JP2727628B2 - Method for producing conductive zirconia sintered body - Google Patents

Method for producing conductive zirconia sintered body

Info

Publication number
JP2727628B2
JP2727628B2 JP1044096A JP4409689A JP2727628B2 JP 2727628 B2 JP2727628 B2 JP 2727628B2 JP 1044096 A JP1044096 A JP 1044096A JP 4409689 A JP4409689 A JP 4409689A JP 2727628 B2 JP2727628 B2 JP 2727628B2
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
titanium
powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1044096A
Other languages
Japanese (ja)
Other versions
JPH01308870A (en
Inventor
和夫 堀ノ内
正英 毛利
績 亀田
Original Assignee
住友化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学工業株式会社 filed Critical 住友化学工業株式会社
Priority to JP1044096A priority Critical patent/JP2727628B2/en
Publication of JPH01308870A publication Critical patent/JPH01308870A/en
Application granted granted Critical
Publication of JP2727628B2 publication Critical patent/JP2727628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は,導電性を有するジルコニア焼結体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a conductive zirconia sintered body.

さらに詳細には強度,靭性,硬度等の機械的特性に優
れるのみならず,低温領域においても導電性を有するジ
ルコニア焼結体の製造方法に関するものである。
More specifically, the present invention relates to a method for producing a zirconia sintered body having not only excellent mechanical properties such as strength, toughness, and hardness but also having conductivity even in a low temperature range.

〈従来の技術〉 従来,ジルコニア焼結体は切削工具や内燃機関用材料
に適用すべく靭性の改良が検討され近年Y2O3,MgO,CeO2
等による部分安定化ジルコニア焼結体が開発されたが,
ジルコニア焼結体はその焼結体製造技術の制約から単純
な形状のものしか得られない。そのため最終製品形状に
するためには必然的に切削加工に頼らざるをえないので
あるが,ジルコニア焼結体は低温においては絶縁材料の
ため加工効率に優れた放電加工法が採用出来ないとの欠
点を有していた。
<Prior Art> Conventionally, the zirconia sintered body is considered toughness improved in order to apply to the material for cutting tools and engine Recently Y 2 O 3, MgO, CeO 2
A partially stabilized zirconia sintered body was developed by
A zirconia sintered body can only be obtained in a simple shape due to the restriction of the sintered body manufacturing technology. Therefore, in order to make the final product shape, it is inevitable to rely on cutting work.However, since zirconia sintered body is an insulating material at low temperature, it is not possible to use electric discharge machining method with excellent machining efficiency. Had disadvantages.

ジルコニア焼結体に導電性を付与し,放電加工を可能
とする方法として,ジルコニア粉末にTiC,TiN等の導電
性性粉末を混合し,これを焼結する方法が知られてい
る。
As a method of imparting electrical conductivity to a zirconia sintered body and enabling electrical discharge machining, a method of mixing a conductive powder such as TiC or TiN with zirconia powder and sintering the mixture is known.

例えば特開昭62−202861号には部分安定化ジルコニア
焼結体に窒化チタニウムまたは/及び窒化ジルコニウム
からなる放電加工性付与物質が混入されてなる放電加工
性セラミックスにおいて、前記放電加工性付与物質の一
部がTiやZrの水素化物を出発原料として得た窒化チタニ
ウムまたは/及び窒化ジルコニウムから構成されている
ことを特徴とする放電加工性セラミックスが開示されて
いる。しかしこれらTiやZrの水素化物を出発原料とする
方法は、これら水素化物が空気中に於いて不安定であり
取扱い難くかつ価格も高い。また、焼結体の靭性につい
ての言及はない。
For example, Japanese Unexamined Patent Publication No. 62-202861 discloses an electric discharge machining ceramic in which a partially stabilized zirconia sintered body is mixed with an electric discharge machining property-imparting substance comprising titanium nitride and / or zirconium nitride. An electric discharge machining ceramic characterized in that a part thereof is constituted by titanium nitride and / or zirconium nitride obtained by using a hydride of Ti or Zr as a starting material is disclosed. However, in the method using these hydrides of Ti and Zr as starting materials, these hydrides are unstable in the air, are difficult to handle, and are expensive. There is no mention of the toughness of the sintered body.

