JPS63103867A - Manufacture of silicon nitride base sintered body - Google Patents

Manufacture of silicon nitride base sintered body

Info

Publication number
JPS63103867A
JPS63103867A JP61251265A JP25126586A JPS63103867A JP S63103867 A JPS63103867 A JP S63103867A JP 61251265 A JP61251265 A JP 61251265A JP 25126586 A JP25126586 A JP 25126586A JP S63103867 A JPS63103867 A JP S63103867A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sintering
silicon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61251265A
Other languages
Japanese (ja)
Inventor
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61251265A priority Critical patent/JPS63103867A/en
Publication of JPS63103867A publication Critical patent/JPS63103867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の分野) 本発明は窒化珪素質焼結体の製造方法に関するもので、
より詳細には、均質で高強度の窒化珪素質焼結体の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a method for manufacturing a silicon nitride sintered body.
More specifically, the present invention relates to a method for producing a homogeneous and high-strength silicon nitride sintered body.

(従来技術及びその問題点) 窒化珪素質焼結体は原子の結合様式が結合を主体として
いるので高強度耐熱性部材、高耐蝕性部材及び高温高強
度部材などに期待されている。
(Prior Art and its Problems) Silicon nitride sintered bodies are expected to be used as high-strength, heat-resistant members, high-corrosion-resistant members, high-temperature, high-strength members, etc. because the atomic bonding mode of silicon nitride sintered bodies is mainly bonding.

従来周知の通り、窒化珪素質焼結体は焼結助剤の添加に
より液相焼結して緻密化するが、その焼結助剤には?’
1gOなどのアルカリ土類金属の酸化物、Y2O3など
の希土類金属の酸化物、並びにAIzOz等があり、こ
れら焼結助剤と窒化珪素粉末を粉砕混合し、窒化珪素質
焼結体の出発原料としている。
As is well known, silicon nitride sintered bodies are densified through liquid phase sintering by adding a sintering aid, but what about the sintering aid? '
There are oxides of alkaline earth metals such as 1gO, oxides of rare earth metals such as Y2O3, and AIzOz, etc. These sintering aids and silicon nitride powder are ground and mixed and used as a starting material for silicon nitride sintered bodies. There is.

然しなから、前記酸化物系の添加剤は窒化珪素や、窒化
珪素粉末の結晶表面に存在するSiO□膜と反応して粒
界相を形成するが、これら原料は十分に混合粉砕しても
、添加物がミクロ的に均一な分布をしておらず、この粒
界相の大きさが不均一となり、その結果、窒化珪素焼結
粒の異常成長が促進し、これにより出来た厚みの大きい
粒界相が破壊源となっていた。加えて、酸化物を添加す
ることによりイオン結合性が増大し、窒化珪素本来の優
れた特性が減じられていく。従って、焼結体の緒特性、
特に機械的特性を向上せんがためには非酸化物系焼結助
剤を用いて、更にその助剤の添加量を減少させるととも
に均一分散させる必要がある。
However, the oxide-based additives react with silicon nitride and the SiO□ film present on the crystal surface of silicon nitride powder to form a grain boundary phase, but even if these raw materials are thoroughly mixed and pulverized, , the additives do not have a microscopically uniform distribution, and the size of this grain boundary phase becomes non-uniform.As a result, abnormal growth of silicon nitride sintered grains is promoted, resulting in a large thickness. The grain boundary phase was the source of the fracture. In addition, the addition of oxides increases ionic bonding, and the original excellent properties of silicon nitride are diminished. Therefore, the properties of the sintered body,
In particular, in order to improve mechanical properties, it is necessary to use a non-oxide sintering aid, reduce the amount of the additive, and uniformly disperse the additive.

このような焼結助剤の均一分散に対し、原料粉末として
の粒径を小さくして超微粉化することにより分散効率を
上げる試みが一般的に行われているが、このような微粉
化された原料粉末を用いて、成形した際には、成形体の
密度、詳しくは圧粉体の嵩密度が低下する傾向にあり、
それに伴い、焼結性の低下、収縮量の増大、寸法精度の
悪化及び変形等の問題が生じることとなる。
In order to achieve uniform dispersion of such sintering aids, attempts are generally made to increase the dispersion efficiency by reducing the particle size of the raw material powder and making it into ultra-fine powder. When molded using raw material powder, the density of the molded product, more specifically, the bulk density of the green compact, tends to decrease.
Accordingly, problems such as a decrease in sinterability, an increase in the amount of shrinkage, a deterioration in dimensional accuracy, and deformation occur.

