combinedly applied to the end 3a of the groove bottom 3a, and the end 3a of the groove bottom 3a is , the area becomes severely cut and fractured. In particular, since the portion 4a of the thin wall portion 4 located at the intersection 3h of the grooves 3 is formed thicker than the other portion 4b, the cross-sectional shape of the groove 3 has a W-shape in the cross section shown in FIG. When pressure is applied to the battery from the inside, the groove bottom 3
The tensile force Pa due to the internal pressure and the tensile force Pb due to bending are applied more sharply to the end 3a of the thin wall portion 4 so as to tear the end 3a, and the intersection 3 of the groove 3 of the thin wall portion 4 The end portion 3a+ of the groove bottom 3a will be cut and fractured at a lower pressure than when the thickness of the portion 4a located at the groove bottom 3a is the same as that of the other portion 4b.

つぎの第1表は上記電池容器に空気圧を導入してその防
爆機能の作動試験を行ったものである。
Table 1 below shows the explosion-proof function tested by introducing air pressure into the battery container.

電池容器1の材質はステンレス鋼で、その厚みは0.3
mmである。溝3は第3図に示すように断面倒立台形状
で、その溝形成角度θは60’であり、溝3の底部3a
の輻Wは0.15m−である、そして、上記溝3の形成
により電池容器lの底部2に設けられた薄肉部4は、溝
3の交点3b以外に位置する部分4bでは平坦でその厚
みt8が80pmであるが、第1図に示すように、溝3
の交点3をに位置する部分4aは凸出しており、その厚
さ1.は溝3の交点3b以外のところに位置する部分4
bの厚さt2の1.05倍(試料N[Ll) 、1.3
0倍(試料魚2) 、1.50倍(試料磁3)となって
いる。
The material of the battery container 1 is stainless steel, and its thickness is 0.3
It is mm. As shown in FIG. 3, the groove 3 has an upright trapezoidal cross section, the groove forming angle θ is 60', and the bottom 3a of the groove 3
The convergence W is 0.15 m-, and the thin part 4 provided on the bottom part 2 of the battery container l by forming the groove 3 is flat in the part 4b located other than the intersection 3b of the groove 3, and its thickness is Although t8 is 80 pm, as shown in FIG.
The portion 4a located at the intersection 3 of is convex and has a thickness of 1. is a portion 4 located at a location other than the intersection 3b of the groove 3
1.05 times the thickness t2 of b (sample N[Ll), 1.3
0 times (sample fish 2) and 1.50 times (sample magnet 3).

比較のため、アルカリ電池で採用されているような底部
に丸みをつけた溝を十字状に形成した電池容器(試料8
114)についても、゛防爆機能の作動試験を行った。
For comparison, we used a battery container (sample 8) with rounded grooves formed in the shape of a cross at the bottom, as used in alkaline batteries.
114) was also tested for its explosion-proof function.

この試料漱4の電池容器の溝の形状は第9図に示すとお
りであり、溝3の形成角度θは90°で、先端には0.
1mmHの丸みをつけ、薄肉部4は全体に平坦でその厚
みt4は80pmである。
The shape of the groove in the battery container of this sample 4 is as shown in FIG. 9, the forming angle θ of the groove 3 is 90°, and the tip is 0.
The thin part 4 is rounded to 1 mmH, and the thin part 4 is entirely flat, and its thickness t4 is 80 pm.

