JPS6386244A - Manufacture of battery container for explosionproof type sealed battery - Google Patents
Manufacture of battery container for explosionproof type sealed batteryInfo
- Publication number
- JPS6386244A JPS6386244A JP61228761A JP22876186A JPS6386244A JP S6386244 A JPS6386244 A JP S6386244A JP 61228761 A JP61228761 A JP 61228761A JP 22876186 A JP22876186 A JP 22876186A JP S6386244 A JPS6386244 A JP S6386244A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- forming
- punch
- battery
- battery container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims description 10
- 230000000452 restraining effect Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 description 16
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- SOZVEOGRIFZGRO-UHFFFAOYSA-N [Li].ClS(Cl)=O Chemical compound [Li].ClS(Cl)=O SOZVEOGRIFZGRO-UHFFFAOYSA-N 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
- H01M50/3425—Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/528—Fixed electrical connections, i.e. not intended for disconnection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は防爆型密閉電池に使用する電池容器の製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a battery container used in an explosion-proof sealed battery.
塩化チオニル−リチウム電池に代表されるような正極活
物質として塩化チオニル、塩化スルフリル、塩化ホスホ
リルなどのオキシハロゲン化物系液体を用い、負極にリ
チウム、ナトリウム、カリウムなどのアルカリ金属を用
いる液体活物質電池では、ハーメチックシールによる完
全密閉構造をとっているため、密閉性が非常に優れてい
るが、その反面、密閉性が高いために、高温加熱下にさ
らされたり、高電圧で充電されるなどの異常事態に遭遇
したときに、電池の内部圧力が異常に上昇して電池破裂
が生じ、大きな破裂音が発生すると共に、電池内容物が
周囲に飛び敗って電池使用機器を汚損するおそれがある
。A liquid active material battery that uses an oxyhalide liquid such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride as the positive electrode active material, and uses an alkali metal such as lithium, sodium, or potassium as the negative electrode, as typified by a thionyl chloride-lithium battery. Since it has a completely hermetic structure with a hermetic seal, it has excellent airtightness, but on the other hand, because of its high airtightness, it cannot be exposed to high temperature heating or charged with high voltage. When an abnormal situation occurs, the internal pressure of the battery increases abnormally, causing the battery to explode, making a loud bursting sound, and causing the contents of the battery to fly out into the surrounding area, potentially contaminating equipment that uses the battery. .
そこで、同様に密閉構造をとるアルカリ電池に関して、
実公昭58−17332号公報や実公昭58−2646
0号公報に、電池容器の一部に溝を形成して、電池容器
に薄肉の部分を設け、上記薄肉部のところで電池容器の
耐圧力を部分的に低くし、電池内部の圧力が異常上昇し
はしめたときに、上記薄肉部が破れて電池破裂因子とな
る電池内部のガスを電池外部に放出させるようにして、
高圧での電池破裂を防止することが提案されていること
から、このハーメチックンール構造をとる液体活物質電
池においても、そのような溝形成による防爆機能を備え
るようにすることが必要であると考えられる。Therefore, regarding alkaline batteries that have a similarly sealed structure,
Utility Model Publication No. 58-17332 and Utility Model Publication No. 58-2646
Publication No. 0 discloses that a groove is formed in a part of the battery container to provide a thin part in the battery container, and the withstand pressure of the battery container is partially lowered at the thin part, causing an abnormal increase in the pressure inside the battery. When the battery is tightened, the thin wall portion ruptures and the gas inside the battery, which causes battery rupture, is released to the outside of the battery,
Since it has been proposed to prevent batteries from exploding at high pressures, it is necessary for liquid active material batteries with this hermetic-n-rule structure to also have an explosion-proof function by forming such grooves. Conceivable.
ところで、上記のような防爆用の溝形成にあたっては、
プレス成形による方法が採用されるが、液体活物質電池
では正極活物質の強い耐食性に耐えるために電池構成部
材にし才耐食性が要求され、電池容器には一般にステン
レス8′v!が採用されるので、電池容器の硬度が高く
、これにプレス成形により溝を形成しようとすると、溝
形成用ポンチにかかる荷重が非常に高くなる。By the way, when forming the above-mentioned explosion-proof grooves,
A method using press molding is adopted, but in order to withstand the strong corrosion resistance of the positive electrode active material in liquid active material batteries, the battery components must have excellent corrosion resistance, and battery containers are generally made of stainless steel 8'V! Since the battery container is used, the hardness of the battery container is high, and if a groove is to be formed in the battery container by press molding, the load applied to the groove-forming punch will be extremely high.
そのため、形成する溝の断面膨軟としては、前記実公昭
58−17332号公報にも示されているように、7字
状でその先端、つまり溝の底部を鋭利な状態にするのが
、最も溝形成が容易であると考えられるが、溝の底部を
鋭利にした場合、溝形成用のポンチの先端がすぐに損傷
を受けるので、ポンチの耐久性面から工業的には採用し
がたい。そこで、前記実公昭58−26460号公報に
示されているように、断面は7字状でも溝の底部に0.
