JPH0283265A - Production of silicon nitride - Google Patents

Production of silicon nitride

Info

Publication number
JPH0283265A
JPH0283265A JP63232620A JP23262088A JPH0283265A JP H0283265 A JPH0283265 A JP H0283265A JP 63232620 A JP63232620 A JP 63232620A JP 23262088 A JP23262088 A JP 23262088A JP H0283265 A JPH0283265 A JP H0283265A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
pts
weight
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232620A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hashimoto
信行 橋本
Yasuo Imamura
保男 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP63232620A priority Critical patent/JPH0283265A/en
Publication of JPH0283265A publication Critical patent/JPH0283265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain silicon nitride having properties capable of readily sintering and pulverizing and capable of providing high strength by each blending a Si powder with a prescribed amount of Al2O3 powder, Al and/or AlN powder and CeO2 powder, molding and drying the blend and then subjecting the resultant moldings to heat nitriding treatment in N2-containing atmosphere. CONSTITUTION:100 pts.wt. Si powder, preferably having 2-15mum average particle size is blended with 2.5-6.0 pts.wt. Al2O3 power, 2.0-10.5 pts.wt. Al and/or AlN powder and 4.5-9.5 pts.wt. CeO2. Then the blend powder is kneaded with a proper binder such as 1-2% ethanol solution of butylal incapable of reacting with Al or AlN. The kneaded material is molded to desired shape by extrusion molding and dried and subjected to heat nitriding under N2-containing atmosphere at 1000-1500 deg.C. Thereby the obtained powder of silicon nitride can be sintered at low temperature and a sintered compact having high strength can be provided when the sintered compact is produced according to an ordinary pressure sintering method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、易粉砕性、易焼結性でありしかも高強度を賦
与することの出来る窒化珪素の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing silicon nitride that is easily pulverized and sintered, and can impart high strength.

〔従来の技術〕[Conventional technology]

従来より、シリコン粉末に酸化アルミニウム、アルミニ
ウム、窒化アルミニウム等の焼結助剤を添加し窒化固溶
させてなる窒化珪素固溶体の製造法が知られている(特
公昭52−43486号公報、特開昭58−11063
2号公報)。しかし、これらの方法で得られた窒化珪素
固溶体は粉砕性が悪く、同一粉砕条件で粉砕された粉末
を用いて焼結体全製造しても、1600℃焼結に於ける
窒化珪素焼結体の相対密度は92%程度しかなく、また
曲げ強度も十分に高くはないという欠点があった。
Conventionally, a method for manufacturing a silicon nitride solid solution has been known in which a sintering aid such as aluminum oxide, aluminum, or aluminum nitride is added to silicon powder to form a nitrided solid solution (Japanese Patent Publication No. 52-43486, Japanese Unexamined Patent Publication No. 52-43486, Showa 58-11063
Publication No. 2). However, the silicon nitride solid solution obtained by these methods has poor crushability, and even if the entire sintered body is manufactured using powder crushed under the same crushing conditions, the silicon nitride sintered body after sintering at 1600°C It had the disadvantage that its relative density was only about 92%, and its bending strength was not sufficiently high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、例えば常圧焼結法により、窒化珪素焼結体を
製造するに際し、易焼結性でかつ高強度を賦与すること
が出来る易粉砕性の窒化珪素の製造方法を提供しようと
するものである。
The present invention aims to provide a method for producing silicon nitride that is easily sinterable and can impart high strength when producing a silicon nitride sintered body using, for example, an atmospheric pressure sintering method. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明は、シリコン粉末100重量部に対し酸化
アルミニウム粉末2.5〜6.oii部、アルミニウム
及び/又は窒化アルミニウム粉末2.0〜10.5m童
部、酸化セリウム粉末4.5〜9.5重量部を混合し、
次いでその混合粉末と成形パインダーとの混線物を成形
乾燥した後窒素含有雰囲気下1000〜1500℃の温
度範囲で加熱窒化することを特徴とする窒化珪素の製造
方法である。
That is, in the present invention, 2.5 to 6 parts of aluminum oxide powder is added to 100 parts by weight of silicon powder. oii part, 2.0 to 10.5 m of aluminum and/or aluminum nitride powder, 4.5 to 9.5 parts by weight of cerium oxide powder,
This method of producing silicon nitride is characterized in that the mixture of the mixed powder and a molding binder is then molded and dried, and then heated and nitrided in a nitrogen-containing atmosphere in a temperature range of 1000 to 1500°C.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明で使用するシリコン粉末は平均粒径2〜15μm
のものが好ましく、粒径が細かくなり過ぎると窒化反応
の制御がむづかしくなり、また粗過ぎても窒化反応に長
時間ヲ要スるか未反応シリコンを残すことになる。シリ
コン粉末は純度97%以上の単結晶、多結晶いずれの粉
末でも使用出来る。
The silicon powder used in the present invention has an average particle size of 2 to 15 μm.
If the particle size is too fine, it will be difficult to control the nitriding reaction, and if the particle size is too coarse, the nitriding reaction will take a long time or unreacted silicon will remain. As the silicon powder, either single crystal or polycrystal powder with a purity of 97% or more can be used.