また、対照品として断面倒立台形状の溝を十字状に形成
し、薄肉部の厚みを全体にわたってほぼ均一にした電池
容器(試料Nα5)についても防爆機能の作動試験を行
った。この試料N115の電池容器の溝とその近傍の形
状は第8図に示すとおりであり、溝3の形成角度θは6
0”で、溝3の底部3aの幅は0.15m−であり、薄
肉部4の厚みt、は、溝3の交点に位置する部分、溝3
の交点以外のところに位置する部分とも、80μmであ
る。
In addition, as a control product, a battery container (sample Nα5) in which a cross-sectional truncated trapezoidal groove was formed in the shape of a cross and the thickness of the thin wall portion was made almost uniform throughout was also tested for the explosion-proof function. The shape of the groove of the battery container of this sample N115 and its vicinity is as shown in FIG. 8, and the formation angle θ of the groove 3 is 6.
0", the width of the bottom part 3a of the groove 3 is 0.15 m-, and the thickness t of the thin part 4 is the part located at the intersection of the grooves 3, the width of the bottom part 3a of the groove 3
The length of the portions located other than the intersections is also 80 μm.

第1表に示すように、溝の断面形状を倒立台形状にして
いる試料隘1〜3および試料阻5の電池容器は、薄肉部
の厚みが同じであっても、アルカリ電池に使用されてい
るような先端に丸みをつけた断面V字状の溝を有する試
料Nl12の電池容器に比べて、防爆機能の作動圧力が
低かった。また、薄肉部の溝の交点に位置する部分をそ
れ以外の部分よりも厚くした試料kl〜3の電池容器は
、薄肉部の厚みを全体でほぼ均一にした、つまり溝の交
点に位置する部分も、溝の交点以外のところに位置する
部分も同じ厚みにした試料阻5の電池容器に比べて、防
爆機能の作動圧力が低かった。この結果から、本発明に
おけるように、薄肉部の溝の交点に位置する部分をそれ
以外の部分よりも厚くすることによって、これまでのも
のより、薄肉部を厚く保っても、より低い圧力、つまり
安全性がより確実に確保できる圧力範囲内で防爆機能を
作動させることができることがわかる。
As shown in Table 1, the battery containers of sample holes 1 to 3 and sample hole 5, in which the cross-sectional shape of the groove is inverted trapezoidal, are used for alkaline batteries even though the thickness of the thin wall part is the same. The operating pressure of the explosion-proof function was lower than that of the battery container of sample Nl12, which had a groove with a V-shaped cross section with a rounded tip. In addition, in the battery case of sample kl~3, where the part located at the intersection of the grooves in the thin wall part was thicker than the other parts, the thickness of the thin wall part was made almost uniform throughout, that is, the part located at the intersection of the grooves. The operating pressure of the explosion-proof function was also lower than that of the battery container of Sample 5, in which the thickness of the portions other than the intersections of the grooves was the same. From this result, as in the present invention, by making the portion located at the intersection of the grooves in the thin wall portion thicker than the other portions, even if the thin wall portion is kept thicker than in the past, the pressure can be lowered. In other words, it can be seen that the explosion-proof function can be activated within a pressure range that more reliably ensures safety.

第6図は上記第1〜4図に示す電池容器を用いて組み立
てた塩化チオニル−リチウム電池を示すもので、図中、
1は前述のような溝3および防爆用の薄肉部4を設けた
電池容器である。 11はアルカリ金属よりなる負極で
、本実施例ではリチウム板を上記電池容器1の内周面に
圧着することにより形成されており、そのため、この電
池では、電池容器1は負極端子としての機能を有してい
る。
Figure 6 shows a thionyl chloride-lithium battery assembled using the battery container shown in Figures 1 to 4 above.
Reference numeral 1 denotes a battery container provided with a groove 3 and an explosion-proof thin wall portion 4 as described above. Reference numeral 11 denotes a negative electrode made of an alkali metal, and in this embodiment, it is formed by pressing a lithium plate onto the inner peripheral surface of the battery container 1. Therefore, in this battery, the battery container 1 does not function as a negative electrode terminal. have.