1〜0.2 nu+Rの丸みをつけることによって、溝
形成用ポンチの耐久性を向上させることも考えられるが
、本発明者らの研究によれば、溝の先端に丸みをつけた
場合、単に厚みを薄くしたという効果が発揮されるだけ
で、切欠効果などの付加的な効果がほとんど加わらない
ため、ステンレス鋼のように高強度の材質を用いた電池
容器では、薄肉部の厚みをよほど薄くしないかぎり、薄
肉部の破壊圧力が低くならず、また、塩化チオニル−リ
チウム電池などのハーメチックシール液体活物質電池で
は、高温で急速に加熱された場合に安定した防爆機能が
発揮されないことも判明している。Therefore, as shown in the above-mentioned Japanese Utility Model Publication No. 58-17332, the best way to expand and soften the cross section of the groove to be formed is to form it in a 7-shape shape and make the tip, that is, the bottom of the groove, sharp. Although it is thought that groove formation is easy, if the bottom of the groove is made sharp, the tip of the groove-forming punch will be easily damaged, so it is difficult to use it industrially due to the durability of the punch. Therefore, as shown in the above-mentioned Japanese Utility Model Publication No. 58-26460, even if the cross section is a figure 7 shape, the bottom of the groove has a 0.
It is possible to improve the durability of the groove forming punch by rounding the tip of the groove by 1 to 0.2 nu+R, but according to the research of the present inventors, if the tip of the groove is rounded, The effect of reducing the thickness is only achieved, and additional effects such as the notch effect are hardly added. Therefore, in battery containers made of high-strength materials such as stainless steel, the thickness of the thin part should be made much thinner. It has also been found that the burst pressure of the thin-walled part will not decrease unless the battery is heated, and that hermetically sealed liquid active material batteries such as lithium thionyl chloride batteries do not exhibit stable explosion protection when rapidly heated to high temperatures. ing.
そこで、本発明者らは、溝の底部を平坦面にすることに
よって、防爆機能が安定して発揮されるようにしたが、
そのような溝を形成するには、溝形成用ポンチの先端を
平坦にしなければならず、先端を平坦にしたぶんポンチ
にかかる荷重が大きくなり、その結果、ポンチの耐久性
が低下するという問題が発生した。Therefore, the inventors made the bottom of the groove a flat surface so that the explosion-proof function could be stably exhibited.
To form such a groove, the tip of the groove-forming punch must be made flat, and if the tip is made flat, the load on the punch will increase, resulting in a reduction in the durability of the punch. Occurred.
本発明は、上述した従来の溝形成方法では信頼性の高い
防爆機能を備えた電池容器を得ることができなかったり
、あるいは溝成形用ポンチの耐久性が低く、量産性に乏
しかったという問題点を解決し、溝底部に平坦部を有す
る溝形状とした場合においても、量産化を達成し得るポ
ンチ寿命での溝形成を可能にすることを目的とする。The present invention solves the problem that the conventional groove forming method described above cannot produce a battery container with a highly reliable explosion-proof function, or the groove forming punch has low durability and is not suitable for mass production. It is an object of the present invention to solve this problem and to make it possible to form a groove with a punch life that can be mass-produced even when the groove shape has a flat portion at the bottom of the groove.
本発明は、電池容器底部の溝形成部分以外の部分の厚み
方向、つまり溝加工しない部分の構成材料の厚み方向に
拘束力を与えず、かつポンチの溝形成用凸出部の溝形成
角度を50〜80°にすることによって、形成される溝
の底部構成材料に引張り応力を掛けながらポンチの溝形
成用凸出部を電池容器の底部に押し込んで成形すること
によって、底部に平坦部を有する溝をステンレス鋼製の
電池容器に対しても低いポンチ荷重で形成することを可
能にしたものである。The present invention does not apply a restraining force in the thickness direction of the parts other than the groove forming part at the bottom of the battery container, that is, in the thickness direction of the constituent material of the part where the grooves are not processed, and the groove forming angle of the groove forming protrusion of the punch is controlled. By applying tensile stress to the material constituting the bottom of the groove to be formed by pushing the groove-forming convex part of the punch into the bottom of the battery container to form a flat part at an angle of 50 to 80 degrees, the bottom part has a flat part. This makes it possible to form grooves even in stainless steel battery containers with a low punch load.
すなわち、プレス成形による鍛造やコイニング(圧印加
工)は、一般に被成形材料の塑性流動による材料の移動
により行われ、被成形材料の内部組織はファイバフロー
(塑性流動によって生じる繊維軟組織)を示す。この時
、成形に必要な力は被成形材料の変形抵抗および成形用
工具との間に生じる摩擦力に打ち訟つ力であって、これ
ら被成形材料の変形抵抗や成形用工具との間の摩擦力は
、両者併わさって成形工具にかかる。そのため、被成形
材料がステンレス鋼のように硬い耐食性金泥である場合
に、幅細く、深くコイニングする時は、たとえ溝加工で
あっても単位面積当たりの荷重は大きい。That is, forging and coining (coining) by press forming are generally performed by material movement due to plastic flow of the material to be formed, and the internal structure of the material to be formed exhibits fiber flow (fibrous soft tissue caused by plastic flow). At this time, the force necessary for forming is the force that counteracts the deformation resistance of the material to be formed and the frictional force generated between it and the forming tool. Both frictional forces are applied together to the forming tool. Therefore, when the material to be formed is a hard corrosion-resistant gold mud like stainless steel, when coining is done narrowly and deeply, the load per unit area is large even if the groove is processed.