(発明の構成) 本発明者等は、金属シリコンと周期律表第1[Ia族金
属とからなる合金微粉末あるいはその合金微粉末を窒化
処理して得られる窒化物に対し、焼結助剤を加えてこれ
を混合成形し、窒素雰囲気中で焼成するときには、高温
高強度を示す窒化珪素質焼結体が得られることを見出し
た。
(Structure of the Invention) The present inventors used a sintering aid for a fine alloy powder consisting of metallic silicon and a group Ia metal of the periodic table, or a nitride obtained by nitriding a fine alloy powder thereof. It has been found that a silicon nitride sintered body exhibiting high temperature and high strength can be obtained when the mixture is mixed and molded and fired in a nitrogen atmosphere.

即ち、金属シリコンと周期律表第ma族金属とから−な
る合金微粉末あるいはその窒化物と焼結助剤との混合物
を成形し、窒素雰囲気中で焼成したことを特徴とする窒
化珪素質焼結体の製造方法が提供される。
That is, a silicon nitride sintered material is produced by molding a fine alloy powder made of metallic silicon and a group MA metal of the periodic table, or a mixture of its nitride and a sintering aid, and sintering it in a nitrogen atmosphere. A method of making a body is provided.

以下、本発明を詳述する。The present invention will be explained in detail below.

通常、窒化珪素質焼結体用原料粉末の製法にはシリコン
の直接窒化法、シリカ還元法、気相合成法、熱分解法な
どが知られており、現在工業的にも最も普及しているの
はシリコンの直接窒化法である。この方法はシリコン金
属粉末と窒素ガスを用いて、3Si+2Nz−5itN
nの合成反応を行わせるものであって反応が節単で製造
工程も比較的単純であることが特徴である。
Direct nitriding of silicon, silica reduction, vapor phase synthesis, and thermal decomposition are generally known methods for producing raw material powder for silicon nitride sintered bodies, and these are currently the most widely used industrially. This is the direct nitriding method of silicon. This method uses silicon metal powder and nitrogen gas to form 3Si+2Nz-5itN
It is characterized in that the reaction is simple and the manufacturing process is relatively simple.

本発明によれば、窒化珪素質焼結体用原料粉末の一つと
して、シリコンの直接窒化法におけるシリコン金属に窒
化珪素質焼結体の焼結助剤となるべき周期律表第ma族
金属の単体を合金の形で含有したものを用いることが重
要である。合金の製造は、金属シリコン粉末と周期律表
第ma族金属粉末とを混合し、例えば、1400乃至1
600°Cの温度に加熱して融解させることによりおこ
なわれる。
According to the present invention, as one of the raw material powders for a silicon nitride sintered body, a group ma metal of the periodic table, which is to be used as a sintering aid for a silicon nitride sintered body, is added to silicon metal in a silicon direct nitriding method. It is important to use an alloy containing the simple substance of . The alloy is manufactured by mixing metallic silicon powder and powder of a group MA metal of the periodic table, for example, from 1400 to 1
This is done by heating to a temperature of 600°C to melt.

得られる合金をボールミル等の粉砕機で粉砕して平均粒
径が0.5乃至10μmの微粉末とする。
The obtained alloy is pulverized using a pulverizer such as a ball mill to form a fine powder having an average particle size of 0.5 to 10 μm.

本発明において用いられる周期律表第1IIa族金属原
子として希土類元素であるSc、Y、La、Ce、Pr
、Nd、Pm、Sm、Eu、Gd、Tb、Dy、I(o
+Er、Tm、Yb、Luあるいはこれらの組合せが望
ましい。
Rare earth elements Sc, Y, La, Ce, Pr are metal atoms of Group 1IIa of the periodic table used in the present invention.
, Nd, Pm, Sm, Eu, Gd, Tb, Dy, I(o
+Er, Tm, Yb, Lu or a combination thereof is desirable.

