JPH0789482B2 - Method for manufacturing battery container used for explosion-proof sealed battery - Google Patents

Method for manufacturing battery container used for explosion-proof sealed battery

Info

Publication number
JPH0789482B2
JPH0789482B2 JP61228761A JP22876186A JPH0789482B2 JP H0789482 B2 JPH0789482 B2 JP H0789482B2 JP 61228761 A JP61228761 A JP 61228761A JP 22876186 A JP22876186 A JP 22876186A JP H0789482 B2 JPH0789482 B2 JP H0789482B2
Authority
JP
Japan
Prior art keywords
groove
battery
punch
battery container
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61228761A
Other languages
Japanese (ja)
Other versions
JPS6386244A (en
Inventor
久 漆原
二康 岩丸
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP61228761A priority Critical patent/JPH0789482B2/en
Priority to US07/101,259 priority patent/US4842965A/en
Priority to DE8787114076T priority patent/DE3779996T2/en
Priority to EP87114076A priority patent/EP0266541B1/en
Publication of JPS6386244A publication Critical patent/JPS6386244A/en
Publication of JPH0789482B2 publication Critical patent/JPH0789482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆型密閉電池に使用する電池容器の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a battery container used for an explosion-proof sealed battery.

〔従来の技術〕[Conventional technology]

塩化チオニル−リチウム電池に代表されるような正極活
物質として塩化チオニル、塩化スルフリル、塩化ホスホ
リルなどのオキシハロゲン化物系液体を用い、負極にリ
チウム、ナトリウム、カリウムなどのアルカリ金属を用
いる液体活物質電池では、ハーメチックシールによる完
全密閉構造をとっているため、密閉性が非常に優れてい
るが、その反面、密閉性が高いために、高温加熱下にさ
らされたり、高電圧で充電されるなどの異常事態に遭遇
したときに、電池の内部圧力が異常に上昇して電池破裂
が生じ、大きな破裂音が発生すると共に、電池内容物が
周囲に飛び散って電池使用機器を汚損するおそれがあ
る。
A liquid active material battery using an oxyhalide-based liquid such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride as a positive electrode active material typified by a thionyl chloride-lithium battery and an alkali metal such as lithium, sodium, or potassium as a negative electrode. In this case, since it has a completely hermetically sealed structure, it has excellent sealing performance, but on the other hand, due to its high sealing performance, it is exposed to high temperature heating and is charged at high voltage. When an abnormal situation is encountered, the internal pressure of the battery rises abnormally, causing the battery to burst, producing a loud burst noise, and the battery contents may scatter around and contaminate the battery-using device.

そこで、同様に密閉構造をとるアルカリ電池に関して、
実公昭58−17332号公報や実公昭58−26460号公報に、電
池容器の一部に溝を形成して、電池容器に薄肉の部分を
設け、上記薄肉部のところで電池容器の耐圧力を部分的
に低くし、電池内部の圧力が異常上昇しはじめたとき
に、上記薄肉部が破れて電池破裂因子となる電池内部の
ガスを電池外部に放出させるようにして、高圧での電池
破裂を防止することが提案されていることから、このハ
ーメチックシール構造をとる液体活物質電池において
も、そのような溝形成による防爆機能を備えるようにす
ることが必要であると考えられる。
Therefore, regarding alkaline batteries that also have a sealed structure,
In Japanese Utility Model Publication No. 58-17332 and Japanese Utility Model Publication No. 58-26460, a groove is formed in a part of the battery container to provide a thin portion in the battery container, and the pressure resistant portion of the battery container is partially formed at the thin portion. When the pressure inside the battery starts to rise abnormally, the thin wall part is broken and the gas inside the battery, which becomes a factor of battery explosion, is released to the outside of the battery to prevent battery explosion at high pressure. Therefore, it is considered that it is necessary to provide the liquid active material battery having the hermetically sealed structure with the explosion-proof function by such groove formation.

ところで、上記のような防爆用の溝形成にあたっては、
プレス成形による方法が採用されるが、液体活物質電池
では正極活物質の強い耐食性に耐えるために電池構成部
材には耐食性が要求され、電池容器には一般にステンレ
ス鋼が採用されるので、電池容器の硬度が高く、これに
プレス成形により溝を形成しようとすると、溝形成用ポ
ンチにかかる荷重が非常に高くなる。
By the way, when forming the explosion-proof groove as described above,
Although the method by press molding is adopted, in the liquid active material battery, the corrosion resistance of the battery component is required to withstand the strong corrosion resistance of the positive electrode active material, and stainless steel is generally adopted for the battery container. Has a high hardness, and if a groove is formed on the groove by press molding, the load applied to the groove forming punch becomes very high.

そのため、形成する溝の断面形状としては、前記実公昭
58−17332号公報にも示されているように、V字状でそ
の先端、つまり溝の底部を鋭利な状態にするのが、最も
溝形成が容易であると考えられるが、溝の底部を鋭利に
した場合、溝形成用のポンチの先端がすぐに損傷を受け
るので、ポンチの耐久性面から工業的には採用しがた
い。そこで、前記実公昭58−26460号公報に示されてい
るように、断面はV字状でも溝の底部に0.1〜0.2mmRの
丸みをつけることによって、溝形成用ポンチの耐久性を
向上させることも考えられるが、本発明者らの研究によ
れば、溝の先端に丸みをつけた場合、単に厚みを薄くし
たという効果が発揮されるだけで、切欠効果などの付加
的な効果がほとんど加わらないため、ステンレス鋼のよ
うに高強度の材質を用いた電池容器では、薄肉部の厚み
をよほど薄くしないかぎり、薄肉部の破壊圧力が低くな
らず、また、塩化チオニル−リチウム電池などのハーメ
チックシール液体活物質電池では、高温で急速に加熱さ
れた場合に安定した防爆機能が発揮されないことも判明
している。
For this reason, the cross-sectional shape of the groove to be formed is
As shown in Japanese Patent Laid-Open No. 58-17332, it is considered that the groove is most easily formed when the tip of the groove, that is, the bottom of the groove is formed in a V shape, so that the groove can be easily formed. When sharpened, the tip of the punch for forming the groove is immediately damaged, and therefore it is not industrially applicable from the viewpoint of durability of the punch. Therefore, as shown in Japanese Utility Model Publication No. 58-26460, the durability of the groove forming punch is improved by rounding the groove bottom with 0.1 to 0.2 mmR even if the cross section is V-shaped. According to the research conducted by the present inventors, however, when the tip of the groove is rounded, only the effect of reducing the thickness is exhibited, and an additional effect such as a notch effect is added. Therefore, in a battery container made of high-strength material such as stainless steel, unless the thickness of the thin-walled part is made very thin, the breaking pressure of the thin-walled part does not become low. It has also been found that liquid active material batteries do not exhibit a stable explosion-proof function when heated rapidly at high temperatures.

そこで、本発明者らは、溝の底部を平坦面にすることに
よって、防爆機能が安定して発揮されるようにしたが、
そのような溝を形成するには、溝形成用ポンチの先端を
平坦にしなければならず、先端を平坦にしたぶんポンチ
にかかる荷重が大きくなり、その結果、ポンチの耐久性
が低下するという問題が発生した。
Therefore, the present inventors have made the explosion-proof function stable by making the bottom of the groove a flat surface.
In order to form such a groove, the tip of the groove forming punch must be flattened, and the load applied to the punch with the flattened tip is increased, resulting in a problem that the durability of the punch is reduced. Occurred.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、上述した従来の溝形成方法では信頼性の高い
防爆機能を備えた電池容器を得ることができなかった
り、あるいは溝成形用ポンチの耐久性が低く、量産性に
乏しかったという問題点を解決し、溝底部に平坦部を有
する溝形状とした場合においても、量産化を達成し得る
ポンチ寿命での溝形成を可能にすることを目的とする。
The present invention has a problem that a battery container having a highly reliable explosion-proof function cannot be obtained by the above-described conventional groove forming method, or the groove forming punch has low durability and is poor in mass productivity. It is an object of the present invention to solve the above problem and to enable the formation of a groove with a punch life that can achieve mass production even when the groove shape has a flat portion at the groove bottom.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電池容器底部の溝形成部分以外の部分の厚み
方向、つまり溝加工しない部分の構成材料の厚み方向に
拘束力を与えず、かつポンチの溝形成用凸出部の溝形成
角度を50〜80゜にすることによって、形成される溝の底
部構成材料に引張り応力を掛けながらポンチの溝形成用
凸出部を電池容器の底部に押し込んで成形することによ
って、底部に平坦部を有する溝をステンレス鋼製の電池
容器に対しても低いポンチ荷重で形成することを可能に
したものである。
The present invention does not apply a restraining force in the thickness direction of the portion other than the groove forming portion of the bottom of the battery container, that is, in the thickness direction of the constituent material of the portion that is not grooved, and the groove forming angle of the groove forming protrusion of the punch By setting the groove to 50 ° to 80 °, the groove forming protrusion of the punch is pushed into the bottom of the battery container while applying tensile stress to the material forming the bottom of the groove to form a flat portion at the bottom. The groove can be formed with a low punch load even in a battery container made of stainless steel.

すなわち、プレス成形による鍛造やコイニング(圧印加
工)は、一般に被成形材料の塑性流動による材料の移動
により行われ、被成形材料の内部組織はファイバフロー
(塑性流動によって生じる繊維状組織)を示す。この
時、成形に必要な力は被成形材料の変形抵抗および成形
用工具との間に生じる摩擦力に打ち勝つ力であって、こ
れら被成形材料の変形抵抗や成形用工具との間の摩擦力
は、両者併わさって成形工具にかかる。そのため、被成
形材料がステンレス鋼のように硬い耐食性金属である場
合に、幅細く、深くコイニングする時は、たとえ溝加工
であっても単位面積当たりの荷重は大きい。
That is, forging and coining (coining) by press molding are generally performed by moving the material by plastic flow of the molding material, and the internal structure of the molding material shows a fiber flow (fibrous structure generated by the plastic flow). At this time, the force required for molding is a force that overcomes the deformation resistance of the material to be molded and the frictional force generated between it and the molding tool. Is applied to the forming tool together. Therefore, when the material to be molded is a corrosion-resistant metal that is hard, such as stainless steel, the load per unit area is large even when groove machining is performed when narrowing and deep coining.

そこで、本発明では、被成形材料である電池容器の変形
抵抗および溝形成用のポンチとの間に生じる摩擦力の両
者を最少にするため、溝加工しない部分の構成材料の厚
み方向に拘束力を与えず、つまり無拘束下で、かつ溝形
成角度を50〜80゜にすることにより、形成される溝の底
部構成材料に引張り応力を掛けながら溝成形用ポンチの
溝形成用凸出部を電池容器の底部に押し込んで溝形成を
行うことによって、底部に平坦部を有する溝を低いポン
チ荷重で形成することを可能にし、溝形成用ポンチの耐
久性を向上させたのである。例えば、これまでは底部に
平坦部を有する溝を形成しようとした場合、ポンチにか
かる荷重は300kg/mm2以上に達したが、本発明によれば
一般潤滑油で240kg/mm2以下のポンチ荷重で溝を形成す
ることが可能である。
Therefore, in the present invention, in order to minimize both the deformation resistance of the battery container, which is the material to be molded, and the frictional force generated between the material and the punch for forming the groove, the binding force in the thickness direction of the constituent material of the portion not grooved is set. Is given, that is, without restraint, and by setting the groove forming angle to 50 to 80 °, the groove forming protrusion of the groove forming punch is applied while applying tensile stress to the material forming the bottom of the groove. By pushing into the bottom of the battery container to form a groove, a groove having a flat portion at the bottom can be formed with a low punch load, and the durability of the groove forming punch is improved. For example, when forming a groove having a flat portion at the bottom up to now, the load applied to the punch reached 300 kg / mm 2 or more, but according to the present invention, a punch of 240 kg / mm 2 or less in general lubricating oil is used. It is possible to form a groove with a load.

上記のようにプレス成形を無拘束下で行うには、溝形成
用ポンチの基盤部が電池容器に接触しないようにするた
め、ポンチの溝形成用凸出部の高さは形成される溝の深
さより大きくすることが必要である。特に無拘束下での
溝形成を安定して行うためには、後に第1図に基づいて
説明するように、溝形成用ポンチの溝形成用凸出部の高
さHが、電池容器の構成材料の厚み、すなわち、電池容
器の肉厚Tおよび溝の形成によって設けられた薄肉部の
厚みtに対して、H≧1.5(T−t)であることが好ま
しい。またポンチの溝形成用凸出部の溝形成角度θ(第
1図参照)を50〜80゜にするのは、溝形成角度が50゜未
満では溝の底部構成材料に与える引張り応力が不充分と
なり、ポンチの溝形成用凸出部にかかる荷重が大きくな
るため、溝形成が困難になり、また溝形成角度が80゜を
超えた場合は溝形成そのものは可能であるが、電池内部
の圧力上昇による電池内部からの加圧力に対する抵抗が
大きくなるため、防爆機能の優れた電池が得られにくく
なるからである。
As described above, in order to perform the press molding without restraint, the height of the groove forming protrusion of the punch is set so that the base of the groove forming punch does not come into contact with the battery container. It needs to be larger than the depth. In particular, in order to perform groove formation stably without restraint, as will be described later with reference to FIG. 1, the height H of the groove forming protrusion of the groove forming punch is determined by the structure of the battery container. It is preferable that H ≧ 1.5 (T−t) with respect to the thickness of the material, that is, the thickness T of the battery container and the thickness t of the thin portion provided by forming the groove. In addition, the groove forming angle θ (see FIG. 1) of the groove forming protrusion of the punch is set to 50 to 80 ° when the groove forming angle is less than 50 °, the tensile stress applied to the material forming the bottom of the groove is insufficient. Since the load applied to the groove forming protrusion of the punch becomes large, it becomes difficult to form the groove, and when the groove forming angle exceeds 80 °, it is possible to form the groove itself. This is because the resistance to the pressure applied from the inside of the battery due to the increase becomes large, and it becomes difficult to obtain a battery having an excellent explosion-proof function.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面に基づいて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

第1〜2図は本発明の方法により電池容器に溝を形成す
る際の状態を示す断面図であり、第1図は溝形成用のポ
ンチを下降させポンチの溝形成用凸出部を電池容器の底
部に押し込んだときの状態の要部拡大断面図であり、第
2図はポンチの下降前の状態における全体の断面図であ
る。
1 and 2 are sectional views showing a state in which a groove is formed in a battery container by the method of the present invention, and FIG. 1 is a drawing in which the groove forming punch is lowered and the groove forming protrusion is formed in the battery. FIG. 2 is an enlarged cross-sectional view of an essential part in a state in which the punch is pushed into the bottom portion, and FIG. 2 is an overall cross-sectional view in a state before the punch is lowered.

まず、第2図に基づき全体を説明すると、図中、1は電
池容器で、21は溝形成用のポンチであり、21aはポンチ
の溝形成用凸出部、21bはポンチの基盤部である。上記
電池容器1は、有底円筒状をしており、図面では倒立さ
せた状態で下型22上にのせられている。そして、23はそ
の基台である。電池容器1への溝の形成は、第2図に示
す状態からポンチ21を下降させ、第1図に示すようにポ
ンチ21の溝形成用凸出部21aを電池容器1の底部2に押
し込むことによって溝3が形成される。ポンチ21の溝形
成用凸出部21aの先端21a1は平坦面に形成されており、
それによって形成される溝3の底部は平坦面になる。ポ
ンチ21の溝形成用凸出部21aの溝形成角度θは50〜80゜
に形成されており、そのため、このポンチ21の溝形成用
凸出部21aの先端21a1で押圧された溝底部の構成材料に
は第1図に示すように引張り応力(f)がかかり、しか
も溝加工しない部分には拘束力を与えず、無拘束下にし
ているので、電池容器1の底部2の被成形部分が変形し
やすくなり、該部分の変形抵抗およびポンチの溝形成用
凸出部21aと電池容器1の被成形部分との摩擦力は小さ
くなる。
First of all, referring to FIG. 2, in the drawing, 1 is a battery container, 21 is a groove forming punch, 21a is a groove forming protrusion, and 21b is a punch base. . The battery case 1 has a cylindrical shape with a bottom, and is placed on the lower mold 22 in an inverted state in the drawing. And 23 is the base. To form the groove in the battery case 1, the punch 21 is lowered from the state shown in FIG. 2 and the groove forming protrusion 21a of the punch 21 is pushed into the bottom 2 of the battery case 1 as shown in FIG. Thereby forming the groove 3. The tip 21a 1 of the groove forming protrusion 21a of the punch 21 is formed into a flat surface,
The bottom of the groove 3 formed thereby has a flat surface. The groove forming angle 21a of the groove forming protrusion 21a of the punch 21 is formed to be 50 to 80 °, and therefore the groove bottom portion pressed by the tip 21a 1 of the groove forming protrusion 21a of the punch 21 is formed. As shown in FIG. 1, a tensile stress (f) is applied to the constituent materials, and the portion not grooved is not restrained and is not restrained. Therefore, the portion to be molded of the bottom portion 2 of the battery container 1 is formed. Is easily deformed, and the deformation resistance of the portion and the frictional force between the groove forming protrusion 21a of the punch and the molded portion of the battery container 1 are reduced.

なお、本実施例では、第3図(a)に示すように、溝3
はその平面形状が十字状になるように形成するので、溝
形成用ポンチ21の溝形成用凸出部21aは十字状になって
いるが、第1〜2図では簡略化のため、そのようには示
しておらず、溝が直線状に1本形成されるような態様で
示している。
In addition, in this embodiment, as shown in FIG.
The groove forming protrusion 21a of the groove forming punch 21 has a cross shape because it is formed to have a cross shape in a plan view. However, in FIG. However, it is not shown in the figure, but is shown in a mode in which one groove is linearly formed.

本実施例では、電池容器1は厚さ0.3mmのステンレス鋼
板で形成されており、ポンチの溝形成用凸出部21aの角
度θは70゜で、該溝形成用凸出部21aの先端21a1は平坦
で、その幅が0.15mmであり、溝3の深さは0.23mmで、溝
の形成によって薄肉にされた部分、つまり溝3の形成に
よって設けられた薄肉部4の厚みは0.07mmで、溝底部3a
には幅0.15mmの平坦部3a1(第4図参照)が形成されて
いるが、一般の潤滑油(例えばマシン油など)を使用し
てプレスを行っても、ポンチの溝構成用凸出部21a先端
にかかる荷重は240kg/mm2以下にすることができ、生産
性の高い溝形成が可能となった。なお、ポンチの溝形成
用凸出部21aの高さは0.7mmであり、溝形成時の押し込み
により電池容器底部の溝加工しない部分が若干盛り上が
るが、それでも該部分の上面とポンチ21の基盤部21bと
の間に0.07mmの空間があいていて無拘束下でのプレス成
形を可能にした。また、形成された溝3の断面形状は第
4図に示すように倒立台形状 である。
In this embodiment, the battery case 1 is formed of a stainless steel plate having a thickness of 0.3 mm, the groove forming protrusion 21a of the punch has an angle θ of 70 °, and the groove forming protrusion 21a has a tip 21a. 1 is flat, its width is 0.15 mm, the depth of the groove 3 is 0.23 mm, and the thickness of the thin portion 4 formed by forming the groove 3, that is, the thin portion 4 formed by forming the groove 3 is 0.07 mm. And the groove bottom 3a
Although a flat part 3a 1 (see Fig. 4) with a width of 0.15 mm is formed on the inner surface of the punch, even if a general lubricating oil (such as machine oil) is used for pressing, the protrusions for forming the groove of the punch are formed. The load applied to the tip of the portion 21a can be set to 240 kg / mm 2 or less, which enables highly productive groove formation. The height of the groove-forming protrusions 21a of the punch is 0.7 mm, and a portion of the bottom of the battery container that is not grooved is slightly raised due to the indentation at the time of groove formation. There is a 0.07 mm space between it and 21b, which enables press molding without constraint. The cross-sectional shape of the formed groove 3 is an inverted trapezoidal shape as shown in FIG. Is.

上記のような無拘束下でのプレス成形により溝成形を行
ったときのポンチ寿命は20万回以上であったが、拘束
下、つまり溝形成用ポンチの溝形成用凸出部の高さを形
成する溝の深さと同じにして溝形成を行ったときのポン
チ寿命は5万回にも達しなかった。
The punch life was 200,000 times or more when the groove was formed by press molding without constraint as described above, but the height of the groove forming protrusion of the groove forming punch was restricted. When the groove was formed with the same depth as the groove to be formed, the punch life did not reach 50,000 times.

無拘束下での溝形状を安定して行うには、第1図に示す
ように溝形成用ポンチ21の溝形成用凸出部21aの高さを
H、電池容器1の肉厚をT、薄肉部4の厚みをtとする
とき、ポンチ21の溝形成用凸出部21aの高さHが、電池
容器の肉厚Tおよび薄肉部の厚みtに対して、H≧1.5
(T−t)であることが好ましい。これは、溝形成時に
溝形成部分の近傍が変形して若干盛り上がる傾向がある
ので、それら溝形成部分以外の部分に対してポンチの基
盤部などによる拘束力を与えず、ポンチの溝形成用凸出
部21aにかかる荷重を安定して小さくするためには、ポ
ンチの溝形成用凸出部21aの高さHを形成される溝の深
さより大きくしておくことが好ましいからである。
In order to perform the groove shape stably without restraint, as shown in FIG. 1, the height of the groove forming protrusion 21a of the groove forming punch 21 is H, the wall thickness of the battery container 1 is T, When the thickness of the thin portion 4 is t, the height H of the groove forming protrusion 21a of the punch 21 is H ≧ 1.5 with respect to the thickness T of the battery container and the thickness t of the thin portion.
It is preferably (T-t). This is because when the groove is formed, the vicinity of the groove forming portion tends to be deformed and slightly swelled, so that the punch base for forming the groove is not applied to the portion other than the groove forming portion by the constraint of the punch base. This is because, in order to stably reduce the load applied to the projecting portion 21a, it is preferable to make the height H of the groove-forming projecting portion 21a of the punch larger than the depth of the groove to be formed.

また、安定した防爆機能を発揮させるためには、溝3は
溝底部3aの平坦部3a1(第4図参照)の幅Wを薄肉部4
の厚みtの1.4〜15倍にするのが好ましい。すなわち溝
底部3aの平坦部3a1の幅Wが薄肉部4の厚みtの1.4倍以
上では、電池の内部圧力が上昇したとき、溝底部3aの端
部3a2に内部圧力による引張力と曲げによる引張力とが
複合してかかるようになり、電池内部の圧力上昇に鋭敏
に対応して溝底部3aの端部3a2のところで引裂破壊が生
じ、安定した防爆機能が発揮させるようになり、また、
溝底部3aの平坦部3a1の幅Wが薄肉部の厚みtの15倍以
下では、電池外部からの力が薄肉部にかかって薄肉部が
防爆弁として作動する以前の段階で破壊されるようなこ
とがほとんど生じないからである。
Further, in order to exert a stable explosion-proof function, the groove 3 has the width W of the flat portion 3a 1 (see FIG. 4) of the groove bottom 3a and the thin portion 4a.
The thickness t is preferably 1.4 to 15 times. That is, when the width W of the flat portion 3a 1 of the groove bottom 3a is 1.4 times or more the thickness t of the thin portion 4, when the internal pressure of the battery rises, the end portion 3a 2 of the groove bottom 3a is stretched and bent by the internal pressure. It will be applied in combination with the tensile force due to, the tear breakage will occur at the end 3a 2 of the groove bottom 3a in response to the pressure rise inside the battery, and a stable explosion-proof function will be exerted. Also,
If the width W of the flat portion 3a 1 of the groove bottom portion 3a is 15 times or less than the thickness t of the thin wall portion, force from the outside of the battery is applied to the thin wall portion so that the thin wall portion is destroyed before it operates as an explosion-proof valve. This is because almost nothing happens.

なお、本実施例では、リード端子の取付位置が安定しや
すいように、電池容器1の底部2の中央部に凸出部2aを
設けているので、溝3を凸出部2aに形成したが、凸出部
2aは必ずしも必要ではなく、電池容器1の底部2は平坦
なものであってもよい。その場合においては、溝3は電
池容器1の平坦な底部2の中央部に設ければよいが、そ
のようにしても、凸出部2aに溝3を設ける場合と比較し
て、防爆機能が低下するようなこともないし、また、プ
レス成形による溝形成に関しても作業性面などで低下を
招くこともない。
In addition, in this embodiment, since the protruding portion 2a is provided in the central portion of the bottom portion 2 of the battery container 1 so that the mounting position of the lead terminal is easily stabilized, the groove 3 is formed in the protruding portion 2a. , Protruding part
2a is not always necessary, and the bottom portion 2 of the battery container 1 may be flat. In that case, the groove 3 may be provided in the central portion of the flat bottom portion 2 of the battery container 1, but even in that case, the explosion-proof function is better than that in the case where the groove 3 is provided in the protruding portion 2a. It does not decrease, and the groove formation by press molding does not cause a decrease in workability.

第5図は第1〜2図に基づいて説明した溝形成方法によ
り防爆用の溝が形成された電池容器を用いて組み立てた
塩化チオニル−リチウム電池を示すもので、図中、1は
前述のような溝3の形成により電池に防爆機能を備えさ
せるようにした電池容器である。11はアルカリ金属より
なる負極で、本実施例ではリチウム板を上記電池容器1
の内周面に圧着することにより形成されており、そのた
め、この電池では、電池容器1は負極端子としての機能
を有している。12はセパレータであり、このセパレータ
12はガラス繊維不織布からなり、円筒状をしていて、前
記円筒状の負極11と円柱状の正極13とを隔離している。
正極13はアセチレンブラックを主成分とする炭素質で形
成された炭素多孔質成形体よりなり、14は正極集電体
で、ステンレス鋼棒よりなる。15は電池蓋で、ステンレ
ス鋼で形成されていて、その立ち上がった外周部が電池
容器1の開口端部と溶接により接合され、電池蓋15の内
周側には正極端子17との間にガラス層16が介設されてい
る。ガラス層16は電池蓋15と正極端子17との間を絶縁す
ると共に、その外周面でその構成ガラスが電池蓋15の内
周面に融着し、その内周面でその構成ガラスが正極端子
17の外周面に融着して、電池蓋15と正極端子17との間を
シールし、電池容器1の開口部はいわゆるハーメチック
シールで封口されている。正極端子17はステンレス鋼製
で電池組立時はパイプ状をしていて、電解液注入口とし
て使用され、その上端部を電解液注入後にその中空部内
に挿入された正極集電体14の上部と溶接して封止したも
のである。18は電解液で、この電解液18は塩化チオニル
に支持電解質としての四塩化アルミニウムリチウムを1.
2mol/溶解したもので、塩化チオニルは上記のように
電解液溶媒であると共に、この電池では正極活物質であ
り、正極13の表面で、この塩化チオニルと負極11からイ
オン化したリチウムイオンとが反応を起こす。そして19
および20はそれぞれガラス繊維不織布からなる底部隔離
材と上部隔離材である。
FIG. 5 shows a thionyl chloride-lithium battery assembled using a battery container having a groove for explosion protection formed by the groove forming method described with reference to FIGS. The battery container has an explosion-proof function by forming the groove 3 as described above. Reference numeral 11 is a negative electrode made of an alkali metal. In this embodiment, a lithium plate is used for the battery container 1 described above.
It is formed by pressure-bonding to the inner peripheral surface of the battery. Therefore, in this battery, the battery container 1 has a function as a negative electrode terminal. 12 is a separator, and this separator
Reference numeral 12 is made of a glass fiber non-woven fabric and has a cylindrical shape, and separates the cylindrical negative electrode 11 and the cylindrical positive electrode 13 from each other.
The positive electrode 13 is made of a carbon porous molded body formed of carbonaceous material containing acetylene black as a main component, and 14 is a positive electrode current collector made of a stainless steel rod. Reference numeral 15 denotes a battery lid, which is made of stainless steel and whose rising outer peripheral portion is joined to the opening end portion of the battery container 1 by welding, and the inner peripheral side of the battery lid 15 is connected to the positive electrode terminal 17 by a glass. The layer 16 is interposed. The glass layer 16 insulates between the battery lid 15 and the positive electrode terminal 17, and the constituent glass is fused to the inner peripheral surface of the battery lid 15 on the outer peripheral surface thereof, and the constituent glass is the positive electrode terminal on the inner peripheral surface.
The outer peripheral surface of 17 is fused and sealed between the battery lid 15 and the positive electrode terminal 17, and the opening of the battery container 1 is sealed by a so-called hermetic seal. The positive electrode terminal 17 is made of stainless steel and has a pipe shape at the time of battery assembly, and is used as an electrolyte injection port. It is welded and sealed. 18 is an electrolytic solution, which is thionyl chloride containing lithium aluminum tetrachloride as a supporting electrolyte 1.
2 mol / mol, thionyl chloride is an electrolyte solution solvent as described above, and is a positive electrode active material in this battery.Thionyl chloride reacts with ionized lithium ions from the negative electrode 11 on the surface of the positive electrode 13. Cause And 19
Reference numerals 20 and 20 are a bottom separator and a top separator made of glass fiber non-woven fabric, respectively.

上記のように電池容器の底部に防爆用の溝を形成した塩
化チオニル−リチウム電池を火中に投入し、電池が大き
な破裂音を伴って破裂するか否かを調べた結果を第1表
に示す。比較のため、アルカリ電池で提案されているよ
うな底部に丸みをつけた溝(溝形成角度90゜で、溝底部
の丸み0.2mmR、薄肉部の厚さ0.07mm)を形成した電池容
器を用いた電池についても火中破裂試験を行い、その結
果を第1表に示した。なお、第1表中の「火中破裂電池
個数」の欄の分母は試験に供した電池個数を示し、分子
は火中破裂(防爆機能が作動せず、高圧で大きな破裂音
を伴って電池破裂するもの)を生じた電池個数を示す。
また、溝の形成はいずれもプレス成形により行っている
ので、溝形成後、溝形成による加工硬化を取り除くため
に1010℃で10分間焼鈍した。
A thionyl chloride-lithium battery having an explosion-proof groove formed in the bottom of the battery container as described above was put into a fire, and the results of examining whether or not the battery explodes with a loud popping sound are shown in Table 1. Show. For comparison, use a battery container with a rounded groove (a groove forming angle of 90 °, roundness of the groove bottom 0.2 mm R, thickness of thin portion 0.07 mm) as proposed for alkaline batteries. The rupture test in fire was also performed on the batteries that were present, and the results are shown in Table 1. The denominator in the "Number of burst batteries in fire" column in Table 1 indicates the number of batteries used in the test, and the numerator is a burst in fire (the explosion-proof function does not operate, and the battery is accompanied by a loud popping noise at high pressure). The number of batteries that caused a burst) is shown.
Further, since the grooves are formed by press molding in all cases, after forming the grooves, annealing was performed at 1010 ° C. for 10 minutes in order to remove the work hardening caused by the groove formation.

第1表に示すように、本発明により溝形成を行った電池
容器を用いて作製した電池では、火中破裂がまったくな
く、優れた防爆機能が発揮された。
As shown in Table 1, the battery produced by using the battery container in which the groove was formed according to the present invention showed no explosion in fire and exhibited an excellent explosion-proof function.

なお、上記実施例では、溝は平面形状が十字状になるよ
うに形成したが、溝の平面形状はそのような十字状のも
ののみに限られることなく、例えば第6図に示すよう
に、Y字状(第5図(a)参照)、アスタリスク(星
印)状(第5図(b)参照)、H字状(第5図(c)参
照)など、溝が複数本でそれらの溝が少なくとも1箇所
交わっているものがとり得る。特に電池に内圧がかかっ
たときに電池容器の底部で最も変形が大きいのは、中心
部であるため、底部中心に交点を持つ平面形状が十字状
(X字状)の溝や、Y字状、アスタリスク状の溝が好ま
しい。
In addition, in the above embodiment, the groove is formed so that the planar shape is a cross shape. However, the planar shape of the groove is not limited to such a cross shape, and as shown in FIG. 6, for example, There are a plurality of grooves such as a Y shape (see FIG. 5 (a)), an asterisk (star mark) shape (see FIG. 5 (b)), and an H shape (see FIG. 5 (c)). It is possible that the grooves intersect at least one place. Especially, when the internal pressure is applied to the battery, the most deformation occurs at the bottom of the battery case at the center. Therefore, the planar shape with the intersection at the center of the bottom is a cross shape (X shape) or Y shape. An asterisk groove is preferable.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明では、無拘束下、溝形成角
度を50〜80゜として、プレス成形で電池容器の底部に溝
形成を行うことにより、溝の底部を構成する材料に引張
り応力をかけ、被成形材料の変形抵抗および溝形成用ポ
ンチと被成形材料との間の摩擦力を小さくして、底部に
平坦部を有する溝を量産可能なポンチ寿命で形成するこ
とができた。
As described above, in the present invention, the groove forming angle is 50 to 80 ° without restraint, and the groove forming is performed on the bottom of the battery container by press molding, so that the tensile stress is applied to the material forming the bottom of the groove. Thus, the deformation resistance of the material to be molded and the frictional force between the groove forming punch and the material to be molded can be reduced to form a groove having a flat portion at the bottom with a punch life that enables mass production.

【図面の簡単な説明】[Brief description of drawings]

第1〜2図は本発明の方法により電池容器の底部に防爆
用の溝を形成する際の状態を示す図で、第1図は溝形成
用のポンチを下降させポンチの溝形成用凸出部を電池容
器の底部に押し込んだときの状態を示す要部拡大断面図
であり、第2図は溝形成用ポンチの下降前の状態におけ
る全体の断面図である。第3図は本発明の方法により防
爆用の溝が形成された電池容器の一例を示すもので、第
3図(a)はその平面図、第3図(b)は第3図(a)
のX−X線における断面図である。第4図は第3図
(b)のA部拡大断面図である。第5図は本発明の方法
により防爆用の溝が形成された電池容器を用いた塩化チ
オニル−リチウム電池の一例を示す断面図である。第6
図は本発明の方法により形成される溝の他の例の平面形
状を示すためのもので、上段はそれぞれの電池容器の概
略正面図を示し、下段はそれらの概略底面図を示す。 1……電池容器、2……底部、3……溝、3a……溝の底
部、3a1……平坦部、21……溝形成用ポンチ、21a……溝
形成用凸出部、21a1……先端
FIGS. 1 and 2 are views showing a state in which an explosion-proof groove is formed on the bottom of a battery container by the method of the present invention. FIG. 1 shows a groove-forming punch that is lowered and a groove-forming protrusion of the punch. FIG. 2 is an enlarged cross-sectional view of an essential part showing a state where the part is pushed into the bottom part of the battery container, and FIG. 2 is an overall cross-sectional view of the groove forming punch before being lowered. FIG. 3 shows an example of a battery container having an explosion-proof groove formed by the method of the present invention. FIG. 3 (a) is its plan view and FIG. 3 (b) is FIG. 3 (a).
3 is a cross-sectional view taken along line XX of FIG. FIG. 4 is an enlarged sectional view of part A in FIG. 3 (b). FIG. 5 is a cross-sectional view showing an example of a thionyl chloride-lithium battery using a battery container having a groove for explosion protection formed by the method of the present invention. Sixth
The figure is for showing the planar shape of another example of the groove formed by the method of the present invention, the upper stage shows a schematic front view of each battery container, and the lower stage shows a schematic bottom view thereof. 1 ... Battery container, 2 ... bottom, 3 ... groove, 3a ... groove bottom, 3a 1 ... flat part, 21 ... groove forming punch, 21a ... groove forming protrusion, 21a 1 ……tip

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電池に防爆機能を備えさせるための溝を電
池容器の底部に形成するにあたり、溝形成用ポンチとし
て、先端が平坦で、かつ溝形成角度が50〜80゜の溝形成
用凸出部を有するポンチを用い、電池容器の底部の溝形
成部分以外の部分の厚み方向に拘束力を与えずに、電池
容器の底部に上記ポンチの溝形成用凸出部を押し込ん
で、底部に平坦部を有する溝を電池容器の底部に形成す
ることを特徴とする防爆型密閉電池に使用する電池容器
の製造方法。
1. A groove forming punch having a flat tip and a groove forming angle of 50 to 80 ° is formed as a groove forming punch for forming a groove for providing an explosion proof function to a battery. Using a punch having a protrusion, without applying a restraining force in the thickness direction of the portion other than the groove forming portion of the bottom of the battery container, push the groove forming protrusion of the punch into the bottom of the battery container, to the bottom. A method of manufacturing a battery container used for an explosion-proof sealed battery, comprising forming a groove having a flat portion on the bottom of the battery container.
【請求項2】溝形成用ポンチの溝形成用凸出部の高さを
H、電池容器の肉厚をT、溝の形成により設けられた薄
肉部の厚みをtとするとき、上記溝形成用ポンチの溝形
成用凸出部の高さHが、電池容器の肉厚Tおよび薄肉部
の厚みtに対して、 H≧1.5(T−t) であることを特徴とする特許請求の範囲第1項記載の防
爆型密閉電池に使用する電池容器の製造方法。
2. When the height of the groove forming protrusion of the groove forming punch is H, the wall thickness of the battery container is T, and the thin portion formed by forming the groove is t, the groove forming is performed. The height H of the groove forming protrusion of the punch is H ≧ 1.5 (T−t) with respect to the wall thickness T of the battery container and the thickness t of the thin portion. A method of manufacturing a battery container used for the explosion-proof sealed battery according to item 1.
JP61228761A 1986-09-27 1986-09-27 Method for manufacturing battery container used for explosion-proof sealed battery Expired - Lifetime JPH0789482B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61228761A JPH0789482B2 (en) 1986-09-27 1986-09-27 Method for manufacturing battery container used for explosion-proof sealed battery
US07/101,259 US4842965A (en) 1986-09-27 1987-09-25 Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
DE8787114076T DE3779996T2 (en) 1986-09-27 1987-09-26 EXPLOSION-PROTECTED ARRANGEMENT FOR A NON-AQUEOUS ELECTROCHEMICAL CELL AND METHOD FOR THE PRODUCTION THEREOF.
EP87114076A EP0266541B1 (en) 1986-09-27 1987-09-26 Explosion-proof arrangement for a non-aqueous electrochemical cell, and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228761A JPH0789482B2 (en) 1986-09-27 1986-09-27 Method for manufacturing battery container used for explosion-proof sealed battery

Publications (2)

Publication Number Publication Date
JPS6386244A JPS6386244A (en) 1988-04-16
JPH0789482B2 true JPH0789482B2 (en) 1995-09-27

Family

ID=16881414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228761A Expired - Lifetime JPH0789482B2 (en) 1986-09-27 1986-09-27 Method for manufacturing battery container used for explosion-proof sealed battery

Country Status (1)

Country Link
JP (1) JPH0789482B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054817A (en) * 2018-10-17 2020-04-24 武汉市杰精精密电子有限公司 Die and process for producing explosion-proof battery metal shell with V-shaped groove at bottom

Also Published As

Publication number Publication date
JPS6386244A (en) 1988-04-16

Similar Documents

Publication Publication Date Title
US4842965A (en) Non aqueous electrochemical battery with explosion proof arrangement and a method of the production thereof
JP5294248B2 (en) Flat battery
JPH01243369A (en) Battery terminal and method
JP2003151514A (en) Cap assembly and square secondary battery provided with it
JP2653832B2 (en) Sealed battery
EP0263050A1 (en) Hermetic terminal assembly and method of manufacturing same
JP4831625B2 (en) Coin battery
JP4070136B2 (en) Coin battery
JPH0789482B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery
JPH07105217B2 (en) Non-aqueous liquid active material battery
JPH07105218B2 (en) Method for manufacturing battery container used for explosion-proof sealed battery
JP2521441B2 (en) Hermetically sealed liquid active material battery
JPH0637567Y2 (en) Non-aqueous liquid active material battery
JPH07105219B2 (en) Non-aqueous liquid active material battery
JP2870067B2 (en) Sealed battery
JPH03203157A (en) Manufacture of sealed battery
JP3074471B2 (en) Battery sealed structure
JP2792097B2 (en) Manufacturing method of battery case used for explosion-proof sealed battery
KR102545593B1 (en) Cylindrical secondary battery and manufacturing method of secondary battery
JPS6213329Y2 (en)
JPH07105221B2 (en) Method for manufacturing non-aqueous liquid active material battery
JP2805766B2 (en) Organic electrolyte battery
JPS63294665A (en) Non-liquid active material battery
JPH09167605A (en) Safety structure of sealed battery
JPS6378459A (en) Manufacture of sealed alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term