そこで、本発明では、被成形材料である電池容器の変形
抵抗および溝形成用のポンチとの間に生じる摩擦力の両
者を最少にするため、溝加工しない部分の構成材料の厚
み方向に拘束力を与えず、つまり無拘束下で、かつ溝形
成角度を50〜80°にすることにより、形成される溝
の底部構成材料に引張り応力を1!)けながら溝成形用
ポンチの溝形成用凸出部を電池容器の底部に押し込んで
溝形成を行うことによって、底部に平坦部を有する溝を
低いポンチ荷重で形成することを可能にし、溝形成用ポ
ンチの耐久性を向上させたのである6例えば、これまで
は底部に平坦部を有する溝を形成しようとした場合、ポ
ンチにかかる荷重は300 kir / mm以上に達
したが、本発明によれば一般潤滑油で240kg/−以
下のポンチ荷重で溝を形成することが可能である。Therefore, in the present invention, in order to minimize both the deformation resistance of the battery container, which is the material to be molded, and the frictional force generated between it and the punch for forming the groove, a restraining force is applied in the thickness direction of the constituent material in the part where the groove is not formed. By setting the groove forming angle to 50 to 80 degrees without applying any constraint, the tensile stress of 1! ) By pushing the groove-forming convex part of the groove-forming punch into the bottom of the battery container to form the groove, it is possible to form a groove with a flat part on the bottom with a low punch load. For example, in the past, when trying to form a groove with a flat bottom, the load applied to the punch reached over 300 kir/mm, but with the present invention, the durability of the punch has been improved. For example, it is possible to form grooves with a punch load of 240 kg/- or less using general lubricating oil.
上記のようにプレス成形を無拘束下で行うには、溝形成
用ポンチの基盤部が電池容器に接触しないようにするた
め、ポンチの溝形成用凸出部の高さは形成される溝の深
さより大きくすることが必要である。特に無拘束下での
溝形成を安定して行うためには、後に第1図に基づいて
説明するように、溝形成用ポンチの溝形成用凸出部の高
さHが、電池容器の構成材料の厚み、すなわち、電池容
器の肉厚Tおよび溝の形成によって設けられた薄肉部の
厚みtに対して、H≧1.5(T−t)であることが好
ましい。またポンチの溝形成用凸出部の溝形成角度θ(
第1図参照)を50〜80°にするのは、溝形成角度が
50°未満では溝の底部構成材料に与える引張り応力が
不充分となり、ポンチの溝形成用凸出部にかかる荷重が
大きくなるため、溝形成が困難になり、また溝形成角度
が80°を超えた場合は溝形成そのものは可能であるが
、電池内部の圧力上昇による電池内部からの加圧力に対
する抵抗が大きくなるため、防爆機能の優れた電池が得
られにく(なるからである。To perform press forming without restraint as described above, in order to prevent the base of the groove-forming punch from coming into contact with the battery container, the height of the groove-forming protrusion of the punch should be adjusted to the height of the groove to be formed. It is necessary to make it larger than the depth. In particular, in order to stably form grooves without restraint, the height H of the groove-forming protrusion of the groove-forming punch must be It is preferable that H≧1.5 (Tt) with respect to the thickness of the material, that is, the thickness T of the battery container and the thickness t of the thin portion provided by forming the groove. Also, the groove forming angle θ (
The reason for setting the groove forming angle (see Figure 1) to 50 to 80 degrees is that if the groove forming angle is less than 50 degrees, the tensile stress applied to the bottom constituent material of the groove will be insufficient, and the load applied to the groove forming protrusion of the punch will be large. If the groove formation angle exceeds 80°, it is possible to form the groove itself, but the resistance to the pressurizing force from inside the battery increases due to the pressure increase inside the battery. This is because it is difficult to obtain batteries with excellent explosion-proof functionality.
つぎに本発明の実施例を図面に基づいて説明す第1〜2
図は本発明の方法により電池容器に溝を形成する際の状
態を示す断面図であり、第1図は溝形成用のポンチを下
降させポンチの溝形成用凸出部を電池容器の底部に押し
込んだときの状態の要部拡大断面図であり、第2図はポ
ンチの下降前の状態における全体の断面図である。Next, the first to second embodiments of the present invention will be explained based on the drawings.
The figure is a cross-sectional view showing the state in which grooves are formed in a battery container by the method of the present invention, and FIG. FIG. 2 is an enlarged cross-sectional view of the main part in the state when the punch is pushed in, and FIG. 2 is a cross-sectional view of the whole in the state before the punch is lowered.
まず、第2図に基づき全体を説明すると、図中、1は電
池容器で、21は溝形成用のポンチであり、21aはポ
ンチの溝形成用凸出部、21bはポンチの基盤部である
。上記電池容器1は、有底円筒状をしており、図面では
倒立させた状態で下型22上にのせられている。そして
、23はその基台である。First, the whole will be explained based on FIG. 2. In the figure, 1 is a battery container, 21 is a punch for forming grooves, 21a is a protruding part of the punch for forming grooves, and 21b is a base part of the punch. . The battery container 1 has a cylindrical shape with a bottom, and is placed on the lower mold 22 in an inverted state in the drawing. And 23 is its base.
