JPH0633174B2 - Method for manufacturing silicon nitride sintered body - Google Patents

Method for manufacturing silicon nitride sintered body

Info

Publication number
JPH0633174B2
JPH0633174B2 JP60142695A JP14269585A JPH0633174B2 JP H0633174 B2 JPH0633174 B2 JP H0633174B2 JP 60142695 A JP60142695 A JP 60142695A JP 14269585 A JP14269585 A JP 14269585A JP H0633174 B2 JPH0633174 B2 JP H0633174B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
metal
group iiia
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60142695A
Other languages
Japanese (ja)
Other versions
JPS623076A (en
Inventor
清 横山
真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60142695A priority Critical patent/JPH0633174B2/en
Publication of JPS623076A publication Critical patent/JPS623076A/en
Publication of JPH0633174B2 publication Critical patent/JPH0633174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (発明の分野) 本発明は窒化珪素質焼結体の製造方法に関し、より詳細
には、均質で高強度の易焼結性に優れた窒化珪素質焼結
体の製造方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a silicon nitride sintered body, and more particularly, to a silicon nitride sintered body which is homogeneous and has high strength and excellent sinterability. It relates to a manufacturing method.

(従来技術) 窒化珪素質焼結体は原子の結合様式が共有結合を主体と
しているので高強度耐熱性部材、高耐食性部材及び高温
高強度部材などに期待されている。
(Prior Art) Silicon nitride sintered bodies are expected to be high strength heat resistant members, high corrosion resistant members, high temperature high strength members, etc. because the bonding mode of atoms is mainly covalent bonding.

従来周知の通り、窒化珪素質焼結体は焼結助剤の添加に
より液相焼結して緻密化するが、その焼結助剤にはMgO
などのアルカリ土類金属の酸化物、Y2O3などの希土類金
属の酸化物、並びにAl2O3などがあり、これら焼結助剤
と窒化珪素粉末を粉砕混合し、窒化珪素質焼結体の出発
原料に供している。
As is well known in the art, a silicon nitride sintered body is liquid phase sintered and densified by the addition of a sintering aid, and the sintering aid is MgO.
Alkaline earth metal oxides such as, oxides of rare earth metals such as Y 2 O 3, and there are, such as Al 2 O 3, these sintering aid and the silicon nitride powder were mixed and pulverized, sintered silicon nitride It is used as a starting material for the body.

しかしながら、前記酸化物系の添加物は窒化珪素や、窒
化珪素粉末の結晶表面に存在するSiO2膜と反応して粒界
相を形成するが、これら原料は十分に粉砕混合しても、
添加物がミクロ的に均一な分布をしておらず、この粒界
相の大きさが不均一となり、その結果、窒化珪素焼結粒
の異常成長が促進し、これにより出来た厚みの大きい粒
界相が破壊源となっていた。加えて、酸化物を添加する
ことによりイオン結合性が増大し、窒化珪素本来の優れ
た特性が減じられていく。従って、焼結本の諸特性、特
に機械的特性を向上せんがためには非酸化物系焼結助剤
を用いて更にその助剤の添加量を減少させると共に均一
分散させる必要がある。
However, although the oxide-based additive reacts with silicon nitride or a SiO 2 film existing on the crystal surface of the silicon nitride powder to form a grain boundary phase, even if these raw materials are sufficiently pulverized and mixed,
The additives do not have a microscopically uniform distribution, and the size of this grain boundary phase becomes non-uniform, resulting in the abnormal growth of silicon nitride sintered grains being promoted, resulting in thick grains. The phase was the source of destruction. In addition, the addition of an oxide increases the ionic bondability and reduces the original excellent properties of silicon nitride. Therefore, in order to improve various properties of the sintered book, particularly mechanical properties, it is necessary to use a non-oxide-based sintering aid to further reduce the amount of the additive and to uniformly disperse it.