次にシリコン粉末に対し、酸化アルミニウム、アルミニ
ウム、窒化アルミニウム、酸化セリウムの焼結助剤を添
加する。その添加量はシリコン粉末100重量部に対し
て、酸化アルミニウム粉末は2.5〜6.0重量部であ
る。2.5重量部未満では緻密化の効果が少なく、6M
f[部越えてもそれ以上の緻密化は期待出来ずがえって
焼結体の強度が低下する。アルミニウム及び/又は窒化
アルミニウム粉末は2.0〜10.51蓋部である。2
.0重量部未満では緻密化の効果が小さく、また10.
5重量部を越えてもそれ以上の緻密化は期待出来ない。
Next, sintering aids such as aluminum oxide, aluminum, aluminum nitride, and cerium oxide are added to the silicon powder. The amount of aluminum oxide powder added is 2.5 to 6.0 parts by weight per 100 parts by weight of silicon powder. If it is less than 2.5 parts by weight, the densification effect is small, and 6M
Even if the sintered body exceeds [f], further densification cannot be expected, and the strength of the sintered body decreases. The aluminum and/or aluminum nitride powder has a weight of 2.0 to 10.51. 2
.. If it is less than 0 parts by weight, the densification effect will be small, and 10.
Even if it exceeds 5 parts by weight, further densification cannot be expected.

酸化セリウム粉末は4.5〜9.5重量部である。The amount of cerium oxide powder is 4.5 to 9.5 parts by weight.

4.5重量部未満では緻密化は進まず強度は向上しない
。一方、9.5重量部を越えても焼結体のそれ以上の高
強度発現は望めない。焼結助剤の比表面積としては、酸
化アルミニウムは5m2/、9以上、アルミニウム、窒
化アルミニウム、酸化セリウムは3m2/、!i’以上
が望ましい。
If it is less than 4.5 parts by weight, densification will not proceed and strength will not improve. On the other hand, even if the amount exceeds 9.5 parts by weight, the sintered body cannot be expected to exhibit any higher strength. The specific surface area of the sintering aid is 5 m2/, 9 or more for aluminum oxide, and 3 m2/, for aluminum, aluminum nitride, and cerium oxide! i' or more is desirable.

次に、シリコン粉末と焼結助剤の混合粉末を濃度1〜2
%のブチラールのエタノール溶液のごときアルミニウム
、窒化アルミニウムと反応しない適当な成形バインダー
と混線する。他の成形バインダーとしては、2〜5%の
ポリメチルメタアクリレートのトルエン溶液、2〜5%
のアクリル樹脂のダイア0ン溶液、6〜6%のワックス
のエタノール溶液などが使用できる。混線はミックスマ
シー混H機や土練機等で行う。
Next, add a mixed powder of silicon powder and sintering aid to a concentration of 1 to 2.
Aluminum, such as a solution of % butyral in ethanol, is mixed with a suitable molding binder that does not react with aluminum nitride. Other molding binders include 2-5% polymethyl methacrylate in toluene, 2-5%
A diane solution of acrylic resin, an ethanol solution of 6 to 6% wax, etc. can be used. Mixing is done using a mixer mixer, clay mixer, etc.