電池容器lへの溝の形成は、第2図に示す状態からポン
チ21を下降させ、第1図に示すようにポンチ21の溝
形成用凸出部21aを電池容B1の底部2に押し込むこ
とによって溝3が形成される。ポンチ21の溝形成用凸
出部21aの先端21a1は平坦面に形成されており、
それによって形成される溝3の底部は平坦面になる。ポ
ンチ21の溝形成用凸出部21aの溝形成角度θは50
〜80°に形成されており、そのため、このポンチ21
の溝形成用凸出部21aの先端21a1で押圧された溝
底部の構成材料には第1図に示すように引張り応力(f
)がかかり、しかも溝加工しない部分には拘束力を与え
ず、無拘束下にしているので、電池容器1の底部2の被
成形部分が変形しやすくなり、該部分の変形抵抗および
ポンチの溝形成用凸出部21aと電池容器1の被成形部
分との摩擦力は小さくなる。To form a groove in the battery container L, the punch 21 is lowered from the state shown in FIG. 2, and the groove forming protrusion 21a of the punch 21 is pushed into the bottom 2 of the battery container B1 as shown in FIG. A groove 3 is formed by this. The tip 21a1 of the groove forming convex portion 21a of the punch 21 is formed into a flat surface,
The bottom of the groove 3 thus formed becomes a flat surface. The groove forming angle θ of the groove forming convex portion 21a of the punch 21 is 50.
~80°, so this punch 21
As shown in FIG. 1, tensile stress (f
), and since no restraining force is applied to the part that is not grooved and the part is left unrestrained, the part to be formed on the bottom 2 of the battery container 1 is easily deformed, and the deformation resistance of this part and the groove of the punch are reduced. The frictional force between the forming convex portion 21a and the molded portion of the battery container 1 becomes smaller.
なお、本実施例では、第3図(a)に示すように、溝3
はその平面形状が十字状になるように形成するので、溝
形成用ポンチ21の溝形成用凸出部21aは十字状にな
っているが、第1〜2図では簡略化のため、そのように
は示しておらず、溝が直線状に1本形成されるような態
様で示している。In addition, in this embodiment, as shown in FIG. 3(a), the groove 3
is formed so that its planar shape is cross-shaped, so the groove-forming convex portion 21a of the groove-forming punch 21 is cross-shaped, but for the sake of simplicity in FIGS. It is not shown in the figure, but is shown in such a manner that one groove is formed in a straight line.
本実施例では、電池容器1は厚さ0.3mnのステンレ
ス鋼板で形成されており、ポンチの溝形成用凸出部21
aの角度θは70°で、該溝形成用凸出部21aの先端
21a1は平坦で、その幅が0.15mmであり、溝3
の深さは0.23mmで、溝の形成によって薄肉にされ
た部分、つまりa3の形成によって設けられた薄肉部4
の厚みは0.07mmで、溝底部3aには幅0.15m
mの平坦部3a1(第4図参照)が形成されているが、
一般の/I2i?’h油(例えばマシン油など)を使用
してプレスを行っても、ポンチの溝形成用凸出部21a
先端にかかる荷重は240kg/−以下にすることがで
き、生産性の高い溝形成が可能となった。なお、ポンチ
の溝形成用凸出部21aの高さは0.7+u+であり、
溝形成時の押し込みにより電池容器底部の溝加工しない
部分が若干盛り上がるが、それでも該部分の上面とポン
チ21の基盤部21bとの間に0.07mmの空間がお
いていて無拘束下でのプレス成形を可能にした。また、
形成された溝3の断面形状は第4図に示すように倒立台
形状(υ形状)である。In this embodiment, the battery container 1 is made of a stainless steel plate with a thickness of 0.3 mm, and the protrusion 21 for forming grooves of the punch
The angle θ of a is 70°, the tip 21a1 of the groove forming protrusion 21a is flat, and its width is 0.15 mm, and the groove 3
The depth of is 0.23 mm, and the thinned part 4 formed by forming the groove, that is, the thinned part 4 provided by forming a3.
The thickness of the groove is 0.07 mm, and the width of the groove bottom 3a is 0.15 m.
Although a flat portion 3a1 (see FIG. 4) of m is formed,
General /I2i? Even if pressing is performed using 'h oil (for example, machine oil), the groove forming protrusion 21a of the punch
The load applied to the tip could be reduced to 240 kg/- or less, making it possible to form grooves with high productivity. Note that the height of the groove forming protrusion 21a of the punch is 0.7+u+,
Although the part of the bottom of the battery container where the groove is not processed is slightly raised due to pressing during groove formation, there is still a space of 0.07 mm between the top surface of this part and the base part 21b of the punch 21, so that pressing without restraint is possible. It made molding possible. Also,
The cross-sectional shape of the formed groove 3 is an inverted trapezoid shape (υ shape) as shown in FIG.
上記のような無拘束下でのプレス成形により溝成形を行
ったときのポンチ寿命は20万回以上であったが、拘束
下、つまり溝形成用ポンチの溝形成用凸出部の高さを形
成する溝の深さと同じにして溝形成を行ったときのポン
チ寿命は5万回にも達しなかった。When groove forming was performed by press forming under unrestricted conditions as described above, the life of the punch was over 200,000 times. When grooves were formed at the same depth as the grooves to be formed, the life of the punch did not reach 50,000 cycles.