一方,TiCやTiN等の導電性付与物質は一般に難焼結材
料であるため,単にジルコニアに機械的に混合した場合
にはホットプレスを用いた加圧焼結や高温での焼結を必
要とし製造原価が高くなるとの不都合を有している。加
えて焼結体の強度,靭性,硬度等の低下なくして導電性
の発現を得ることも難しく,これらジルコニア焼結体が
本来有する物性の低下がなく、かつ常圧焼結或は低温焼
結により得ることのできる導電性ジルコニア焼結体の発
現が望まれていた。
On the other hand, conductivity-imparting substances such as TiC and TiN are generally difficult-to-sinter materials, so if they are simply mechanically mixed with zirconia, pressure sintering using a hot press or sintering at high temperatures is required. There is a disadvantage that the manufacturing cost is increased. In addition, it is difficult to obtain conductivity without reducing the strength, toughness, hardness, etc. of the sintered body, and there is no reduction in the physical properties inherent in these zirconia sintered bodies, and normal-pressure sintering or low-temperature sintering. It has been desired to develop a conductive zirconia sintered body that can be obtained by the method described above.

一方、従来よりジルコニアとチタニウム酸化物の固溶
体については主としてチタニア(TiO2)との固溶体がよ
く知られている。またエス.アール.レイオン(S.R.Ly
on)らはジャーナル オブ アメリカン セラミック
ソサエティー61(9−10)469−71(1978)〔J.Am.Cera
m.Soc.,61(9−10)469−71(1978)〕に於いて一酸化
チタン(TiO)のジルコニアとの固溶について、「酸化
ジルコニアとTiOを真空中で焼結したところTiOのジルコ
ニアへの固溶は1500℃で1.5重量%(0.78mol%)以下で
あり、立方晶と単斜晶(固溶限度以上ではTiOとの共晶
構造)より構成される。」と報告している。しかしこの
焼結体は立方晶と単斜晶より構成されることから,強度
及び靭性の優れた焼結体とはいい難く,また導電性を有
するジルコニア焼結体としての開示ではない。また、ニ
ール.クラウセン(Nils Claussen)らは酸化ジルコニ
ウム粉末と各種窒化物粉末を窒素雰囲気下でホットプレ
スすることより窒素で安定化された立方晶ジルコニア焼
結体を得た事を報告している〔ジャーナル オブ アメ
リカン セラミック ソサエティー61,369−70(197
8)〕〔J.Am.Ceram,Soc.,61,369−70(1978)〕。
On the other hand, as a solid solution of zirconia and titanium oxide, a solid solution of mainly titania (TiO 2 ) has been well known. Also S. R. Rayon (SRLy
on) et al. Journal of American Ceramic
Society 61 (9-10) 469-71 (1978) [J. Am. Cera
m. Soc., 61 (9-10) 469-71 (1978)], found that titanium monoxide (TiO) was dissolved in zirconia in a solid solution. The solid solution in zirconia is less than 1.5 wt% (0.78 mol%) at 1500 ° C, and is composed of cubic and monoclinic (eutectic structure with TiO above the solid solubility limit). " I have. However, since this sintered body is composed of a cubic crystal and a monoclinic crystal, it is difficult to say that the sintered body has excellent strength and toughness, and it is not disclosed as a zirconia sintered body having conductivity. Also, Neil. Nils Claussen et al. Reported that a cubic zirconia sintered body stabilized with nitrogen was obtained by hot pressing zirconium oxide powder and various nitride powders under a nitrogen atmosphere [Journal of American Ceramic Society 61,369-70 (197
8)] [J. Am. Ceram, Soc., 61, 369-70 (1978)].

この場合ジルコニアはZrNやAlN更にSi3N4と反応し立
方晶ジルコニア(酸窒化ジルコニウム)と単斜晶ジルコ
ニアが生成するとされている。
In this case, zirconia reacts with ZrN, AlN, and Si 3 N 4 to produce cubic zirconia (zirconium oxynitride) and monoclinic zirconia.