次いで、混線物を押出し成形、プレス成形等で所望形状
に成形し乾燥後窒素含有雰囲気下1000〜1500℃
の温度で加熱窒化する。窒化温度が1000℃未満では
ほとんど窒化が進まず、一方、1500℃を越えては生
成した窒化珪素の一部が焼結するため次工程での粉砕が
困難になる。窒素含有雰囲気としては、窒素単独、又は
水素、−酸化炭素、ヘリウム、アルゴン、アンモニアガ
ス等と窒素との混合ガスである。場合によってはアンモ
ニア雰囲気でも可能である。
Next, the mixed wire material is formed into a desired shape by extrusion molding, press molding, etc., dried, and then heated at 1000 to 1500°C in a nitrogen-containing atmosphere.
Heat nitriding at a temperature of . If the nitriding temperature is less than 1000°C, nitriding hardly progresses, while if it exceeds 1500°C, a part of the silicon nitride produced will sinter, making it difficult to grind in the next step. The nitrogen-containing atmosphere may be nitrogen alone or a mixed gas of nitrogen and hydrogen, carbon oxide, helium, argon, ammonia gas, or the like. Depending on the case, an ammonia atmosphere is also possible.

以上のようにして得られた本発明の窒化珪素は酸化アル
ミニウム、アルミニウム、窒化アルミニウム、酸化セリ
ウムが固溶したと考えられるβ−窒化珪素である。次に
この窒化珪素を焼結体用原料とするには、ショークラッ
シャー、振動ミル等の粉砕手段上用いて平均粒径1μm
以下、比表面積7m2/g以上の粉末に調製する。この
窒化珪素粉末は各種焼結体を例えば常圧焼結法により得
るに際し1、易mM性で焼結体に高強度を賦与すること
ができる。
The silicon nitride of the present invention obtained as described above is β-silicon nitride, which is considered to be a solid solution of aluminum oxide, aluminum, aluminum nitride, and cerium oxide. Next, in order to use this silicon nitride as a raw material for a sintered body, it is used on a crushing means such as a show crusher or a vibration mill to have an average particle size of 1 μm.
The powder is then prepared to have a specific surface area of 7 m2/g or more. This silicon nitride powder can impart high strength to the sintered body with easy mM property when various sintered bodies are obtained by, for example, the pressureless sintering method.

なお、本発明により製造された窒化珪素粉末は常圧焼結
法にのみ適用されるものではなく、従来のホットプレス
成形法等にも勿論適用できる。
Note that the silicon nitride powder produced according to the present invention is not only applicable to the pressureless sintering method, but can also be applied to conventional hot press molding methods.

以下、実施例と比較例をあげてさらに具体的に本発明を
説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

〔実施例〕〔Example〕

シリコン粉末(平均粒径1oμm1比表面積3 m”/
9 )に焼結助剤として酸化アルミニウム粉末(平均粒
径1.0μm1比表面積6 m”/g)、アルミニウム
粉末(粒度44μm下、比表面積5.6 m2/11 
) 、窒化アルミニウム粉末(平均粒径1.9μm1比
表面積3.5 rn2/ 、!i’ )、酸化+ IJ
 ラム粉末(平均粒径2.6μm1比表面積3.2 r
n2/ ! )を第1表に示す配合割合でミックスマシ
ー混練機に投入・混合し、次いで、その混合物に対して
濃度1.5%デチラシーのアルコール溶液を外削で25
%添加混練した後レンガ成形機を用いてブロック形状に
成形し窒化用原料とした。
Silicon powder (average particle size 1oμm 1 specific surface area 3m”/
9), aluminum oxide powder (average particle size 1.0 μm, specific surface area 6 m”/g) and aluminum powder (particle size 44 μm, specific surface area 5.6 m2/11) were used as sintering aids.
), aluminum nitride powder (average particle size 1.9 μm 1 specific surface area 3.5 rn2/,!i'), oxidation + IJ
Rum powder (average particle size 2.6 μm 1 specific surface area 3.2 r
n2/! ) in a Mixmacy kneader at the mixing ratio shown in Table 1, and then add 25% of the alcohol solution with a concentration of 1.5% dethiracy to the mixture by external grinding.
% was added and kneaded, and then molded into a block shape using a brick molding machine to obtain a raw material for nitriding.