無拘束下での溝形成を安定して行うには、第1図に示す
ように溝形成用ポンチ21の溝形成用凸出部21aの高
さをH,11池容器1の肉厚をT5薄肉部4の厚みをt
とするとき、ポンチ21の溝形成用凸出部21aの高さ
Hが、電池容器の肉厚Tおよび薄肉部の厚みtに対して
、H≧1.5(T−t)であることが好ましい、これは
、溝形成時に溝形成部分の近傍が変形して若干盛り上が
る傾向があるので、それら溝形成部分以外の部分に対し
てポンチの基盤部などによる拘束力を与えず、ポンチの
溝形成用凸出部21aにかかる荷重を安定して小さくす
るためには、ポンチの溝形成用凸出部21aの高さHを
形成される溝の深さより大きくしておくことが好ましい
からである。In order to stably form grooves without restraint, as shown in FIG. Thickness of thin part 4 is t
When, the height H of the groove-forming convex portion 21a of the punch 21 is H≧1.5 (T-t) with respect to the wall thickness T of the battery container and the thickness t of the thin wall portion. This is preferable because when forming grooves, the vicinity of the groove forming part tends to deform and swell slightly, so the base of the punch does not apply a restraining force to the parts other than the groove forming part, and the groove forming part of the punch is prevented. This is because, in order to stably reduce the load applied to the groove-forming protrusion 21a, it is preferable that the height H of the groove-forming protrusion 21a of the punch is greater than the depth of the groove to be formed.
また、安定した防爆機能を発揮させるためには、溝3は
溝底部3aの平坦部3a1(第4図参照)の幅Wを薄肉
部4の厚みtの1.4〜15倍にするのが好ましい、す
なわち、溝底部3Jの平坦部3a1の幅Wが薄肉部4の
厚みtの1.4倍以上では、電池の内部圧力が上昇した
とき、溝底部3aの端部3a2に内部圧力による引張力
と曲げによる引張力とが複合してかかるようになり、電
池内部の圧力上昇に鋭敏に対応して溝底部3aの端部3
a2のところで引裂破壊が生じ、安定した防爆機能が発
揮されるようになり、また、溝底部3aの平坦部3a1
の幅Wが薄肉部の厚みtの15倍以下では、1!池外部
からの力が薄肉部にかかって薄肉部が防爆弁として作動
する以前の段階で破壊されるようなことがほとんど生じ
ないからである。In addition, in order to exhibit a stable explosion-proof function, the width W of the flat part 3a1 (see Fig. 4) of the groove bottom 3a of the groove 3 should be 1.4 to 15 times the thickness t of the thin part 4. Preferably, when the width W of the flat portion 3a1 of the groove bottom 3J is 1.4 times or more the thickness t of the thin wall portion 4, when the internal pressure of the battery increases, the end 3a2 of the groove bottom 3a is pulled by the internal pressure. The force and the tensile force due to bending are applied in combination, and the end 3 of the groove bottom 3a responds sharply to the increase in pressure inside the battery.
Tear failure occurs at a2, and a stable explosion-proof function is achieved, and the flat part 3a1 of the groove bottom 3a
When the width W is less than 15 times the thickness t of the thin part, 1! This is because there is almost no possibility that a force from outside the pond will be applied to the thin-walled portion and the thin-walled portion will be destroyed before it operates as an explosion-proof valve.
なお、本実施例では、リード端子の取付位置が安定しや
すいように、電池容器lの底部2の中央部に凸出部2a
を設けているので、溝3を凸出部2aに形成したが、凸
出部2aは必ずしも必要ではなく、電池容器1の底部2
は平坦なものであってもよい。In this embodiment, a protrusion 2a is provided at the center of the bottom 2 of the battery container l so that the mounting position of the lead terminal can be easily stabilized.
Since the groove 3 is provided in the protruding part 2a, the protruding part 2a is not necessarily necessary.
may be flat.
その場合においては、溝3は電池容器1の平坦な底部2
の中央部に設ければよいが、そのようにしても、凸出部
2aに溝3を設ける場合と比較して、防爆機能が低下す
るようなこともないし、また、プレス成形による溝形成
に関しても作業性面などで低下を招くこともない。In that case, the groove 3 is located on the flat bottom 2 of the battery container 1.
However, even if this is done, the explosion-proof function will not deteriorate compared to the case where the groove 3 is provided in the protruding part 2a, and the groove formation by press molding will not deteriorate. However, it does not cause any deterioration in terms of workability.