この合金において、シリコン金属粉末と周期律表第ma
族金属とはその合金の使用形態によって変化するが99
.9:0.1乃至70:30、特に99.5:0.5乃
至90:10の重量比で用いるのが望ましい。即ち、周
期律表第ma族金属の量が上記範囲よりも少ない場合は
、焼結助剤を有効な量で且つ均質に分布させるのが困難
であり、一方上記範囲よりも多い場合は窒化珪素質焼結
体の優れた特性が失われることになる。
In this alloy, silicon metal powder and ma
Group metals vary depending on the type of use of the alloy, but 99
.. It is desirable to use a weight ratio of 9:0.1 to 70:30, particularly 99.5:0.5 to 90:10. That is, if the amount of Group Ma metal of the periodic table is less than the above range, it is difficult to uniformly distribute the sintering aid in an effective amount, whereas if it is more than the above range, silicon nitride The excellent properties of the quality sintered body will be lost.

本発明によればこのようにして得られた合金は一旦窒化
処理して複合窒化物にした後、改めて焼結を行うか、焼
結過程で窒化された状態で用いられる。この窒化反応は
周期律表第ma族金属をhとして表したとき、式 %式% のように進行する。この窒化処理の際、金属粉末と窒素
ガスが直接反応すると発熱が激しいため、反応を抑制す
る技術が要求される。例えば、水素ガス又はアンモニア
ガスの共存下で加熱温度をコントロールしながら反応温
度を1300乃至1400℃に制御して合成する方法が
主として用いられる。
According to the present invention, the alloy thus obtained is once nitrided to form a composite nitride, and then sintered again or used after being nitrided during the sintering process. This nitriding reaction proceeds as shown in the formula %, where h represents the group ma metal of the periodic table. During this nitriding process, direct reaction between the metal powder and nitrogen gas generates a large amount of heat, so a technique to suppress the reaction is required. For example, a synthesis method is mainly used in which the reaction temperature is controlled at 1300 to 1400° C. while controlling the heating temperature in the coexistence of hydrogen gas or ammonia gas.

次いで、反応合成後、必要により粉砕工程を導入するこ
とにより焼結体用原料粉末としての複合窒化物が提供さ
れる。
Next, after the reaction synthesis, a pulverization step is introduced as necessary to provide a composite nitride as a raw material powder for a sintered body.

窒化反応の温度が上記範囲内ではα−3i3N4を主体
とする複合窒化物が生成するが、上記温度よりも高い温
度ではβ−3i3N、を主体とする複合窒化物が得られ
る。
When the temperature of the nitriding reaction is within the above range, a composite nitride mainly composed of α-3i3N4 is produced, but at a temperature higher than the above temperature, a composite nitride mainly composed of β-3i3N is obtained.

複合窒化物は、α−5i3N4を主体と、且つ元素換算
で金属シリコンと周期律表第ma族金属とを前述した量
比で含有している。
The composite nitride mainly contains α-5i3N4, and also contains metallic silicon and a group ma metal of the periodic table in the above-described quantitative ratio in terms of elements.

従って、本発明者は後述する実施例からして周期律表第
ma族金属原子が原子レベルでシリコン原子に分散して
おり、また格子欠陥を含むため、かかる原料粉末を用い
て焼結するとその焼結を促進すべく内部エネルギーが大
きく寄与して拡散が活性化し、易焼結性となるものと考
え、その結果高強度緻密窒化珪素質焼結体が提供される
ものと考える。
Therefore, based on the examples described later, the inventors believe that metal atoms of group M of the periodic table are dispersed in silicon atoms at the atomic level and contain lattice defects, so that when sintered using such raw material powder, It is believed that internal energy makes a large contribution to promoting sintering, activating diffusion and facilitating sintering, and as a result, a high-strength, dense silicon nitride sintered body is provided.

更に、本発明による複合窒化物では、単なるSi3N、
とMN<周期律表第111a族元素の窒化物)の混合物
で観察される各化合物のX線散乱強度比よりMNの散乱
強度比が低いことから各成分は単なる混合物とは異なっ
た状態で各成分が存在するものと考えられ、例えばYと
シリコン金属と合金化させて窒化処理して成る窒化珪素
原料粉末は5t−N−Y又は5i−Y−Nのいずれかの
結合を含むことが推測される。
Furthermore, in the composite nitride according to the present invention, simple Si3N,
Since the scattering intensity ratio of MN is lower than the X-ray scattering intensity ratio of each compound observed in a mixture of For example, silicon nitride raw material powder made by alloying Y with silicon metal and nitriding it is presumed to contain either 5t-N-Y or 5i-Y-N bonds. be done.

