JPH055642Y2 - - Google Patents

Info

Publication number
JPH055642Y2
JPH055642Y2 JP7558488U JP7558488U JPH055642Y2 JP H055642 Y2 JPH055642 Y2 JP H055642Y2 JP 7558488 U JP7558488 U JP 7558488U JP 7558488 U JP7558488 U JP 7558488U JP H055642 Y2 JPH055642 Y2 JP H055642Y2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
terminal
electrode terminal
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7558488U
Other languages
Japanese (ja)
Other versions
JPH01177864U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7558488U priority Critical patent/JPH055642Y2/ja
Publication of JPH01177864U publication Critical patent/JPH01177864U/ja
Application granted granted Critical
Publication of JPH055642Y2 publication Critical patent/JPH055642Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〈産業上の利用分野〉 この考案は、筒形アルカリ電池に関するもので
ある。 〈従来の技術〉 筒形アルカリ電池では、金属製の有底円筒状の
正極缶を用い、この正極缶内に発電要素を収納し
た後、端子板と絶縁ガスケツトとで正極缶開口部
を封口する構造の素電池が用いられている。 この素電池の形式としては、平面状の底面を有
する正極缶を用い、発電要素を上記のように密封
収納した後に電池缶底面に正極端子を正極缶底部
に溶接する形式のもの、あるいは底部を予じめ凸
状に加工成形して正極端子を一体形成した正極缶
を用いた形式のもの等が知られている。 このうち、前者のように別体の正極端子をもち
る形式は、特にLR20等の大径の電池に用いられ
ており、一般に、正極缶底面に正極端子を密着さ
せた後に、正極缶底面の周縁において正極端子を
正極缶にスポツト溶接等で固着する構造が採られ
ている。 ところで、この種のアルカリ電池は、大電流の
取出しが容易で放電性能に優れている反面、電池
内部への重金属などの不純物の混入あるいは過放
電や充電などの異常使用に起因して発生する、多
量の水素ガスに因る電池内圧の異常な上昇に伴つ
て、電池が膨らんだりあるいは破裂する等の危険
性が高い。 このため、現用の筒形アルカリ電池では、正極
缶開口部に、この開口部に負極端子板と共に装着
される合成樹脂製の封口ガスケツトに薄肉部を設
けることで防爆構造を具備させ、電池の異常内圧
によりこの封口ガスケツトの薄肉部を破断させる
ことで、電池内部の異常ガス圧を電池外部に排出
させ、もつて異常使用時等における電池の破裂を
未然に防ぐようにしている。 〈考案が解決しようとする課題〉 しかしながら、例えば電池を高温で使用した場
合には、封口ガスケツトが軟化して伸びが生じた
り、あるいは火中投入した際には封口ガスケツト
が溶けたりする。このため、この様な場合、電池
の内力上昇時において所定の時期に封口ガスケツ
トを破断させることが困難で、異常ガス圧の排出
が不完全となり、このため防爆を有効に行い難
く、爆発に至ることがあつた。 特に電池を誤使用により充電させた場合には、
電池内圧の上昇速度が非常に速いことから、この
傾向が著しい。 〈課題を解決するための手段〉 この考案の筒形アルカリ電池は、発電要素を密
封収納した正極缶の底部外周側周縁において2〜
4点のプロジエクシヨン部を円周上略等角度間隔
に設けた正極端子を当該正極缶に抵抗溶接して一
体化させた筒形アルカリ電池において、少なくと
も前記溶接部において、前記正極缶の板厚を前記
正極端子の板厚の90%以下の厚さにしたことを要
旨とする。 〈作用〉 正極缶の底部外周側周縁において正極端子を正
極缶に溶接して一体化させた筒形アルカリ電池で
は、電池を異常使用する等して電池の内圧が上昇
して正極缶底面が膨らんだ場合、これに伴い正極
端子を持ち上げようとする力が加わり、この力
は、正極缶底部と正極端子との溶接部である円周
上略等角度間隔に設けた2〜4点(望ましくは3
点)の部分に力が集中し、これにより該溶接部を
剥がそうとする力が発生する。 この時、上記のように正極缶の厚さを正極端子
の厚さより薄く、90%以下の厚さにしておくこと
で、該数点の溶接部においては正極缶底部の板材
を剥ぎとる形で正極端子の剥がれが起こると同時
に、剥がれた穴から電池内部の異常ガスが電池外
部に排出される。 〈実施例〉 以下に添付図面を用いてこの考案の実施例を説
明する。 第1図において、発電要素(図示せず)を収納
した正極缶1の底面には、この正極缶底面に対応
する形状に成形されまた電流取出し用の端子を中
央部に具備した正極端子2が載置されている。 即ち、正極缶1の底面には、外周側平坦部1
a、ビード部1b、並びに中央平坦部1cが外周
より順次形成されている。一方、正極端子2に
は、この外周平坦部1aに密着される第1の平坦
部2a、またビード部1bに嵌合されるビード部
2b、並びに中央平坦部1c上に位置する部分に
は第2の平坦部2c並びに電流取出し用の中央突
出端子部2dが、順次形成されている。また、正
極端子2の第1の平坦部2aには、溶接を確実に
するために3点のプロジエクシヨン部が正極端子
底面に向かう側に円周上120°間隔に設けてある。
このプロジエクシヨン部は、径約0.5mm、高さ約
0.3mmのもので、この点で抵抗溶接がなされる。
プロジエクシヨン部は、2点又は4点でもよい
が、安定させるため通常3点設ける。 また、正極缶底面の外周平坦部1aにおける厚
さは0.3mm程度、また正極端子2の第1の平坦部
2aにおける厚さは0.4mm程度である。それぞれ
の部品の寸法は、正極缶1は電池ケースとしての
強度上0.15mm以上、また正極端子2は部品加工上
0.5mm以下が望ましい。尚、正極缶1、正極端子
2とも、その材質は通常用いられるHv(ビツカー
ス硬度)100〜130のニツケルメツキ鋼板を用い
た。 そして、このように正極缶1と正極端子2を3
点のプロジエクシヨン部にて密着させた状態で、
第2図に示すように、両者の外周平坦部1aと第
1の平坦部2aの部分において同一円周状に略等
間隔で3個所スポツト抵抗溶接(図中「X」で示
した部分)して正極缶1と正極端子2とを一体化
させた後、この素電池の外周に、外装用の熱収縮
性粘着ラベルを装着して完成電池とする。 この実施例の電池を、充電する等して異常使用
した場合、第3図に示したように、電池の内圧に
より正極缶の底面が図中上側に膨出するのに伴つ
て正極端子2が図中上側に変形し、これにより正
極端子2と正極缶1との溶接部を剥がす方向に力
が発生する。そして、電池内圧が更に高まつた場
合、第4図に示すように、正極缶底面側の溶接部
が剥れて正極缶底面に穴があき、この穴から正極
缶内部の異常ガス圧が電池外部に放出される。表
1には、溶接部における正極端子2の板厚と正極
缶1底面の板厚とを変えて作製したLR20の溶接
部剥がれ具合を示した。実験は、通常安全弁とし
て作動する封口部分を封止し、故意に電池の内圧
を40Kg/cm2かかるようにして観察を行なつた。40
Kg/cm2を越える圧力では電池の封口部が外れる、
つまり破裂するので、意味をなさない。
<Industrial Application Field> This invention relates to a cylindrical alkaline battery. <Prior art> In a cylindrical alkaline battery, a cylindrical cathode can made of metal with a bottom is used. After a power generation element is housed in the cathode can, the opening of the cathode can is sealed with a terminal plate and an insulating gasket. A unit cell with this structure is used. The format of this unit cell is one in which a positive electrode can with a flat bottom is used, the power generation element is hermetically housed as described above, and then the positive terminal is welded to the bottom of the battery can, or the bottom is A type using a positive electrode can in which a positive electrode terminal is integrally formed by processing it into a convex shape in advance is known. Among these, the former type with a separate positive terminal is used especially for large-diameter batteries such as LR20, and is generally used after the positive terminal is brought into close contact with the bottom of the positive can. A structure is adopted in which the positive electrode terminal is fixed to the positive electrode can by spot welding or the like at the periphery. By the way, although this type of alkaline battery can easily draw a large current and has excellent discharging performance, it is possible that impurities such as heavy metals may be mixed into the battery or that problems may occur due to abnormal usage such as over-discharging or charging. There is a high risk that the battery will swell or explode due to an abnormal increase in the internal pressure of the battery due to a large amount of hydrogen gas. For this reason, current cylindrical alkaline batteries are equipped with an explosion-proof structure by providing a thin-walled part in the synthetic resin sealing gasket that is attached to the positive electrode can opening along with the negative electrode terminal plate. By causing the thin wall portion of the sealing gasket to rupture due to internal pressure, the abnormal gas pressure inside the battery is discharged to the outside of the battery, thereby preventing the battery from bursting during abnormal use. <Problems to be solved by the invention> However, for example, when a battery is used at high temperatures, the sealing gasket may soften and stretch, or when placed in a fire, the sealing gasket may melt. Therefore, in such cases, it is difficult to rupture the sealing gasket at a predetermined time when the internal force of the battery increases, and the abnormal gas pressure is incompletely discharged, making it difficult to provide effective explosion protection and leading to an explosion. Something happened. Especially if the battery is charged due to misuse,