第5図は第1〜2図に基づいて説明した溝形成方法によ
り防爆用の溝が形成された電池容器を用いて組み立てた
塩化チオニル−リチウム電池を示すもので、図中、1は
前述のような溝3の形成により電池に防爆機能を備えさ
せるようにした電池容器である。11はアルカリ全屈よ
りなる負極で、本実施例ではリチウム板を上記電池容器
1の内周面に圧着することにより形成されており、その
ため、この電池では、電池容器1は負極端子としての機
能を有している。12はセパレータであり、このセパレ
ータ12はガラス繊維不織布からなり、円筒状をしてい
て、前記円筒状の負極11と円柱状の正極13とを隔離
している。正極13はアセチレンブラックを主成分とす
る炭素質で形成された炭素多孔質成形体よりなり、14
は正極集電体で、ステンレス鋼棒よりなる。15は電池
蓋で、ステンレス鋼で形成されていて、その立ち上がっ
た外周部が電池容器1の開口端部と溶接により接合され
、電池蓋15の内周側には正極端子17との間にガラス
層16が介設されている。ガラス層16は電池蓋15と
正極端子17との間を絶縁すると共に、その外周面でそ
の構成ガラスが電池蓋15の内周面に融着し、その内周
面でその構成ガラスが正極端子17の外周面に融着して
、電池蓋15と正極端子17との間をシールし、電池容
器lの開口部はいわゆるハーメチックシールで封口され
ている。正極端子17はステンレス鋼製で電池組立時は
パイプ状をしていて、電解液注入口として使用され、そ
の上端部を電解液注入後にその中空部内に挿入された正
極集電体14の上部と溶接して封止したものである。1
8は電解液で、この電解液18は塩化チオニルに支持電
解質としての四塩化アルミニウムリチウムを1.2 m
ol/!溶解したもので、塩化チオニルは上記のように
電解液溶媒であると共に、この電池では正極活物質であ
り、正極13の表面で、この塩化チオニルと負極11か
らイオン化したリチウムイオンとが反応を起こす、そし
て19および20はそれぞれガラス繊維不織布からなる
底部隔離材と上部隔離材である。FIG. 5 shows a thionyl chloride-lithium battery assembled using a battery container in which explosion-proof grooves were formed by the groove forming method explained based on FIGS. This is a battery container in which the battery is provided with an explosion-proof function by forming grooves 3 as shown in FIG. Reference numeral 11 denotes a negative electrode made of an alkaline fully bent material, which in this embodiment is formed by pressing a lithium plate onto the inner circumferential surface of the battery container 1. Therefore, in this battery, the battery container 1 does not function as a negative electrode terminal. have. Reference numeral 12 denotes a separator, which is made of glass fiber nonwoven fabric and has a cylindrical shape, separating the cylindrical negative electrode 11 and the cylindrical positive electrode 13. The positive electrode 13 is made of a carbon porous molded body made of carbon whose main component is acetylene black.
is the positive electrode current collector, which is made of a stainless steel rod. Reference numeral 15 denotes a battery lid, which is made of stainless steel, and its raised outer periphery is joined to the open end of the battery container 1 by welding. A layer 16 is interposed. The glass layer 16 insulates between the battery lid 15 and the positive electrode terminal 17, and the glass layer 16 is fused to the inner peripheral surface of the battery lid 15 on its outer peripheral surface, and the glass layer 16 is connected to the positive terminal on its inner peripheral surface. 17 to seal between the battery lid 15 and the positive electrode terminal 17, and the opening of the battery container l is sealed with a so-called hermetic seal. The positive electrode terminal 17 is made of stainless steel and has a pipe shape when the battery is assembled, and is used as an electrolyte inlet, and its upper end is connected to the upper part of the positive electrode current collector 14 inserted into the hollow part after the electrolyte is injected. It is welded and sealed. 1
8 is an electrolytic solution, and this electrolytic solution 18 contains 1.2 m of lithium aluminum tetrachloride as a supporting electrolyte in thionyl chloride.
ol/! The dissolved thionyl chloride is not only an electrolyte solvent as described above, but also a positive electrode active material in this battery, and on the surface of the positive electrode 13, this thionyl chloride and ionized lithium ions from the negative electrode 11 cause a reaction. , and 19 and 20 are a bottom separator and an upper separator, respectively, made of glass fiber nonwoven fabric.
上記のように電池容器の底部に防爆用の溝を形成した塩
化チオニル−リチウム電池を火中に投入し、電池が大き
な破裂音を伴って破裂するか否かを開ぺた結果を第1表
に示す、比較のため、アルカリ電池で提案されているよ
うな底部に丸みをつけた溝(溝形成角度90”で、溝底
部の丸み0.2IR1薄肉部の厚さ0.07mm)を形
成した電池容器を用いた電池についても火中破裂試験を
行い、その結果を第1表に示した。なお、第1表中の「
火中破裂電池個数」の欄の分母は試験に供した電池個数
を示し、分子は火中破裂(防爆機能が作動せず、高圧で
大きな破裂音を伴って電池破裂するもの)を生じた電池
個数を示す、また、溝の形成はいずれもプレス成形によ
り行っているので、溝形成後、溝形成による加工硬化を
取り除くために1010℃で10分間焼鈍した。A lithium thionyl chloride battery with an explosion-proof groove formed at the bottom of the battery container as described above was thrown into a fire, and the results were shown in Table 1 to see if the battery exploded with a loud popping sound. For comparison, a battery with a rounded groove on the bottom as proposed for alkaline batteries (groove formation angle 90", groove bottom roundness 0.2IR1 thin part thickness 0.07mm) is shown. Batteries using containers were also subjected to burst tests in fire, and the results are shown in Table 1.
The denominator in the column ``Number of batteries that exploded in fire'' indicates the number of batteries that were subjected to the test, and the numerator is the number of batteries that exploded in fire (batteries that exploded under high pressure and with a loud bursting sound because the explosion protection function did not activate). In addition, since the grooves were all formed by press molding, after the grooves were formed, they were annealed at 1010° C. for 10 minutes to remove work hardening caused by the groove formation.