12はセパレータであり、このセパレータ12はガラス
繊維不織布からなり、円筒状をしていて、前記円筒状の
負極11と円柱状の正極13とを隔離している。正極1
3はアセチレンブラックを主成分とする炭素質で形成さ
れた炭素多孔質成形体よりなり、14は正極集電体で、
ステンレス鋼棒よりなる。15は電池蓋で、ステンレス
鋼で形成されていて、その立ち上がった外周部が電池容
器1の開口端部と溶接により接合され、電池蓋15の内
周側には正極端子17との間にガラス層16が介設され
ている。ガラス層16は電池蓋15と正極端子17とを
絶縁するとともに、その外周面でその構成ガラスが電池
蓋15の内周面に融着し、その内周面でその構成ガラス
が正極端子17の外周面に融着して、電池蓋15と正極
端子17との間をシールし、電池容器1の開口部はいわ
ゆるハーメチックシールにより封口されている。正極端
子17はステンレス鋼製で電池組立時はパイプ状をして
いて、電解液注入口として使用され、その上端部を電解
液注入後にその中空部内に挿入された正極集電体14の
上部と溶接して封止したものである。 18は電解液で
、この電解液18は塩化チオニルに支持電解質としての
四塩化アルミニウムリチウムを1.2・−o1/l溶解
したもので、塩化チオニルは上記のように電解液の溶媒
であると共に、この電池では正極活物質でもあり、正極
13の表面で、この塩化チオニルと負極11からイオン
化したリチウムイオンとが反応を起こす、そして、19
および20はそれぞれガラス繊維不織布からなる底部隔
離材と上部隔離材であり、21は電池内の上部に設けら
れた空気室である。
Reference numeral 12 denotes a separator, which is made of glass fiber nonwoven fabric and has a cylindrical shape, separating the cylindrical negative electrode 11 and the cylindrical positive electrode 13. Positive electrode 1
3 is a carbon porous molded body made of carbonaceous material containing acetylene black as a main component; 14 is a positive electrode current collector;
Made of stainless steel rod. Reference numeral 15 denotes a battery lid, which is made of stainless steel, and its raised outer periphery is joined to the open end of the battery container 1 by welding. A layer 16 is interposed. The glass layer 16 insulates the battery cover 15 and the positive terminal 17, and the constituent glass is fused to the inner circumferential surface of the battery cover 15 on its outer peripheral surface, and the constituent glass is fused to the positive terminal 17 on its inner circumferential surface. It is fused to the outer peripheral surface to seal between the battery lid 15 and the positive electrode terminal 17, and the opening of the battery container 1 is sealed by a so-called hermetic seal. The positive electrode terminal 17 is made of stainless steel and has a pipe shape when the battery is assembled, and is used as an electrolyte inlet, and its upper end is connected to the upper part of the positive electrode current collector 14 inserted into the hollow part after the electrolyte is injected. It is welded and sealed. 18 is an electrolytic solution, and this electrolytic solution 18 is made by dissolving 1.2·-o1/l of lithium aluminum tetrachloride as a supporting electrolyte in thionyl chloride, and as mentioned above, thionyl chloride is a solvent for the electrolyte and , which is also a positive electrode active material in this battery, causes a reaction between this thionyl chloride and lithium ions ionized from the negative electrode 11 on the surface of the positive electrode 13, and 19
and 20 are a bottom isolation member and an upper isolation member respectively made of glass fiber nonwoven fabric, and 21 is an air chamber provided at the upper part of the battery.