しかし,窒化物粉末としてTiNを用いた場合は立方晶
ジルコニアは生成しなかったと記述しており、この理由
としてN2及びTiNは安定性が良好なため原子状窒素の供
給媒体として作用しないためと説明されている。さら
に,これらの窒素で安定化された立方晶ジルコニアは熱
的に不安定で,熱処理により分離し単結晶が生成するこ
とが報告されている。
However, when TiN is used as the nitride powder is described as produced no cubic zirconia, N 2 and TiN as the reason for the order does not act as a supply medium of atomic nitrogen for stability is good Described. Furthermore, it has been reported that cubic zirconia stabilized by nitrogen is thermally unstable and separates to form a single crystal by heat treatment.

従って,これらの焼結体は安定性に欠き,実用には供
しがたい。
Therefore, these sintered bodies lack stability and are not practically usable.

〈発明が解決しようとする課題〉 かかる事情下に鑑み,本発明者らは得られる焼結体
が、強度,靭性,並びに硬度に優れ,かつ常圧焼結や低
温焼結が可能な導電性ジルコニア焼結体の製造方法を見
いだすことを目的とし鋭意検討した結果、本発明を完成
するに至った。
<Problems to be solved by the invention> In view of such circumstances, the present inventors have obtained a sintered body having excellent strength, toughness, and hardness, and a conductive property capable of normal-pressure sintering and low-temperature sintering. As a result of intensive studies aimed at finding a method for producing a zirconia sintered body, the present invention has been completed.

〈課題を解決するための手段〉 すなわち,本発明は、焼結後の焼結体が,酸化ジルコ
ニウム固溶体60〜90容量%と窒化チタニウム10〜40容量
%からなり,該固溶体が酸化ジルコニウムとチタニウム
として0<Ti≦16重量%含有するチタニウム酸化物より
なるように酸化ジルコニウム粉末と亜酸化チタン粉末を
混合,成形した後,窒素雰囲気下で焼結することを特徴
とする導電性ジルコニア焼結体の製造方法を提供するに
ある。
<Means for Solving the Problems> That is, according to the present invention, a sintered body after sintering is composed of 60 to 90% by volume of a zirconium oxide solid solution and 10 to 40% by volume of titanium nitride, and the solid solution is composed of zirconium oxide and titanium. A conductive zirconia sintered body characterized in that zirconium oxide powder and titanium suboxide powder are mixed and formed so as to be made of a titanium oxide containing 0 <Ti ≦ 16% by weight, and then sintered under a nitrogen atmosphere. To provide a method for manufacturing the same.

以下,本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明に於ける焼結体の製造方法としては,焼結後の
焼結体が,酸化ジルコニウム固溶体60〜90容量%と窒化
チタニウム10〜40容量%からなり,該固溶体が酸化ジル
コニウムとチタニウムを0重量%<Ti≦16重量%含有す
るチタニウム酸化物よりなるように,通常酸化ジルコニ
ウム粉末と亜酸化チタン粉末を混合,成形した後,窒素
雰囲気下で焼結する。
In the method for producing a sintered body according to the present invention, the sintered body after sintering is composed of 60 to 90% by volume of a zirconium oxide solid solution and 10 to 40% by volume of titanium nitride, and the solid solution is composed of zirconium oxide and titanium. Usually, zirconium oxide powder and titanium suboxide powder are mixed and formed so as to be made of a titanium oxide containing 0% by weight <Ti ≦ 16% by weight, and then sintered in a nitrogen atmosphere.

焼結体中の窒化チタニウムの量が10容量%未満の場合
には体積固有抵抗で1Ωcm以下の導電性の発現は難しく
なり,他方40容量%を越える場合には焼結体の強度低下
を生じる。
If the amount of titanium nitride in the sintered body is less than 10% by volume, it is difficult to develop a conductivity of 1 Ωcm or less in volume resistivity, while if it exceeds 40% by volume, the strength of the sintered body decreases. .