第 1 表
第1表に示すように、本発明により溝形成を行った電池
容器を用いて作製した電池では、火中破裂がまったくな
く、優れた防爆機能が発揮された。Table 1 As shown in Table 1, the batteries manufactured using the battery containers in which the grooves were formed according to the present invention did not burst during fire at all, and exhibited excellent explosion-proof function.
なお、上記実施例では、溝は平面形状が十字状になるよ
うに形成したが、溝の平面形状はそのような十字状のも
ののみに限られることなく、例えば第6図に示すように
、Y字状(第5図(a)参照)、アスタリスク(星印)
状(第5図(b)参照)、H字状(第5図(C)参照)
など、溝が複数本でそれらの溝が少なくとも1箇所交わ
っているものがとり得る。特に電池に内圧がかかったと
きに電池容器の底部で最も変形が大きいのは、中心部で
あるため、底部中心に交点を持つ平面形状が十字状(X
字状)の溝や、Y字状、アスタリスク状の溝が好ましい
。In the above embodiment, the grooves were formed to have a cross-shaped planar shape, but the planar shape of the grooves is not limited to such a cross-shaped one. For example, as shown in FIG. Y-shape (see Figure 5(a)), asterisk
(see Figure 5(b)), H-shape (see Figure 5(C))
It is possible to have a plurality of grooves, such as, where the grooves intersect at least one place. In particular, when internal pressure is applied to the battery, the part of the bottom of the battery container that deforms the most is the center, so the planar shape with the intersection at the center of the bottom is cross-shaped (X
It is preferable to use a Y-shaped groove, a Y-shaped groove, or an asterisk-shaped groove.
以上説明したように、本発明では、無拘束下、溝形成角
度を50〜80°として、プレス成形で電池容器の底部
に溝形成を行うことにより、溝の底部を構成する材料に
引張り応力をかけ、被成形材料の変形抵抗および溝形成
用ポンチと被成形材料との間の摩擦力を小さくして、底
部に平坦部を有する溝を量産可能なポンチ寿命で形成す
ることができた。As explained above, in the present invention, tensile stress is applied to the material forming the bottom of the groove by forming the groove at the bottom of the battery container by press molding with the groove forming angle set at 50 to 80 degrees without restraint. By reducing the deformation resistance of the material to be formed and the frictional force between the groove-forming punch and the material to be formed, it was possible to form grooves with a flat bottom portion within the life of the punch that allows for mass production.
第1〜2図は本発明の方法により電池容器の底部に防爆
用の溝を形成する際の状態を示す図で、第1図は溝形成
用のポンチを下降させポンチの溝形成用凸出部を電池容
器の底部に押し込んだときの状態を示す要部拡大断面図
であり、第2図は溝形成用ポンチの下降前の状態におけ
る全体の断面図である。第3図は本発明の方法により防
爆用の溝が形成された電池容器の一例を示すもので、第
3図(a)はその平面図、第3図(b)は第3図(a)
のX−X線における断面面である。第4図は第3図(t
l)のA部拡大断面図である。第5図は本発明の方法に
より防爆用の溝が形成された電池容器を用いた塩化チオ
ニル−リチウム電池の一例を示す断面図である。第6図
は本発明の方法により形成される溝の他の例の平面形状
を示すためのもので、上段はそれぞれの電池容器の概略
正面図を示し、下段はそれらの概略底面図を示す。
1・・・電池容器、 2・・・底部、 3・・・溝、3
a・・・溝の底部、 3a1・・・平坦部、 21・・
・溝形成用ポンチ、 21a・・・溝形成用凸出部、2
1a1・・・先端
第6図
(a) (b) (C)
3・・・溝
第 1 図
22 1・・・電池容器
2 ・・底部
3・・・溝
21・・・溝形成用ポンチ
21a・・・溝形成用凸出部
21a +・・・先端
第2図
第3
1・・・電池容器 (a)第4図
図 第5図
(b)Figures 1 and 2 are diagrams showing the state in which an explosion-proof groove is formed at the bottom of a battery container by the method of the present invention. FIG. 2 is an enlarged cross-sectional view of the main part showing the state when the groove-forming punch is pushed into the bottom of the battery container, and FIG. 2 is a cross-sectional view of the entire groove-forming punch in the state before being lowered. FIG. 3 shows an example of a battery container in which explosion-proof grooves are formed by the method of the present invention. FIG. 3(a) is a plan view thereof, and FIG. 3(b) is a plan view thereof.
It is a cross-sectional surface taken along the XX line. Figure 4 is similar to Figure 3 (t
1) is an enlarged sectional view of part A of FIG. FIG. 5 is a sectional view showing an example of a thionyl chloride-lithium battery using a battery container in which explosion-proof grooves are formed by the method of the present invention. FIG. 6 is for showing the planar shape of another example of the groove formed by the method of the present invention, the upper row shows a schematic front view of each battery container, and the lower row shows a schematic bottom view thereof. 1...Battery container, 2...Bottom, 3...Groove, 3
a...bottom of groove, 3a1...flat part, 21...