この原料をバッチ式の窒化炉に装入し窒素雰囲気下10
00〜1480’Cまで徐々に昇温しながら加熱窒化を
行った。加熱開始から窒化完了まで合計100時間を要
した。次に、得られた窒化珪集成形体をショークラッシ
ャー 振動ミルを用いて乾式粉砕後さらにボールミルに
て湿式で20時間粉砕して第1表に示す粉末を得た。
This raw material was charged into a batch type nitriding furnace for 10 minutes under a nitrogen atmosphere.
Heat nitriding was performed while gradually increasing the temperature from 00 to 1480'C. A total of 100 hours was required from the start of heating to the completion of nitriding. Next, the obtained silicon nitride aggregate was dry-pulverized using a Shaw Crusher vibrating mill, and then wet-pulverized in a ball mill for 20 hours to obtain the powders shown in Table 1.

この粉末を100に9/傭2の圧力で10X60X7朋
形状に金型成形後1000kllil/cTL2の圧力
で静水圧プレス成形を行った。得られた成形体を常圧焼
結炉で窒素雰囲気T”(1550〜1800℃)×6時
間で焼結させた。その際のS青粉としては、成形体の焼
結時の分解抑制の目的で窒化アルミニウム5重量%、酸
化セリウム5N量%、窒化硼素30重葉%、窒化珪素6
0]L童%から成るものを用いた。
This powder was molded into a 10x60x7 shape using a pressure of 100:9/cm2, and then subjected to isostatic press molding at a pressure of 1,000 klil/cTL2. The obtained compact was sintered in a normal pressure sintering furnace in a nitrogen atmosphere T'' (1550 to 1800°C) for 6 hours.The S blue powder was used to suppress decomposition during sintering of the compact. Purpose: 5% by weight of aluminum nitride, 5% by weight of cerium oxide, 30% by weight of boron nitride, 6% by weight of silicon nitride.
0]L% was used.

得られた焼結体の表面を研削加工しアルキメデス法(J
ISR2205に準拠)で高化Nを測定し各々理論密度
で除して100を掛は相対′&i度を算出した。焼結体
の嵩比重を測定した後、その試料について、T工5R−
1601rファインセラミックスの曲げ強度試験方法」
に準拠l−だ常温6点曲げ強度を測定した。それらの結
果を第1表に示す。
The surface of the obtained sintered body was ground and processed using the Archimedes method (J
(based on ISR 2205), and divided each by the theoretical density and multiplied by 100 to calculate the relative '&i degree. After measuring the bulk specific gravity of the sintered body, the sample was
1601r Fine Ceramics Bending Strength Test Method”
The 6-point bending strength was measured at room temperature based on the standard. The results are shown in Table 1.

なお、比較例7と8で用いた酸化イツトリウムは市販品
であり平均粒径2.1μm1 比表面積9.0m2/g
である。また、酸化イツトリウムを用いた原料配合系の
焼結時の詰粉としては窒化アルミニウム5M−3t%、
酸化イツトリウム5重量%、窒化硼素60重蓋%、窒化
珪素6ON蓋%から成るものを用いた。また、比較例9
と10では、詰粉として窒化アルミニウム10重量%、
窒化硼素30mft%、窒化珪素6Oit量%から成る
ものを用いた。
The yttrium oxide used in Comparative Examples 7 and 8 is a commercially available product with an average particle size of 2.1 μm and a specific surface area of 9.0 m2/g.
It is. In addition, aluminum nitride 5M-3t%,
A material consisting of 5% by weight of yttrium oxide, 60% by weight of boron nitride, and 6% by weight of silicon nitride was used. Also, Comparative Example 9
and 10, 10% by weight of aluminum nitride as filling powder,
A material consisting of 30 mft% boron nitride and 6 Oit% silicon nitride was used.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で得られた窒化珪素粉末は、常圧焼結法に
より焼結体を製造する際に低温で焼結することが出来し
かも高強度な焼結体とすることができる。
The silicon nitride powder obtained by the method of the present invention can be sintered at a low temperature when producing a sintered body by the pressureless sintering method, and can be made into a high-strength sintered body.