This tendency is remarkable because the rate of increase in battery internal pressure is extremely fast. <Means for solving the problem> The cylindrical alkaline battery of this invention has two to
In a cylindrical alkaline battery in which a positive electrode terminal having four projection portions provided at approximately equal angular intervals on the circumference is integrated with the positive electrode can by resistance welding, at least in the welded portion, the plate of the positive electrode can The gist is that the thickness is 90% or less of the plate thickness of the positive electrode terminal. <Function> In a cylindrical alkaline battery in which the positive terminal is integrated with the positive electrode can by welding it to the bottom outer periphery of the positive electrode can, the internal pressure of the battery increases due to abnormal use of the battery, causing the bottom surface of the positive electrode can to swell. In this case, a force is applied to lift the positive terminal, and this force is applied to two to four points (preferably 3
The force is concentrated at the point), and this generates a force that tries to peel off the weld. At this time, as mentioned above, by making the thickness of the positive electrode can thinner than the thickness of the positive electrode terminal, making it less than 90% thick, the plate material at the bottom of the positive electrode can can be peeled off at the welding points at these several points. At the same time as the positive electrode terminal peels off, abnormal gas inside the battery is discharged to the outside of the battery through the peeled hole. <Example> An example of this invention will be described below using the accompanying drawings. In FIG. 1, on the bottom of a positive electrode can 1 housing a power generation element (not shown), a positive electrode terminal 2 is formed in a shape corresponding to the bottom surface of the positive electrode can and has a terminal for taking out current in the center. It is placed. That is, on the bottom surface of the positive electrode can 1, there is a flat part 1 on the outer peripheral side.
a, a bead portion 1b, and a central flat portion 1c are sequentially formed from the outer periphery. On the other hand, the positive electrode terminal 2 has a first flat part 2a that is in close contact with the outer peripheral flat part 1a, a bead part 2b that is fitted into the bead part 1b, and a part located on the central flat part 1c. 2 flat portions 2c and a central protruding terminal portion 2d for current extraction are formed in sequence. Further, in order to ensure welding, three projection portions are provided on the first flat portion 2a of the positive electrode terminal 2 at intervals of 120° on the circumference on the side facing the bottom surface of the positive electrode terminal.
This projection part has a diameter of approximately 0.5 mm and a height of approximately
It is 0.3mm and resistance welding is done at this point.
The projection section may have two or four points, but usually three points are provided for stability. Further, the thickness at the outer peripheral flat portion 1a of the bottom surface of the positive electrode can is about 0.3 mm, and the thickness at the first flat portion 2a of the positive electrode terminal 2 is about 0.4 mm. The dimensions of each part are 0.15mm or more for positive electrode can 1 due to its strength as a battery case, and for positive electrode terminal 2 due to parts processing.
Desirably 0.5mm or less. The material for both the positive electrode can 1 and the positive electrode terminal 2 was a nickel-plated steel plate having a Hv (Vickers hardness) of 100 to 130, which is commonly used. Then, connect the positive electrode can 1 and the positive terminal 2 to 3 in this way.
With the dot projection part in close contact,
As shown in Figure 2, spot resistance welding is carried out at three locations approximately equally spaced around the same circumference on the outer circumferential flat part 1a and the first flat part 2a (portions indicated by "X" in the figure). After the positive electrode can 1 and the positive electrode terminal 2 are integrated, a heat-shrinkable adhesive label for the exterior is attached to the outer periphery of this unit cell to obtain a completed battery. When the battery of this example is used abnormally, such as by charging, as shown in Figure 3, the bottom of the positive electrode can bulges upward in the figure due to the internal pressure of the battery, and the positive electrode terminal 2 It deforms upward in the figure, and as a result, a force is generated in the direction of peeling off the welded portion between the positive electrode terminal 2 and the positive electrode can 1. If the internal pressure of the battery increases further, as shown in Figure 4, the weld on the bottom side of the positive electrode can peels off, creating a hole in the bottom of the positive electrode can, and through this hole, the abnormal gas pressure inside the positive electrode can is released into the battery. released to the outside. Table 1 shows the degree of peeling at the weld of LR20, which was manufactured by changing the thickness of the positive electrode terminal 2 at the weld and the thickness of the bottom of the positive electrode can 1. In the experiment, the sealing part that normally operates as a safety valve was sealed, and the internal pressure of the battery was intentionally increased to 40 Kg/cm 2 for observation. 40
If the pressure exceeds Kg/ cm2 , the battery seal will come off.
In other words, it would burst, so it makes no sense.