・Groove forming punch, 21a...Groove forming protrusion, 2
1a1...Tip Fig. 6 (a) (b) (C) 3...Groove 1 Fig. 22 1...Battery container 2...Bottom 3...Groove 21...Groove forming punch 21a ...Groove forming protrusion 21a +...Tip Fig. 2 Fig. 3 1...Battery container (a) Fig. 4 Fig. 5 (b)
Claims (2)
の底部に形成するにあたり、溝形成用ポンチとして、先
端が平坦で、かつ溝形成角度が50〜80°の溝形成用
凸出部を有するポンチを用い、電池容器の底部の溝形成
部分以外の部分の厚み方向に拘束力を与えずに、電池容
器の底部に上記ポンチの溝形成用凸出部を押し込んで、
底部に平坦部を有する溝を電池容器の底部に形成するこ
とを特徴とする防爆型密閉電池に使用する電池容器の製
造方法。(1) When forming a groove on the bottom of a battery container to provide an explosion-proof function to the battery, a groove forming protrusion with a flat tip and a groove forming angle of 50 to 80 degrees is used as a groove forming punch. Using a punch having a groove-forming part, push the groove-forming protrusion of the punch into the bottom of the battery container without applying a restraining force in the thickness direction of the part other than the groove-forming part at the bottom of the battery container,
1. A method of manufacturing a battery container for use in an explosion-proof sealed battery, comprising forming a groove having a flat portion at the bottom of the battery container.
池容器の肉厚をT、溝の形成により設けられた薄肉部の
厚みをtとするとき、上記溝形成用ポンチの溝形成用凸
出部の高さHが、電池容器の肉厚Tおよび薄肉部の厚み
tに対して、H≧1.5(T−t) であることを特徴とする特許請求の範囲第1項記載の防
爆型密閉電池に使用する電池容器の製造方法。(2) When the height of the groove-forming convex part of the groove-forming punch is H, the wall thickness of the battery container is T, and the thickness of the thin-walled part provided by forming the groove is t, then the above-mentioned groove-forming punch Claims characterized in that the height H of the groove-forming convex portion satisfies H≧1.5 (T-t) with respect to the wall thickness T of the battery container and the thickness t of the thin wall portion. A method for manufacturing a battery container for use in the explosion-proof sealed battery according to item 1.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61228761A JPH0789482B2 (en) | 1986-09-27 | 1986-09-27 | Method for manufacturing battery container used for explosion-proof sealed battery |
US07/101,259 US4842965A (en) | 1986-09-27 | 1987-09-25 | Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof |
EP87114076A EP0266541B1 (en) | 1986-09-27 | 1987-09-26 | Explosion-proof arrangement for a non-aqueous electrochemical cell, and method for the production thereof |
DE8787114076T DE3779996T2 (en) | 1986-09-27 | 1987-09-26 | EXPLOSION-PROTECTED ARRANGEMENT FOR A NON-AQUEOUS ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61228761A JPH0789482B2 (en) | 1986-09-27 | 1986-09-27 | Method for manufacturing battery container used for explosion-proof sealed battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6386244A true JPS6386244A (en) | 1988-04-16 |
JPH0789482B2 JPH0789482B2 (en) | 1995-09-27 |
Family
ID=16881414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61228761A Expired - Lifetime JPH0789482B2 (en) | 1986-09-27 | 1986-09-27 | Method for manufacturing battery container used for explosion-proof sealed battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0789482B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111054817A (en) * | 2018-10-17 | 2020-04-24 | 武汉市杰精精密电子有限公司 | Die and process for producing explosion-proof battery metal shell with V-shaped groove at bottom |
-
1986
- 1986-09-27 JP JP61228761A patent/JPH0789482B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111054817A (en) * | 2018-10-17 | 2020-04-24 | 武汉市杰精精密电子有限公司 | Die and process for producing explosion-proof battery metal shell with V-shaped groove at bottom |
Also Published As
Publication number | Publication date |
---|---|
JPH0789482B2 (en) | 1995-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6265097B1 (en) | Breakable safety valve for metal-made container | |
US4842965A (en) | Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof | |
JPH01243369A (en) | Battery terminal and method | |
JPH09120811A (en) | Sealed storage battery | |
US11276895B2 (en) | Top cap for secondary battery, secondary battery, and method for manufacturing the secondary battery | |
JP4676947B2 (en) | Sealed battery safety valve | |
JP4831625B2 (en) | Coin battery | |
JP2011228019A (en) | Battery can, method for producing the same, and nonaqueous electrolytic solution secondary battery | |
JPS6386244A (en) | Manufacture of battery container for explosionproof type sealed battery | |
JP4622268B2 (en) | Safety valve for sealed cylindrical battery and manufacturing method thereof | |
JPS63285860A (en) | Manufacture of battery container used for explosion-proof sealed battery | |
JPH03203157A (en) | Manufacture of sealed battery | |
JPH07105217B2 (en) | Non-aqueous liquid active material battery | |
JP2521441B2 (en) | Hermetically sealed liquid active material battery | |
JP2000021380A (en) | Rupture plate | |
JPH079338Y2 (en) | Battery safety valve device | |
JPS63294665A (en) | Non-liquid active material battery | |
JPH0716292Y2 (en) | Explosion-proof battery sealing gasket | |
JPH10261392A (en) | Sealing structure of battery | |
JPH07105219B2 (en) | Non-aqueous liquid active material battery | |
JPH055642Y2 (en) | ||
JP2870067B2 (en) | Sealed battery | |
EP4262002A1 (en) | Cylindrical secondary battery | |
JPH0637567Y2 (en) | Non-aqueous liquid active material battery | |
JPH1186819A (en) | Safety structure for sealed battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |