JPS63185865A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS63185865A
JPS63185865A JP62016644A JP1664487A JPS63185865A JP S63185865 A JPS63185865 A JP S63185865A JP 62016644 A JP62016644 A JP 62016644A JP 1664487 A JP1664487 A JP 1664487A JP S63185865 A JPS63185865 A JP S63185865A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
nitride sintered
silicon
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62016644A
Other languages
Japanese (ja)
Other versions
JPH0511064B2 (en
Inventor
浩 松崎
武彦 加藤
融 島森
康史 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP62016644A priority Critical patent/JPS63185865A/en
Publication of JPS63185865A publication Critical patent/JPS63185865A/en
Publication of JPH0511064B2 publication Critical patent/JPH0511064B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、高強度、高靭性を有する窒化ケイ素焼結体の
製造法に好適に利用される。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is suitably used in a method for manufacturing a silicon nitride sintered body having high strength and high toughness.

「従来の技術」 窒化ケイ素焼結体の強度、靭性を改善する方法として、
焼結体中にウィスカーを分散させる方法によるもの(%
開開56−92180号公報)や、他の粒子を分散させ
る方法によるもの(%開開61−158867号公報)
が知られており、いずれもヤング率、熱膨張係数等の物
理的籍性において51sNaと異なる物質が焼結体中に
存在することによシ、焼結体中にマイクロクラックや残
留応力が発生し、高強度化、高靭性化がなされるものと
考えられている。
"Conventional technology" As a method to improve the strength and toughness of silicon nitride sintered bodies,
Due to the method of dispersing whiskers in the sintered body (%
JP-A No. 56-92180) or methods of dispersing other particles (JP-A No. 61-158867)
It is known that microcracks and residual stress occur in the sintered body due to the presence of substances in the sintered body that differ from 51sNa in physical properties such as Young's modulus and coefficient of thermal expansion. However, it is believed that higher strength and toughness can be achieved.

「発明が解決しようとする問題点」 しかし、上記従来方法によれば、均−VC粒子やウィス
カーを分散させるのは非常に困難であり1分散が不十分
であると欠陥を生じやすい。
"Problems to be Solved by the Invention" However, according to the above-mentioned conventional method, it is very difficult to uniformly disperse the VC particles and whiskers, and defects are likely to occur if the dispersion is insufficient.

また、粒子等が焼結を抑制するため、緻密化し難いし、
粒子等が大きいとそれ自体が欠陥となって強度を低下さ
せる、などの問題点があった。
In addition, particles inhibit sintering, making it difficult to densify.
There is a problem that if the particles are large, they themselves become defects and reduce the strength.

本発明は、かかる問題点を解決し、高強度、高靭性で理
論密度の95%以上の密度を有する窒化ケイ素焼結体の
製造法を提供することを目的とする。
An object of the present invention is to solve these problems and provide a method for manufacturing a silicon nitride sintered body having high strength, high toughness, and a density of 95% or more of the theoretical density.

「問題点を解決するための手段」 その手段は、ケイ素合金を粉砕し、窒素を含む雰囲気中
で加熱窒化し、再粉砕し成形した後焼成するところにあ
る。ここでケイ素合金は、窒化物が安定的に存在しうる
金属(ケイ素を除く)を含むものであることが必要で、
Ti、V。
"Means for Solving the Problems" The method consists in pulverizing the silicon alloy, heating and nitriding it in an atmosphere containing nitrogen, re-pulverizing it, shaping it, and then firing it. Here, the silicon alloy must contain a metal (excluding silicon) in which nitride can exist stably,
Ti, V.

Cr g Zr + Nb + Hf及びTaのうちか
ら選ばれる1m以上0.1〜80J[量チを含むものが
望ましい。
Cr g Zr + Nb + Hf and Ta selected from 1 m or more and 0.1 to 80 J [including quantity is preferable.

「作用」 加熱窒化により、合金中のケイ素は5isN4となり、
ケイ素以外の金属も窒化物となる。而してケイ素以外の
金属は、もともと合金中に均一に存在しているから、こ
れら金属の窒化物はSi3N4マトリックス中に均一か
つ微細に分散した状態となる。この状態で再度粉砕し成
形した後、焼成することによplなお一層均一な分散状
態を有する焼結体が得られる。
"Effect" By heating nitriding, silicon in the alloy becomes 5isN4,
Metals other than silicon also form nitrides. Since metals other than silicon originally exist uniformly in the alloy, nitrides of these metals are uniformly and finely dispersed in the Si3N4 matrix. By pulverizing the powder again in this state, molding it, and then firing it, a sintered body having even more uniform dispersion of pl can be obtained.

得られた焼結体は、5isNaと、熱膨張係数、ヤング
率等の特性の異なる金属窒化物とが混在したものである
から、焼結後の冷却過程において又はその後に応力が加
わった場合にマイクロクラックや残留応力が発生する。
The obtained sintered body is a mixture of 5isNa and metal nitrides with different properties such as coefficient of thermal expansion and Young's modulus, so it does not react well when stress is applied during or after the cooling process after sintering. Microcracks and residual stress occur.