上記電池を火中に投入し、電池が大きな破裂音を伴って
破裂するか否かを調べた結果を第2表に示す、電池は実
施例1.2.3のごとく3種類作製されており、それら
実施例1〜3の電池は、それぞれ前記のような試料N[
11〜3の電池容器を用いて作製されている。また、比
較のため、アルカリ電池で使用されているような先端に
丸みをつけた断面略V字状の溝を形成した試料患4の電
池容器を用いたほかは上記と同様の構成で作製した電池
(比較例1)を火中に投入し、電池が大きな破裂音を伴
って破裂するか否かを調べた結果も第2表に併せて記載
する。供試個数はいずれの電池も10個ずつであり、第
2表中の火中破裂電池個数における数値の分母は試験に
供した電池個数を示し、分子は火中破裂が生じた電池個
数を示す。
Table 2 shows the results of throwing the above-mentioned batteries into a fire and examining whether the batteries exploded with a loud bursting sound. Three types of batteries were prepared as shown in Example 1.2.3. , the batteries of Examples 1 to 3 were prepared using sample N [
It is produced using 11 to 3 battery containers. In addition, for comparison, a battery container with the same configuration as above was used, except that a battery container of sample No. 4 was used, which had a groove with a rounded tip and a roughly V-shaped cross section, as used in alkaline batteries. Table 2 also shows the results of putting the battery (Comparative Example 1) into a fire and examining whether the battery would burst with a loud bursting sound. The number of batteries tested was 10 each, and the denominator of the numerical value for the number of batteries that exploded in fire in Table 2 indicates the number of batteries subjected to the test, and the numerator indicates the number of batteries that exploded in fire. .

第     2     表 第2表に示すように、本発明の実施例1〜3の電池は、
いずれも火中破裂を起こすものがまったくなく、安定し
た防爆機能を発揮した。
Table 2 As shown in Table 2, the batteries of Examples 1 to 3 of the present invention were:
All of them exhibited stable explosion-proof functionality, with no material that would explode during fire.

なお、上記実施例では溝3の形成角度θを60@とし、
溝底部3の幅Wを0.15m−としたが、満3の形成角
度θは一般に50〜80’の範囲にするのが好ましく、
また溝底部3の輻Wは一般に0.09〜0.51I1m
の範囲にするのが好ましい、そして、薄肉部の厚々(た
だし、溝の交点以外のところに位置する部分の厚さ)を
80μmとしたが、薄肉部4の厚さくただし、溝の交点
以外のところに位置する部分の厚さ)は一般に30〜1
00 μmの範囲にするのが好ましい、特に本発明では
、薄肉部の交点に位置する部分をそれ以外の部分より厚
く形成することにより、防爆機能の作動圧力を下げるこ
とができたので、薄肉部の厚み(ただし、溝の交点以外
のところに位置する部分の厚み)を70〜100μm程
度と厚くしても、安全性の確保できる圧力範囲内で防爆
機能を作動させることができるようになった。
In addition, in the above embodiment, the formation angle θ of the groove 3 is 60@,
Although the width W of the groove bottom 3 was set to 0.15 m, it is generally preferable that the full 3 forming angle θ is in the range of 50 to 80'.
In addition, the radius W of the groove bottom 3 is generally 0.09 to 0.51I1m.
It is preferable that the thickness of the thin part 4 be within the range of 80 μm (however, the thickness of the part located other than the intersection of the grooves) is 80 μm. The thickness of the part located at the
In particular, in the present invention, the operating pressure of the explosion-proof function can be lowered by forming the part located at the intersection of the thin-walled parts thicker than the other parts. It is now possible to activate the explosion-proof function within a pressure range that ensures safety even if the thickness of the groove is as thick as 70 to 100 μm (the thickness of the area other than the intersection of the grooves). .