(発明が解決しようとする問題点) このような焼結助剤の均一分散に対し、原料粉末として
の粒径を小さくして超微粉化することにより、分散効率
を上げる試みが一般的に行なわれているが、このような
微粉化された原料粉末を用いて、成形した際には、成形
体の密度、詳しくは圧粉体の嵩密度が低下する傾向にあ
り、それに伴い、焼結性の低下、収縮量の増大、寸法制
度の悪化および変形等の問題が生じることとなる。
(Problems to be Solved by the Invention) In order to uniformly disperse the sintering aid as described above, an attempt is generally made to increase the dispersion efficiency by reducing the particle size of the raw material powder to make it ultrafine. However, when molded using such a finely divided raw material powder, the density of the molded body, more specifically the bulk density of the green compact, tends to decrease, and the sinterability And the shrinkage amount increase, the dimensional accuracy deteriorates, and deformation occurs.

また、焼結助剤として非酸化物系、例えば窒化物ReN(R
e:周期律表IIIa族金属)は、水分との反応性が非常に
高く、取り扱い中に窒化物から酸化物への反応が進むた
め、最終的には、上記の問題点を解決するには至らない
のが現状であった。
Also, as a sintering aid, a non-oxide type, such as nitride ReN (R
e: Group IIIa metal of the periodic table) has a very high reactivity with water, and the reaction from the nitride to the oxide proceeds during handling. It was the current situation that it did not reach.

(発明の目的) 本発明者等は上記問題点に対し研究を重ねた結果、原料
粉末として金属シリコンに周期律表IIIa族金属が含有さ
れた合金微粉末を用いることにより、安定性に優れ、し
かも均質な焼結体が得られることを知見した。
(Purpose of the invention) As a result of the inventors of the present invention having conducted research on the above problems, by using an alloy fine powder containing a Group IIIa metal of the periodic table in metallic silicon as a raw material powder, excellent stability, Moreover, they have found that a homogeneous sintered body can be obtained.

従って本発明の目的は、安定性に優れた窒化珪素質焼結
体の製造方法を提供するにある。
Therefore, an object of the present invention is to provide a method for manufacturing a silicon nitride sintered body having excellent stability.

本発明の他の目的は、均質で高強度のある窒化珪素質焼
結体の製造方法を提供するにある。
Another object of the present invention is to provide a method for producing a homogeneous and high-strength silicon nitride sintered body.

本発明のさらに他の目的は、易焼結性に優れた窒化珪素
質焼結体の製造方法を提供するにある。
Still another object of the present invention is to provide a method for producing a silicon nitride-based sintered body having excellent sinterability.

(発明の要旨) 即ち、本発明によれば金属シリコンに周期律表IIIa族金
属が含有される合金微粉末を成形後、窒素雰囲気中にて
1300乃至1400℃で窒化処理した後、さらに昇温
し、1700℃以上の焼結温度で焼結したことを特徴と
する窒化珪素質焼結体の製造方法が提供される。
(Summary of the Invention) That is, according to the present invention, after forming an alloy fine powder containing a group IIIa metal of the periodic table in metallic silicon, nitriding at 1300 to 1400 ° C. in a nitrogen atmosphere, and further raising the temperature. Further, there is provided a method for producing a silicon nitride-based sintered body, which is characterized by being sintered at a sintering temperature of 1700 ° C. or higher.

(問題点を解決するための手段) 以下、本発明を詳細に説明する。(Means for Solving Problems) Hereinafter, the present invention will be described in detail.

本発明によれば、原料組成物として、金属シリコンに周
期律表IIIa族金属(以下単にIIIa族金属という)が含有
された合金微粉末を用いることが極めて重要である。本
発明によれば、金属シリコンおよびIIIa族金属とを合金
化することにより、各々単独に比較して、大気中の酸素
又は水蒸気に対する安定性が改善されるとともに、金属
シリコン中へのIIIa族金属の分散性が向上する。それに
伴い。原料組成物を成形する際の原料の超微粉化の必要
性がなく、成形体の圧粉体としての嵩密度の低下を低減
できる他、成形体の均質化、さらには焼結体の均質化を
も達成し得る。
According to the present invention, it is extremely important to use, as a raw material composition, an alloy fine powder in which a group IIIa metal of the periodic table (hereinafter simply referred to as a group IIIa metal) is contained in metallic silicon. According to the present invention, by alloying metallic silicon and a Group IIIa metal, the stability to oxygen or water vapor in the atmosphere is improved, and the Group IIIa metal in the metallic silicon is compared with each other. Dispersibility is improved. with this. There is no need to make the raw material ultrafine when molding the raw material composition, and it is possible to reduce the decrease in the bulk density of the green compact as a green compact, and also to homogenize the green compact and further to homogenize the sintered compact. Can also be achieved.

本発明によれば、上述の原料微粉末は、周知の成形法、
例えば金型プレス成形法、鋳込み成形法、射出成形成形
法、押出し成形法等によって成形された後、焼結工程に
移される。
According to the present invention, the above-mentioned raw material fine powder is a well-known molding method,
For example, after being molded by a die press molding method, a casting molding method, an injection molding method, an extrusion molding method, etc., the molding process is transferred to a sintering step.

焼結工程では、第1段階として、窒素雰囲気中で1300〜
1400℃の温度で原料粉末の窒化処理が行なわれる。この
窒化処理により、原料粉末は次式 の反応が進行する。但し、金属合金と窒素ガスが直接反
応すると発熱が激しいため、反応を抑制する技術が要求
される。例えば、水素ガス又はアンモニアガスの共存下
で加熱速度をコントロールしながら窒化反応を進行させ
るのが望ましい。この(1)式の窒化反応による生成物Si3
N4−MNは、焼結に際しての焼結助剤的効果を有するた
め、さらに昇温した場合に焼結性を促進させることがで
きる。
In the sintering process, the first step is 1300 ~ in a nitrogen atmosphere.
The raw material powder is nitrided at a temperature of 1400 ° C. By this nitriding treatment, the raw material powder is Reaction proceeds. However, when the metal alloy and the nitrogen gas directly react with each other, heat generation is intense, and therefore a technique for suppressing the reaction is required. For example, it is desirable to proceed the nitriding reaction in the presence of hydrogen gas or ammonia gas while controlling the heating rate. The product of the nitriding reaction of equation (1) Si 3
Since N 4 -MN has the effect of a sintering aid during sintering, it is possible to promote sinterability when the temperature is further raised.

次に上述の窒化反応終了後、さらに昇温し、1700℃以上
に設定して焼結を行なう。この焼結工程において、Si3N
4−MNの状態で焼結が進行する。この時式(1)の窒化反応
により生成したMN(M:IIIa族金属)は、Si3N4との反
応により粒界に残存せず、安定化するため焼結体の高温
時の酸化および強度劣緩が抑制される。
Next, after the above nitriding reaction is completed, the temperature is further raised and sintering is performed at 1700 ° C. or higher. In this sintering process, Si 3 N
Sintering proceeds in the 4- MN state. At this time, the MN (M: Group IIIa metal) generated by the nitriding reaction of the formula (1) does not remain at the grain boundary due to the reaction with Si 3 N 4, and is stabilized because of oxidation and high temperature of the sintered body. Inferior strength is suppressed.

本発明によれば、シリコン金属と、IIIa族金属からなる
合金中、IIIa族金属の含有量を0.1〜30重量%、好適に
は、0.5〜10重量%の範囲に設定するのが望ましい。即
ち、IIIa族金属が0.1重量%未満であると、本発明の目
的を達成するための焼結性に及ぼす効果が期待し難く、
また30重量%を越えると合金自体不安定になるととも
に焼結体の特性が劣化することが判った。
According to the present invention, it is desirable to set the content of the group IIIa metal in the alloy composed of silicon metal and the group IIIa metal in the range of 0.1 to 30% by weight, preferably 0.5 to 10% by weight. That is, if the group IIIa metal is less than 0.1% by weight, it is difficult to expect an effect on the sinterability for achieving the object of the present invention.
Further, it has been found that if the amount exceeds 30% by weight, the alloy itself becomes unstable and the characteristics of the sintered body deteriorate.

本発明において用いられる周期律表IIIa族金属としては
希土類元素であるSc,Y,La,Ce,Pr,Nd,Pm,Sm,E
u,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luから選ばれる1種
以上が挙げられ、これらの中でも特にSc,Y,Pcが好ま
しい。
Sc, Y, La, Ce, Pr, Nd, Pm, Sm, E which are rare earth elements as Group IIIa metals of the periodic table used in the present invention
One or more selected from u, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu can be mentioned, and among these, Sc, Y, and Pc are particularly preferable.

シリコン金属および周期律表IIIa族金属の合金化は通常
の方法が採用でき、例えば金属シリコン粉末とIIIa族金
属とを混合した後、非酸化性雰囲気中で1400〜1600℃に
て融解し、その冷却することにより得られる。冷却後の
塊は粗粉砕し、次いで微粉砕し、平均粒径0.5〜10μm
の大きさに設定することが成形時の嵩密度の向上、収縮
量の低減、および窒化処理の容易性から望ましい。
The alloying of silicon metal and Group IIIa metal of the periodic table can be adopted a usual method, for example, after mixing metal silicon powder and Group IIIa metal, melted at 1400 to 1600 ° C. in a non-oxidizing atmosphere, Obtained by cooling. The lump after cooling is coarsely crushed and then finely crushed, and the average particle size is 0.5 to 10 μm.
It is desirable to set the size to a value that improves the bulk density during molding, reduces the amount of shrinkage, and facilitates the nitriding treatment.

なお、本発明によれば、Si−IIIa族金属合金の他にAl2O
3,Y2O3,MgO等の焼結助剤を更に加えることも可能であ
る。
According to the present invention, in addition to the Si-IIIa group metal alloy, Al 2 O
It is also possible to further add sintering aids such as 3 , Y 2 O 3 and MgO.

本発明を次の例で説明する。The invention is illustrated by the following example.

(実施例) 金属シリコン粉末と希土類金属粉末を第1表に示す通り
の配合比率で秤量し、混合してから1400〜1600℃の温度
範囲で融解して合金を得た。この合金をボールミル等の
周知の方法により平均粒径2μm程度にまで粉砕し、組
成が第1表の合金微粉末を得た。
(Example) Metallic silicon powder and rare earth metal powder were weighed at the compounding ratios shown in Table 1, mixed, and then melted in a temperature range of 1400 to 1600 ° C to obtain an alloy. This alloy was pulverized by a well-known method such as a ball mill to an average particle size of about 2 μm to obtain an alloy fine powder having a composition shown in Table 1.

得られた微粉末に対し、第1表の割合で所望により他の
添加物を混合し、原料粉末を得た。
If desired, other additives were mixed with the obtained fine powder in the proportions shown in Table 1 to obtain a raw material powder.

原料粉末を第1表の焼結工程で焼結を行ない、焼結体を
得た。
The raw material powder was sintered in the sintering process shown in Table 1 to obtain a sintered body.

得られた焼結体に対し、アルキメデス法により比重を、
JIS R 6101に従って4点曲げ(試験片:4×3×42mm)
により抗折強度を測定した。
The specific gravity of the obtained sintered body was measured by the Archimedes method.
Four-point bending according to JIS R 6101 (test piece: 4 x 3 x 42 mm)
The bending strength was measured by.

測定の結果、残留Siも少なく、比重、強度共に優れた焼
結体が得られた。
As a result of the measurement, there was little residual Si, and a sintered body having excellent specific gravity and strength was obtained.

(比較例) 窒化珪素微粉末にY2O3,Al2O3、YNのいずれを第1表に
基づき調合し、第1表の焼結条件により、焼結体No.
4,5,6を作製し、実施例と同様に特性の測定を行な
った。
(Comparative Example) either silicon nitride fine powder in the Y 2 O 3, Al 2 O 3, YN formulated on the basis of Table 1, the sintering conditions in Table 1, the sintered body No.
4, 5 and 6 were produced and the characteristics were measured in the same manner as in the example.

結果は第1表に示す。The results are shown in Table 1.

測定の結果、いずれも、本発明と比較して比重および強
度共に劣るものであった。
As a result of the measurement, both were inferior in specific gravity and strength as compared with the present invention.

(発明の効果) 本発明の製造方法によれば、原料粉末として、シリコン
金属と周期律表IIIa族金属との合金粉末を用いることに
より、原料粉末の化学安定性を得られるとともに、焼結
に寄与するIIIa族金属自体が原料段階で均一に分散され
ることから、均質でしかも高強度および化学的安定性に
優れた窒化珪素質焼結体が得られる。また、焼結工程に
て原粉粉末の窒化反応によって生成される窒化物により
さらに焼結性を促進することができる。
(Effect of the invention) According to the production method of the present invention, by using an alloy powder of silicon metal and a metal of Group IIIa of the periodic table as a raw material powder, chemical stability of the raw material powder can be obtained and sintering can be performed. Since the contributing group IIIa metal itself is uniformly dispersed in the raw material stage, a homogeneous silicon nitride sintered body having high strength and chemical stability can be obtained. Further, the sinterability can be further promoted by the nitride generated by the nitriding reaction of the raw powder in the sintering process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属シリコンに周期律表IIIa族金属が含有
される合金微粉末を成形後、窒素雰囲気中にて1300乃至
1400℃で窒化処理した後、さらに昇温し、1700℃以上の
焼結温度で焼結したことを特徴とする窒化珪素質焼結体
の製造方法。
1. After molding an alloy fine powder containing a group IIIa metal of the Periodic Table in metallic silicon, it is heated in a nitrogen atmosphere at 1300 to
After the nitriding treatment at 1400 ° C., the temperature is further raised, and the sintering is performed at a sintering temperature of 1700 ° C. or higher.
【請求項2】前記合金微粉末中に周期律表IIIa族金属が
0.1乃至30重量%の量で含有される特許請求の範囲第1
項記載の窒化珪素質焼結体の製造方法。
2. A metal of Group IIIa of the periodic table in the fine alloy powder.
Claim 1 contained in an amount of 0.1 to 30% by weight
Item 6. A method for manufacturing a silicon nitride sintered body according to the item.
JP60142695A 1985-06-28 1985-06-28 Method for manufacturing silicon nitride sintered body Expired - Lifetime JPH0633174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142695A JPH0633174B2 (en) 1985-06-28 1985-06-28 Method for manufacturing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142695A JPH0633174B2 (en) 1985-06-28 1985-06-28 Method for manufacturing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS623076A JPS623076A (en) 1987-01-09
JPH0633174B2 true JPH0633174B2 (en) 1994-05-02

Family

ID=15321388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142695A Expired - Lifetime JPH0633174B2 (en) 1985-06-28 1985-06-28 Method for manufacturing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0633174B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185866A (en) * 1987-01-27 1988-08-01 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPS63185865A (en) * 1987-01-27 1988-08-01 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body

Also Published As

Publication number Publication date
JPS623076A (en) 1987-01-09

Similar Documents

Publication Publication Date Title
US4716133A (en) Method for production of silicon nitride sintered body
JP4659278B2 (en) Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JP4280914B2 (en) High purity aluminum nitride powder, method for producing the same, and high purity aluminum nitride sintered body
JPH0633174B2 (en) Method for manufacturing silicon nitride sintered body
CN107417271A (en) A kind of preparation method of the bar-shaped brilliant enhancing dimension stone of magnesia alumina spinel of rare earth aluminium (silicon) hydrochlorate
JPS6210954B2 (en)
JPH0633173B2 (en) Method for manufacturing silicon nitride sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JPS6317210A (en) Production of aluminum nitride powder
JPS63103867A (en) Manufacture of silicon nitride base sintered body
JPH0633169B2 (en) Method for manufacturing silicon nitride sintered body
JP3214729B2 (en) Method for producing silicon nitride reaction sintered body
JP2858994B2 (en) Method for producing aluminum nitride sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPH06128604A (en) Production of metallic material
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JPH06345535A (en) Production of silicon nitride sintered compact
JP2811493B2 (en) Silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same