そしてこれらマイクロクラックや残留応力がクラックの
進展を防止し、又はその進行方向を変える作用をするの
であるが、上記の通シ分散状態が均一であるから、かか
る作用も焼結体内部で均等にはたらき、高強度化、高靭
性化をもたらすのである。
These microcracks and residual stress act to prevent the propagation of cracks or change their propagation direction, but since the above-mentioned through-dispersion state is uniform, this effect is evenly distributed inside the sintered body. This results in increased strength and toughness.

合金として上記1櫨以上の金属を0.1〜30重i1重
含1ものが望ましいとしたのは、これら金属の窒化物が
Si3N4と混在すると・きに最適のマイクロクラック
又は残留応力を発生せしめるからである。但し、その量
が0.1%に満たないと十分に作用せず、30%を超え
ると焼結全体としての強度が低下するので0.1〜30
重t%に限定した。
The reason why it is desirable to use 0.1 to 30 to 30% of the above-mentioned metals as an alloy is that when the nitrides of these metals are mixed with Si3N4, optimal microcracks or residual stress are generated. It is from. However, if the amount is less than 0.1%, it will not work sufficiently, and if it exceeds 30%, the strength of the sintered whole will decrease.
It was limited to weight t%.

なお、合金の中には上記1楓以上の金属の他に希土類金
属が含まれていてもよく、本発明の作用を妨げることは
ない。
In addition, the alloy may contain rare earth metals in addition to the above-mentioned one or more metals, without interfering with the effects of the present invention.

「実施例」 純度99%のSt粉末と第1表に示す金属の粉末を混合
し、加熱溶解し、冷却してケイ素合金を作った。このケ
イ素合金を粗粉砕し、さらに5iaNa製ボーμミμを
用いて平均粒径1μmになるまで粉砕し、Si3N4製
さや内に入れ、N。
"Example" St powder with a purity of 99% and metal powder shown in Table 1 were mixed, heated and melted, and cooled to produce a silicon alloy. This silicon alloy was coarsely ground, further ground to an average particle size of 1 μm using a 5iaNa Bommiμ, placed in a Si3N4 sheath, and heated with N.

とH2の混合ガス雰囲気中温度1000〜1500℃で
加熱することによシ窒化した。窒化粉末を粗粉砕し、6
重量%のYzOsと43it%のA 120sを院加し
、5isN4製ボー〃ミルを用いて平均粒径0、6μm
になるまで粉砕し、2ton/dの圧力でラバープレス
成形した後、NZガス圧50atm温度1900“Cで
焼成することによシ、窒化ケイ素焼結体Na1〜宛8を
製造した。
Nitriding was carried out by heating at a temperature of 1000 to 1500° C. in a mixed gas atmosphere of and H2. Coarsely crush the nitriding powder,
% by weight of YzOs and 43 it% of A 120s were added, and the average particle size was 0.6 μm using a 5isN4 bow mill.
Silicon nitride sintered bodies Na1 to No.8 were produced by pulverizing them until they were pulverized, rubber press-molding them at a pressure of 2 tons/d, and then firing them at a NZ gas pressure of 50 atm and a temperature of 1900"C.

比較の丸めに純度98%、平均粒径0.7μmの5Ss
NiにTIN 、YxOs及びAhOs’に混合し、N
!ガス圧50 atm s温度1900℃で焼成するこ
とにより、完全窒化されたと仮定した場合の焼結体−2
と同一の組成を有する窒化ケイ素焼結体N19を製造し
た。
For comparison purposes, 5Ss with a purity of 98% and an average particle size of 0.7 μm
Ni is mixed with TIN, YxOs and AhOs', and N
! Sintered body-2 assuming that it is completely nitrided by firing at a gas pressure of 50 atm s and a temperature of 1900°C
A silicon nitride sintered body N19 having the same composition was manufactured.

焼結体Nal〜宛9から、大きさ8X4X40■の試験
片を切り出し、密度、室温強度及び破壊靭性値の測定を
行った。強度はスパン80mの8点曲げ法により、破壊
靭性値はビッカース圧子押し込み法により、それぞれ測
定した。測定結果を第1表に示す。
A test piece with a size of 8×4×40 cm was cut out from the sintered body Nal~9, and its density, room temperature strength, and fracture toughness were measured. The strength was measured by the 8-point bending method with a span of 80 m, and the fracture toughness was measured by the Vickers indentation method. The measurement results are shown in Table 1.

第1表から、本発明に係る焼結体N[L1〜−7は純ケ
イ素から製造した焼結体嵐8に比べて強度、靭性ともに
高く、象加した副成分余積の蟹化物により強化されてい
ることがわかった。
From Table 1, it can be seen that the sintered bodies N [L1 to -7 according to the present invention have higher strength and toughness than the sintered body Arashi 8 manufactured from pure silicon, and are strengthened by the extra volume of the inlaid subcomponent, ie, crabide. It turned out that it was.