また、上記実施例では、十字状の溝を形成した場合につ
いて説明したが、溝としては複数本でそれらの溝が少な
くとも1箇所で交わるものであればよく、その平面形状
としては、実施例で示した十字状以外にも、例えば第7
図に示すように、X字状(第7図(a)参照)、Y字状
(第7図(b)参照)、アスタリスク(X)状(第7図
(C)参照)、H字状(第7図(ロ)参照)などがあげ
られる、特に電池に内圧がかかったときに電池容器の底
部中心部の変形が最も大きくなるので、電池容器の底部
中心部に交点を持つ十字状、その変形であるX字状、Y
字状、アスタリスク状などが好ましい、また、溝はその
中間部で交わっていることは要求されず、Y字状のごと
く、溝の端部が交わっているものであってもよい、そし
て、上記溝の形成によって電池容器の底部に設けられる
防爆用の薄肉部も、実施例に例示の十字状のものに限ら
れることなく、溝と同様の各種平面形状がとり得る。
Further, in the above embodiment, a case where cross-shaped grooves were formed was explained, but the grooves may be a plurality of grooves as long as they intersect at least at one place, and the planar shape of the grooves is different from that in the embodiment. In addition to the cross shape shown, for example, the seventh
As shown in the figure, an (See Figure 7 (B)). Especially when internal pressure is applied to the battery, the center of the bottom of the battery container deforms the most, so a cross shape with an intersection at the center of the bottom of the battery container, Its modification is X-shape, Y
A character shape, an asterisk shape, etc. are preferable, and the grooves do not need to intersect in the middle, but may be such that the ends of the grooves intersect, such as a Y shape, and the above-mentioned The explosion-proof thin-walled portion provided at the bottom of the battery container by forming the groove is not limited to the cross shape illustrated in the embodiment, but may have various planar shapes similar to the groove.

なお、本発明においては、溝は複数本形成し、該複数本
の溝が少なくとも1箇所で交わるようにしているが、こ
れは、溝を複数本にして、それらの溝が交点を持つよう
にしておくと、電池の内部圧力が該交点に集中してかか
るようになり、電池の内部圧力上昇に正確に対応して防
爆機能が作動するようになるからである。
Note that in the present invention, a plurality of grooves are formed and the plurality of grooves intersect at at least one place. This is because the internal pressure of the battery will be concentrated at the intersection, and the explosion-proof function will be activated in response to the increase in internal pressure of the battery.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、電池容器の底部に、
底部が平坦な断面倒立台形状の溝を形成し、該溝の形成
により設けられる防爆用の薄肉部の溝の交点に位置する
部分の厚さをそれ以外の部分の厚さの1.05〜1.5
倍にすることによって、薄肉部の厚みをある程度厚く保
っても、低い、つまり安全性が確保できる圧力範囲内で
防爆機能が作動する安全性の高い非水液体活物質電池を
提供することができた。
As explained above, in the present invention, at the bottom of the battery container,
A groove with a flat bottom and a truncated trapezoidal cross-section is formed, and the thickness of the thin section for explosion protection provided by forming the groove is 1.05 to 1.05 of the thickness of the other portions at the intersection of the grooves. 1.5
By doubling the thickness, it is possible to provide a highly safe non-aqueous liquid active material battery whose explosion-proof function operates within a low pressure range, that is, within a safe pressure range, even if the thickness of the thin part is kept thick to a certain extent. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池に用いられる電池容器の底部に形
成された溝、薄肉部およびその近傍の拡大断面図である
。第2図は本発明の電池に用いられる電池容器を倒立さ
せた状態を示すもので、第2図(ロ)はその平面図で、
第2図(ロ)は第2図(a)のX−X線における断面図
である。第3図は本発明において電池容器の底部に形成
された溝とその近傍の拡大断面図であり、特に溝の断面
形状を説明するためのものである。第4図は第2図(a
)のY−Y線における部分拡大断面図である。第5図は
第4図に示す電池容器の底部に電池容器内部から圧力が
かかったときの状態を示す部分拡大断面図である。第6
図は本発明の一実施例を示す塩化チオニル−リチウム電
池の断面図である。第7図は本発明の電池に使用する電
池容器の十字状溝以外の溝の平面形状を概略的に例示す
るもので、上段はそれぞれの電池容器の概略正面図で、
下段はそれぞれめ概略底面図である。第8〜9図は本発
明とは構成が異なる電池の電池容器に形成された溝、薄
肉部およびその近傍を示す拡大断面図であり、第8図は
溝が断面倒立台形状で薄肉部が全体にわたってほぼ均一
に形成されている場合を示し、第9図はアルカリ電池で
採用されているような溝が断面V字状で先端に丸みを付
けている場合を示す。 l・・・電池容器、 2・・・底部、 3・・・溝、3
a・・・溝の底部、 3b・・・溝の交点、 4・・・
薄肉部、4a・・・薄肉部の溝の交点に位置する部分、
4b・・・薄肉部の溝の交点以外のところに位置する部
分、 11・・・負極、 12・・・セパレータ、13
・・・正極、 15・・・電池蓋、16・・・ガラス層
、18・・・電解液 第  1  図 1・・・電池容器 2・・・底部 3・・・溝 3b・・・溝の交点 4・・・薄肉部 4a・・・薄肉部の溝の交点にω 第  2  図 (b) 置する部分 第  3  図 1・・・電池容器 2・・・底部 3・・・溝 3a・・・溝の底部 4・・・薄肉部 4a・・・薄肉部の溝の交点に 位置する部分 第  4  図 第  6  図 第  7  図
FIG. 1 is an enlarged cross-sectional view of a groove formed at the bottom of a battery container used in the battery of the present invention, a thin wall portion, and the vicinity thereof. Fig. 2 shows the battery container used in the battery of the present invention in an inverted state, and Fig. 2 (b) is a plan view thereof.
FIG. 2(b) is a sectional view taken along the line X--X of FIG. 2(a). FIG. 3 is an enlarged sectional view of the groove formed in the bottom of the battery container and its vicinity in the present invention, and is particularly for explaining the cross-sectional shape of the groove. Figure 4 is similar to Figure 2 (a
) is a partially enlarged sectional view taken along the Y-Y line. FIG. 5 is a partially enlarged sectional view showing a state when pressure is applied to the bottom of the battery container shown in FIG. 4 from inside the battery container. 6th
The figure is a sectional view of a thionyl chloride-lithium battery showing one embodiment of the present invention. FIG. 7 schematically illustrates the planar shape of grooves other than the cross-shaped grooves of the battery container used in the battery of the present invention, and the upper row is a schematic front view of each battery container;
The lower rows are respectively schematic bottom views. 8 and 9 are enlarged cross-sectional views showing grooves, thin-walled portions, and their vicinity formed in the battery case of a battery having a different configuration from that of the present invention. In FIG. This shows a case in which the groove is formed almost uniformly over the entire area, and FIG. 9 shows a case in which the groove is V-shaped in cross section and rounded at the tip, as is used in alkaline batteries. l...Battery container, 2...Bottom, 3...Groove, 3
a...bottom of the groove, 3b...intersection of the groove, 4...
Thin wall portion, 4a...portion located at the intersection of the grooves of the thin wall portion,
4b... Portion located at a location other than the intersection of the grooves of the thin wall portion, 11... Negative electrode, 12... Separator, 13
...Positive electrode, 15...Battery lid, 16...Glass layer, 18...Electrolyte 1st Figure 1...Battery container 2...Bottom 3...Groove 3b...Groove Intersection 4... Thin wall portion 4a... Portion to be placed at the intersection of the grooves of the thin wall portion 3 Fig. 1... Battery container 2... Bottom portion 3... Groove 3a...・Bottom part 4 of the groove... Thin wall part 4a... Portion located at the intersection of the grooves of the thin wall part Fig. 4 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質として塩化チオニル、塩化スルフリル
、塩化ホスホリルなどのオキシハロゲン化物系液体を用
い、負極11にリチウム、ナトリウム、カリウムなどの
アルカリ金属を用い、電池容器1をハーメチックシール
により封口する非水液体活物質電池において、電池容器
1の底部2に、底部3aが平坦な断面倒立台形状で少な
くとも1箇所の交点を有する複数本の溝3を形成するこ
とにより防爆用の薄肉部4を設け、該薄肉部4の溝3の
交点3をに位置する部分4aの厚さを、薄肉部4の溝3
の交点3b以外のところに位置する部分4bの厚さの1
.05〜1.5倍にしたことを特徴とする非水液体活物
質電池。
(1) An oxyhalide liquid such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride is used as the positive electrode active material, an alkali metal such as lithium, sodium, or potassium is used as the negative electrode 11, and the battery container 1 is sealed with a hermetic seal. In the aqueous liquid active material battery, an explosion-proof thin section 4 is provided by forming a plurality of grooves 3 in the bottom section 2 of the battery container 1 in the shape of a truncated trapezoid with a flat bottom section 3a and having at least one intersection point. , the thickness of the portion 4a located at the intersection 3 of the grooves 3 of the thin portion 4 is determined by the thickness of the groove 3 of the thin portion 4.
1 of the thickness of the portion 4b located at a location other than the intersection 3b of
.. 1. A non-aqueous liquid active material battery characterized in that the battery is made up of 0.05 to 1.5 times.
JP62130246A 1986-09-27 1987-05-27 Non-aqueous liquid active material battery Expired - Lifetime JPH07105220B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62130246A JPH07105220B2 (en) 1987-05-27 1987-05-27 Non-aqueous liquid active material battery
US07/101,259 US4842965A (en) 1986-09-27 1987-09-25 Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
EP87114076A EP0266541B1 (en) 1986-09-27 1987-09-26 Explosion-proof arrangement for a non-aqueous electrochemical cell, and method for the production thereof
DE8787114076T DE3779996T2 (en) 1986-09-27 1987-09-26 EXPLOSION-PROTECTED ARRANGEMENT FOR A NON-AQUEOUS ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62130246A JPH07105220B2 (en) 1987-05-27 1987-05-27 Non-aqueous liquid active material battery