本発明によれば、前述した合金微粉末あるいはその複合
窒化物に対し焼結助剤を添加混合し、該混合物を成形し
窒素雰囲気中で焼成を行う。
According to the present invention, a sintering aid is added to and mixed with the aforementioned fine alloy powder or composite nitride thereof, and the mixture is shaped and fired in a nitrogen atmosphere.

用いる焼結助剤としては、窒化珪素に対する焼結助剤と
して周知のものを使用することができる。
As the sintering aid to be used, those known as sintering aids for silicon nitride can be used.

例えば八1□O,,MgO,八IN、B4.Cの他、Y
zOi、YN等の周期律表第ma族元素の酸化物、窒化
物、Be化合物、Zr化合物などが挙げられる。
For example, 81□O,, MgO, 8IN, B4. In addition to C, Y
Examples include oxides, nitrides, Be compounds, and Zr compounds of group ma elements of the periodic table such as zOi and YN.

このように金属シリコンと周期律表第ma族金属との合
金或いはその複合窒化物に対し焼結助剤を加えてこれを
焼成することにより焼結温度を低下することが可能とな
り、さらに焼結性が向上し室温における強度の向上を図
ることができる。
In this way, by adding a sintering aid to an alloy of metallic silicon and a group MA metal of the periodic table or a composite nitride thereof and firing the alloy, it is possible to lower the sintering temperature, and further increase the sintering temperature. It is possible to improve the strength at room temperature.

この焼成方法の一実施例としては、複合窒化物と焼結助
剤との混合物を成形し、この成形物を前記窒化処理温度
よりも高い温度で焼成する。
In one embodiment of this firing method, a mixture of a composite nitride and a sintering aid is molded, and this molded product is fired at a temperature higher than the nitriding temperature.

焼結助剤としては、前述した焼結助剤の任意のものを単
独又は2種以上の組合せで用いうる。これらの焼結助剤
は0.1乃至10重量%、特に1乃至5重量%の量で用
いるのが望ましい。即ち、焼結助剤の量が10重量%を
越えると本来の目的である粒界相の耐熱性の向上が達し
得す、0.1重量%を下回ると助剤としての効果がな(
なる。
As the sintering aid, any of the aforementioned sintering aids may be used alone or in combination of two or more. These sintering aids are preferably used in amounts of 0.1 to 10% by weight, particularly 1 to 5% by weight. That is, when the amount of the sintering aid exceeds 10% by weight, the original objective of improving the heat resistance of the grain boundary phase can be achieved, and when it is less than 0.1% by weight, it is not effective as an aid (
Become.

成形と焼成とは、この順序で行ってもよいし、また同時
に行ってもよい。成形は、例えばそれ自体周知の方法、
例えば、金型プレス成形法、鋳込み成形法、射出成形法
、押出成形法などで行うことができ、成形体の焼結は1
700乃至2100℃の温度で0.5乃至10時間に亘
って行うことができる。成形と焼結を同時におこなう場
合は、例えば、ホットプレス及び熱間静水圧法により上
記温度範囲内で且つ上記条件の低い温度側の条件で焼成
をおこなえばよい。また、焼結は窒素雰囲気で行うのが
よい。
Molding and firing may be performed in this order or simultaneously. The shaping can be carried out, for example, by methods known per se,
For example, the mold press molding method, cast molding method, injection molding method, extrusion molding method, etc. can be used, and the sintering of the molded body is
It can be carried out at a temperature of 700 to 2100° C. for 0.5 to 10 hours. When molding and sintering are performed simultaneously, the firing may be performed within the above temperature range and on the lower side of the above conditions using, for example, hot pressing or hot isostatic pressing. Further, sintering is preferably performed in a nitrogen atmosphere.

他の実施例としては合金微粉末を窒化処理せずにそのま
まの状態で焼結助剤と混合した後、成形する。次に、得
られた成形体を1300乃至1400℃にて一旦窒化処
理して焼結助剤を含む複合窒化物を生成させ、所望によ
り連続して窒素雰囲気中にてさらに昇温して1100乃
至1450℃の温度にて焼成を行う。さらに、必要であ
ればこの焼結体を高温中にて焼結することにより緻密で
特性の優れた焼結体を得ることができる。この方法によ
れば、焼結助剤の配合量は合金微粉末が複合窒化物とな
ることを前提に前述した第1の実施例における範囲にな
るように設定すればよい。
In another embodiment, the fine alloy powder is mixed with the sintering aid without being nitrided and then molded. Next, the obtained compact is once nitrided at 1300 to 1400°C to produce a composite nitride containing a sintering aid, and if desired, the temperature is further raised continuously in a nitrogen atmosphere to a temperature of 1100 to 1400°C. Firing is carried out at a temperature of 1450°C. Further, if necessary, by sintering this sintered body at a high temperature, a dense sintered body with excellent properties can be obtained. According to this method, the blending amount of the sintering aid may be set within the range of the first embodiment described above on the premise that the alloy fine powder becomes a composite nitride.

以下本発明を次の例で説明する。The invention will now be explained with the following examples.

実施例1 金属シリコン粉末と周期律表第ma族元素とを第1表に
示す通りの配合比率で秤量し、混合して1400〜16
00℃の温度範囲で融解して合金を得た。
Example 1 Metallic silicon powder and a Group Ma element of the periodic table were weighed and mixed at the blending ratio shown in Table 1 to obtain a powder of 1400-16
An alloy was obtained by melting in a temperature range of 00°C.

この合金をボールミル等の周知の方法により平均粒径2
μm程度にまで粉砕し、この粉体を1100〜1450
℃の窒素ガス雰囲気中で残留シリコンが0.3%以下と
なるまで窒化反応を行った。得られた塊を粗粉砕し、次
いで微粉砕して平均粒径1μm以下の複合窒化物を得た
This alloy was milled using a well-known method such as a ball mill to obtain an average grain size of 2.
Grind this powder to about 1100 to 1450 μm.
A nitriding reaction was carried out in a nitrogen gas atmosphere at a temperature of 0.degree. C. until the residual silicon became 0.3% or less. The obtained lump was coarsely pulverized and then finely pulverized to obtain a composite nitride having an average particle size of 1 μm or less.

得られた複合窒化物に対し、第1表に示す焼結助剤を所
定の割合で添加混合して成形した後、窒素雰囲気中で第
1表の焼成条件にて焼成を行った。
The obtained composite nitride was mixed with a sintering aid shown in Table 1 at a predetermined ratio and then molded, and then fired under the firing conditions shown in Table 1 in a nitrogen atmosphere.

かくして得られた焼結体の抗折強度及び比重を測定した
ところ第1表の結果が得られた。抗折強度はJISR1
601に従って4点曲げ試験法により4×3 X42m
mの試験片の抗折強度を測定することにより求めた。
When the bending strength and specific gravity of the sintered body thus obtained were measured, the results shown in Table 1 were obtained. The bending strength is JISR1
4 x 3 x 42m by 4-point bending test method according to 601
It was determined by measuring the bending strength of a test piece of m.

比較例 窒化珪素微粉末にYz(h、Alz(h、YNのいずれ
かを第2表に基づき調合し、第2表の焼成条件により、
焼結体を作製し、実施例1と同様に特性の測定を行った
Comparative Example One of Yz(h, Alz(h, YN) was mixed into silicon nitride fine powder based on Table 2, and the firing conditions were as shown in Table 2.
A sintered body was produced and its properties were measured in the same manner as in Example 1.

測定の結果、いずれも本発明と比較して比重及び強度に
劣るものであった。
As a result of the measurement, both were inferior in specific gravity and strength compared to the present invention.

実施例2 実施例1において作製した合金微粉末を窒化することな
く、第3表に示す焼結助剤と混合して成形し、次いで1
400〜1600℃の温度で窒素雰囲気にて窒化処理し
、焼結助剤を含む複合窒化物から成る成形体を作製した
後、さらに昇温しで第3表に示す条件にて焼成を行い焼
結体を得た。
Example 2 The fine alloy powder produced in Example 1 was mixed with the sintering aid shown in Table 3 without nitriding, and then molded.
After nitriding in a nitrogen atmosphere at a temperature of 400 to 1,600°C to produce a compact made of composite nitride containing a sintering aid, the temperature is further increased and firing is performed under the conditions shown in Table 3. Obtained a body.

得られた焼結体に対し、実施例1と同様な方法により特
性の測定を行い、第3表の結果を得た。
The properties of the obtained sintered body were measured in the same manner as in Example 1, and the results shown in Table 3 were obtained.

第3表から明らかなように、第2表の比較例と比較して
も優れた特性の焼結体が得られた。
As is clear from Table 3, a sintered body with excellent characteristics was obtained even when compared with the comparative example shown in Table 2.

(発明の効果) 本発明の窒化珪素質焼結体の製造方法によれば、原料粉
末として金属シリコンと周期律表第ma族金属との合金
粉末或いはその複合窒化物に対して焼結助剤を加えて焼
成することにより易焼結性を高め緻密化するに必要な焼
成温度を低くすることができる。
(Effects of the Invention) According to the method for producing a silicon nitride sintered body of the present invention, a sintering aid is added to an alloy powder of metallic silicon and a group MA metal of the periodic table or a composite nitride thereof as a raw material powder. By adding and firing, it is possible to increase the ease of sintering and lower the firing temperature required for densification.

さらに焼結体として強度、特に室温における抗折強度を
高めることができる。
Furthermore, as a sintered body, the strength, especially the bending strength at room temperature, can be increased.

Claims (1)

【特許請求の範囲】[Claims]  金属シリコンと周期律表第IIIa族金属とからなる合
金微粉末あるいはその複合窒化物と焼結助剤との混合物
を成形し、窒素雰囲気中で焼成したことを特徴とする窒
化珪素質焼結体の製造方法。
A silicon nitride sintered body, characterized in that a fine alloy powder consisting of metallic silicon and a group IIIa metal of the periodic table or a mixture of a composite nitride thereof and a sintering aid is molded and fired in a nitrogen atmosphere. manufacturing method.
JP61251265A 1986-10-22 1986-10-22 Manufacture of silicon nitride base sintered body Pending JPS63103867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251265A JPS63103867A (en) 1986-10-22 1986-10-22 Manufacture of silicon nitride base sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251265A JPS63103867A (en) 1986-10-22 1986-10-22 Manufacture of silicon nitride base sintered body

Publications (1)

Publication Number Publication Date
JPS63103867A true JPS63103867A (en) 1988-05-09

Family

ID=17220209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251265A Pending JPS63103867A (en) 1986-10-22 1986-10-22 Manufacture of silicon nitride base sintered body

Country Status (1)

Country Link
JP (1) JPS63103867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001759A (en) * 1997-09-09 1999-12-14 Sumitomo Electric Industries, Ltd. Silicon nitride sintered body, method of preparing the same and nitrided compact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186264A (en) * 1985-02-13 1986-08-19 大同特殊鋼株式会社 Manufacture of silicon nitride sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186264A (en) * 1985-02-13 1986-08-19 大同特殊鋼株式会社 Manufacture of silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001759A (en) * 1997-09-09 1999-12-14 Sumitomo Electric Industries, Ltd. Silicon nitride sintered body, method of preparing the same and nitrided compact

Similar Documents

Publication Publication Date Title
JP2000034172A (en) Highly thermoconductive silicon nitride sintered compact and its production
US4716133A (en) Method for production of silicon nitride sintered body
CN108863395B (en) High-thermal-conductivity and high-strength silicon nitride ceramic material and preparation method thereof
US6143677A (en) Silicon nitride sinter having high thermal conductivity and process for preparing the same
US4500644A (en) Preparation and composition of sialon grain and powder
JPS63103867A (en) Manufacture of silicon nitride base sintered body
JPH07172921A (en) Aluminum nitride sintered material and its production
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPS6317210A (en) Production of aluminum nitride powder
JPH0633173B2 (en) Method for manufacturing silicon nitride sintered body
JPH0543333A (en) Production of high-strength sialon-based sintered compact
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPS623076A (en) Manufacture of silicon nitride base sintered body
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPS62875B2 (en)
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPH0283265A (en) Production of silicon nitride
JPH06279124A (en) Production of silicon nitride sintered compact
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JPS63147867A (en) Manufacture of silicon nitride sintered body
JPH0633169B2 (en) Method for manufacturing silicon nitride sintered body
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JP2001151575A (en) Method of producing aluminum nitride sintered compact