また、焼結体−9に比べ焼結体へ2の方が密度、強度、
靭性ともに高く、本発明の製造法が従来法よりも緻密化
が容易でかつ強度、靭性を向上させるのに効果的である
ことがわかった。
Also, compared to sintered body 9, sintered body 2 has better density, strength,
Both toughness was high, and it was found that the manufacturing method of the present invention is easier to densify than the conventional method and is effective in improving strength and toughness.

「発明の効果」 緻密で烏強度、高靭性′t−有する窒化ケイ素焼結体を
容易に製造することができる。
"Effects of the Invention" It is possible to easily produce a silicon nitride sintered body that is dense, has high strength and high toughness.

Claims (2)

【特許請求の範囲】[Claims] (1)ケイ素合金を粉砕し、窒素を含む雰囲気中で加熱
窒化し、再粉砕し成形した後、焼成することを特徴とす
る窒化ケイ素焼結体の製造法。
(1) A method for producing a silicon nitride sintered body, which comprises pulverizing a silicon alloy, heating and nitriding it in an atmosphere containing nitrogen, re-pulverizing it, shaping it, and then firing it.
(2)ケイ素合金が、Ti、V、Cr、Zr、Nb、H
f及びTaのうちから選ばれる1種以上0.1〜80重
量%を含有するものである特許請求の範囲第1項記載の
窒化ケイ素焼結体の製造法。
(2) Silicon alloy is Ti, V, Cr, Zr, Nb, H
The method for producing a silicon nitride sintered body according to claim 1, which contains 0.1 to 80% by weight of one or more selected from f and Ta.
JP62016644A 1987-01-27 1987-01-27 Manufacture of silicon nitride sintered body Granted JPS63185865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016644A JPS63185865A (en) 1987-01-27 1987-01-27 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016644A JPS63185865A (en) 1987-01-27 1987-01-27 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS63185865A true JPS63185865A (en) 1988-08-01
JPH0511064B2 JPH0511064B2 (en) 1993-02-12

Family

ID=11922060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016644A Granted JPS63185865A (en) 1987-01-27 1987-01-27 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS63185865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115872A (en) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd Silicon nitride ceramics
JPH01226767A (en) * 1988-03-07 1989-09-11 Hitachi Ltd Electrically conductive material and production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141011A (en) * 1974-10-03 1976-04-06 Tatsuro Kuratomi 4 chitsuka 3 keisoseikeitaino seizoho
JPS623076A (en) * 1985-06-28 1987-01-09 京セラ株式会社 Manufacture of silicon nitride base sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141011A (en) * 1974-10-03 1976-04-06 Tatsuro Kuratomi 4 chitsuka 3 keisoseikeitaino seizoho
JPS623076A (en) * 1985-06-28 1987-01-09 京セラ株式会社 Manufacture of silicon nitride base sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115872A (en) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd Silicon nitride ceramics
JPH01226767A (en) * 1988-03-07 1989-09-11 Hitachi Ltd Electrically conductive material and production thereof

Also Published As

Publication number Publication date
JPH0511064B2 (en) 1993-02-12

Similar Documents

Publication Publication Date Title
US4127416A (en) Method of producing a ceramic product
JPS5860676A (en) Silicon nitride sintered body and manufacture
US4440707A (en) Process for producing silicon nitride sintered products having high toughness
JPH0577632B2 (en)
JPS5852949B2 (en) How to manufacture ceramic parts
EP0118148B1 (en) Iron-based low-expansion alloy having a crystal structure of the cubic sodium-zinc alloy type of molar ratio 1:13, an article manufactured from this material and method of producing the alloy
JPS63185865A (en) Manufacture of silicon nitride sintered body
US3700434A (en) Titanium-nickel alloy manufacturing methods
US5336646A (en) Method of surface strengthening alumina-zirconia composites using MoO2
JPS63185866A (en) Manufacture of silicon nitride sintered body
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness
JPS6152110B2 (en)
JPS62501860A (en) Manufacturing method for iron alloy molded products
KR20040091627A (en) Stabilized grain size refractory metal powder metallurgy mill products
JPH08291356A (en) Cbn sintered compact and its manufacture
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPS63183145A (en) High hardness titanium-aluminum-vanadium alloy and its production
JPH0931588A (en) Production of invar (r) sintered compact
JPS6340769A (en) Manufacture of high density boron nitride normal pressure sintered body
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JPS5895660A (en) Silicon nitride sintered body and manufacture
JPS605073A (en) Silicon carbide sintered body and manufacture
JPH08290967A (en) Diamond sintered compact and its production
JP2571070B2 (en) Method of manufacturing substrate material for thin film magnetic head