【表】 表1において、*は、第5図に示すように、正
極端子2は剥がれたが、正極端子2側溶接部に穴
があき、正極缶1底面側には穴があかなかつた。 〈考案の効果〉 以上のようにこの考案の筒形アルカリ電池によ
れば、電池の異常使用時などにおいては、正極缶
と正極端子の溶接部が破断されてこの破断部から
電池内部の異常ガスが電池外部に排出されるの
で、電池を高温状態で異常使用した場合等におい
ても電池の破裂を確実に防ぐことができ、電池の
安全性向上を図れる。
[Table] In Table 1, * indicates that, as shown in FIG. 5, the positive electrode terminal 2 was peeled off, but there was a hole in the welded part on the positive electrode terminal 2 side, and there was no hole in the bottom side of the positive electrode can 1. <Effects of the invention> As described above, according to the cylindrical alkaline battery of this invention, when the battery is used abnormally, the weld between the positive electrode can and the positive terminal is broken, and abnormal gas inside the battery is released from this broken part. Since the battery is discharged to the outside of the battery, it is possible to reliably prevent the battery from bursting even when the battery is used abnormally at high temperatures, thereby improving the safety of the battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の電池の溶接前の断面図、第2
図は同溶接後の断面図、第3図は実施例の電池を
異常使用した時の断面図、第4図は実施例の電池
において正極缶底面が破断した状態を示す断面
図、第5図は表1においてガス排出がなされなか
つたものの断面図である。 1……正極缶、2……正極端子。
Figure 1 is a cross-sectional view of the battery of the example before welding, Figure 2
The figure is a cross-sectional view after welding, Figure 3 is a cross-sectional view when the battery of the example is used abnormally, Figure 4 is a cross-sectional view showing the battery of the example with the bottom surface of the positive electrode case broken, and Figure 5 is a sectional view of the sample in Table 1 in which no gas was discharged. 1... Positive electrode can, 2... Positive electrode terminal.

Claims (1)

【実用新案登録請求の範囲】 発電要素を密封収納した正極缶の底部外周側周
縁において2〜4点のプロジエクシヨン部を円周
上略等角度間隔に設けた正極端子を当該正極缶に
抵抗溶接して一体化させた筒形アルカリ電池にお
いて、 少なくとも前記溶接部において、前記正極缶の
板厚を前記正極端子の板厚の90%以下の厚さにし
たことを特徴とする筒形アルカリ電池。
[Scope of Claim for Utility Model Registration] A positive electrode terminal having two to four protrusion portions arranged at approximately equal angular intervals on the circumference on the outer periphery of the bottom of a positive electrode can in which a power generation element is hermetically housed is connected to the positive electrode can. A cylindrical alkaline battery integrated by welding, wherein the thickness of the positive electrode can is 90% or less of the thickness of the positive terminal at least at the welded portion. .
JP7558488U 1988-06-07 1988-06-07 Expired - Lifetime JPH055642Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7558488U JPH055642Y2 (en) 1988-06-07 1988-06-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7558488U JPH055642Y2 (en) 1988-06-07 1988-06-07

Publications (2)

Publication Number Publication Date
JPH01177864U JPH01177864U (en) 1989-12-19
JPH055642Y2 true JPH055642Y2 (en) 1993-02-15

Family

ID=31300646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7558488U Expired - Lifetime JPH055642Y2 (en) 1988-06-07 1988-06-07

Country Status (1)

Country Link
JP (1) JPH055642Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825155B2 (en) * 2012-03-08 2015-12-02 株式会社豊田自動織機 Case for power storage device, power storage device, secondary battery, and moving body

Also Published As

Publication number Publication date
JPH01177864U (en) 1989-12-19

Similar Documents

Publication Publication Date Title
JP2970340B2 (en) Explosion-proof sealing plate for sealed batteries
EP0573998B1 (en) Sealed battery
US7927727B2 (en) Secondary battery, cap assembly thereof and method of mounting safety valve therefor
JP2010238672A (en) Secondary battery
CN111755633B (en) Button cell
JP5551781B2 (en) Double sealed cap assembly and cylindrical secondary battery including the same
US6063518A (en) Sealed electrochemical cell equipped with a circuit-breaking terminal
JP2001015094A (en) Cylindrical battery and manufacture thereof
JPH09259842A (en) Sealed rectangular battery
JPH08171898A (en) Rectangular electrochemical element equipped with explosion-proof safety device and its manufacture
JP2007234305A (en) Cylindrical cell
JP3346675B2 (en) Explosion-proof sealing plate for sealed batteries
JPH055642Y2 (en)
JPH10247483A (en) Safety structure of sealed battery
JP3589427B2 (en) Cylindrical alkaline battery
KR20000015920U (en) Lithium ion secondary battery
JP4195803B2 (en) Alkaline battery
JP2004063254A (en) Sealed type battery
JPH0389454A (en) Cylindrical alkaline battery
KR20000018606A (en) Cap assembly of a secondary battery
JPH1186821A (en) Sealed-type battery
JP2007180052A (en) Alkaline dry cell
JPH0584026U (en) Organic electrolyte battery
JPS60198051A (en) Sealed battery
JPH1131490A (en) Explosion-proof type sealed battery