Publications (2)

Publication Number Publication Date
JPS63294665A true JPS63294665A (en) 1988-12-01
JPH07105220B2 JPH07105220B2 (en) 1995-11-13

Family

ID=15029635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130246A Expired - Lifetime JPH07105220B2 (en) 1986-09-27 1987-05-27 Non-aqueous liquid active material battery

Country Status (1)

Country Link
JP (1) JPH07105220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145766U (en) * 1989-05-15 1990-12-11
JP2008536062A (en) * 2005-04-01 2008-09-04 ファイク・コーポレーション Reversing actuated rupturable plate with weakened lines defined by laser and electropolished and method of forming weakened lines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145766U (en) * 1989-05-15 1990-12-11
JP2008536062A (en) * 2005-04-01 2008-09-04 ファイク・コーポレーション Reversing actuated rupturable plate with weakened lines defined by laser and electropolished and method of forming weakened lines

Also Published As

Publication number Publication date
JPH07105220B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP2010238672A (en) Secondary battery
JP2009146878A (en) Insulation case for secondary battery, and secondary battery
JPH04349347A (en) Sealed battery
CN114762180B (en) Sealed battery
EP1050912A1 (en) Electrochemical cell with header assembly
JPS63294665A (en) Non-liquid active material battery
JPS63285859A (en) Nonaqueous liquid active material battery
JPH10247483A (en) Safety structure of sealed battery
JP2002175789A (en) Flat battery and manufacturing method of the same
JP2521441B2 (en) Hermetically sealed liquid active material battery
JPH0637567Y2 (en) Non-aqueous liquid active material battery
JPH07105219B2 (en) Non-aqueous liquid active material battery
JP2870067B2 (en) Sealed battery
JPH09167605A (en) Safety structure of sealed battery
KR100858809B1 (en) Battery
JPS63285858A (en) Nonaqueous liquid active material battery
JPS63285860A (en) Manufacture of battery container used for explosion-proof sealed battery
JPS6386246A (en) Manufacture of battery container for explosion-proof type sealed battery
JPS6386244A (en) Manufacture of battery container for explosionproof type sealed battery
JPH055642Y2 (en)
JPS6035172Y2 (en) alkaline battery
JPS6386245A (en) Hermetic seal type liquid active material battery
JPH1186819A (en) Safety structure for sealed battery
JPH04242069A (en) Sealed type battery with safety valve
JPH03134953A (en) Sealed cell

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12