特許出願人  電気化学工業株式会社Patent applicant: Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.シリコン粉末100重量部に対し酸化アルミニウム
粉末2.5〜6.0重量部、アルミニウム及び/又は窒
化アルミニウム粉末2.0〜10.5重量部、酸化セリ
ウム粉末4.5〜9.5重量部を混合し、次いでその混
合粉末と成形バインダーとの混練物を成形乾燥した後窒
素含有雰囲気下1000〜1500℃の温度範囲で加熱
窒化することを特徴とする窒化珪素の製造方法。
1. 2.5 to 6.0 parts by weight of aluminum oxide powder, 2.0 to 10.5 parts by weight of aluminum and/or aluminum nitride powder, and 4.5 to 9.5 parts by weight of cerium oxide powder to 100 parts by weight of silicon powder. A method for producing silicon nitride, which comprises mixing, then molding and drying a kneaded product of the mixed powder and a molding binder, and then heating and nitriding the mixture in a nitrogen-containing atmosphere in a temperature range of 1000 to 1500°C.
JP63232620A 1988-09-19 1988-09-19 Production of silicon nitride Pending JPH0283265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232620A JPH0283265A (en) 1988-09-19 1988-09-19 Production of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232620A JPH0283265A (en) 1988-09-19 1988-09-19 Production of silicon nitride

Publications (1)

Publication Number Publication Date
JPH0283265A true JPH0283265A (en) 1990-03-23

Family

ID=16942181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232620A Pending JPH0283265A (en) 1988-09-19 1988-09-19 Production of silicon nitride

Country Status (1)

Country Link
JP (1) JPH0283265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540643A1 (en) * 1990-07-24 1993-05-12 Eaton Corp Ceramic phase in silicon nitride containing cerium.
EP0540668A1 (en) * 1990-07-24 1993-05-12 Eaton Corp Process for making nitridable silicon material.
JP2001181051A (en) * 1999-12-28 2001-07-03 Ngk Spark Plug Co Ltd Silicon nitride-based sintered product, tool and sliding member using the same, and method for producing silicon nitride-based sintered product
US8268437B2 (en) 2005-07-04 2012-09-18 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540643A1 (en) * 1990-07-24 1993-05-12 Eaton Corp Ceramic phase in silicon nitride containing cerium.
EP0540668A1 (en) * 1990-07-24 1993-05-12 Eaton Corp Process for making nitridable silicon material.
JP2001181051A (en) * 1999-12-28 2001-07-03 Ngk Spark Plug Co Ltd Silicon nitride-based sintered product, tool and sliding member using the same, and method for producing silicon nitride-based sintered product
US8268437B2 (en) 2005-07-04 2012-09-18 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof

Similar Documents

Publication Publication Date Title
JPS6054976A (en) Silicon nitride sintered body and manufacture
JPH0648835A (en) Al203/b4c/sic composite material
US5156830A (en) Process for preparing an alpha-phase silicon nitride material and thereafter converting to non-densified beta-phase material
JPH05508612A (en) Silicon nitride production and results with densification aids
JP3129870B2 (en) Manufacturing method of ceramic sintered body
JPH0283265A (en) Production of silicon nitride
JPS59107976A (en) Manufacture of readily sinterable silicon nitride powder
JPH06219840A (en) Silicon nitride sintered compact and its production
EP0540643B1 (en) Ceramic phase in silicon nitride containing cerium
JPS6327306B2 (en)
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPH0543333A (en) Production of high-strength sialon-based sintered compact
JPH03261611A (en) Production of silicon nitride composite powder
JPH02500267A (en) ceramic material
JP2727628B2 (en) Method for producing conductive zirconia sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPH08319168A (en) Production of sialon ceramic
JPS6337075B2 (en)
JPS61117153A (en) Manufacture of alumina sintered body
JPS63117966A (en) Manufacture of boron nitride base sintered body
JPH11514623A (en) Manufacturing method of ceramic material
JPS6141872B2 (en)
JPS6121976A (en) Manufacture of silicon nitride base sintered body