また酸化ジルコニウムと固溶体を形成しているチタニ
ウム酸化物の存在量がチタニウムとして酸化ジルコニウ
ムに対し16重量%を越える場合には焼結体強度の低下が
生じ,他方チタニウム酸化物の固溶のない場合には焼結
体物性の向上は望めない。
When the amount of titanium oxide forming a solid solution with zirconium oxide is more than 16% by weight of zirconium oxide as titanium, the strength of the sintered body decreases, and when the titanium oxide does not form a solid solution. No improvement in the physical properties of the sintered body can be expected.

本発明方法により得られた焼結体は酸化ジルコニウム
とチタニウム酸化物が固溶体を形成し、該焼結体中に窒
化チタニウムが分散された構造となっている。
The sintered body obtained by the method of the present invention has a structure in which zirconium oxide and titanium oxide form a solid solution, and titanium nitride is dispersed in the sintered body.

亜酸化チタン粉末に代えて、或いはこれと併用して窒
素含有亜酸化チタン粉末を使用することも出来る。
Instead of the titanium suboxide powder or in combination therewith, a nitrogen-containing titanium suboxide powder can be used.

反応に供する粉末は反応の容易性より微粉でかつシャ
ープな粒度分布を有するものが好ましく、この点におい
ては当該分野において使用されている原料粉末程度であ
れば特に制限をうけるものではないが、通常約5μm以
下、好ましくは約2μm以下の平均粒径を有するものが
使用される。
The powder to be subjected to the reaction is preferably a fine powder having a sharp particle size distribution from the ease of the reaction, and in this regard, there is no particular limitation as long as the raw material powder used in the art is used, but it is usually used. Those having an average particle size of about 5 μm or less, preferably about 2 μm or less are used.

亜酸化チタン粉末に代えてTiO2粉末を単独で使用する
場合には本発明で使用する焼結温度範囲においてはジル
コニアとの固溶反応のみが生じ所望とする組成の焼結体
は得られない。
When TiO 2 powder is used alone instead of titanium suboxide powder, only a solid solution reaction with zirconia occurs in the sintering temperature range used in the present invention, and a sintered body having a desired composition cannot be obtained. .

亜酸化チタン粉末とはTiO2以外の酸化チタン粉末を意
味するもので、具体的にはTiO,Ti2O3,Ti3O5等であり、
就中チタンブラックが好ましい。
The titanium suboxide powder meant titanium oxide powder other than TiO 2, specifically a TiO, Ti 2 O 3, Ti 3 O 5 , etc.,
Of these, titanium black is preferred.

これら亜酸化チタン粉末は理由は詳らかではないが、
酸化ジルコニウム粉末との窒素雰囲気下での焼結過程に
おいて一部は窒化され窒化チタニウムとなり、また一部
は酸化ジルコニウムに固溶し固溶体を形成する。
Although the reason for these titanium suboxide powders is not clear,
In a sintering process with zirconium oxide powder in a nitrogen atmosphere, a part is nitrided to form titanium nitride, and a part is solid-dissolved in zirconium oxide to form a solid solution.

本発明に適用する酸化ジルコニウムは、Y2O3、MgO,Ce
O2等の通常公知の安定化剤を添加して得た部分安定化ジ
ルコニア粉末を用いても良いし、これらの助剤の入らな
い未安定化ジルコニア粉末を用いても良い。
Zirconium oxide applied to the present invention is Y 2 O 3 , MgO, Ce
A partially stabilized zirconia powder obtained by adding a commonly known stabilizer such as O 2 may be used, or an unstabilized zirconia powder containing no such auxiliary agent may be used.

これら焼結助剤の添加量は通常公知のPSZ(部分安定
化ジルコニア)或はTZP(正方晶ジルコニア多結晶)を
得る範囲で適用すればよく,例えばY2O3の場合は酸化ジ
ルコニア粉末に対し約2モル%〜5モル%,MgOの場合は
約8モル%〜10モル%,CeO2の場合は約6モル%12モル
%を目処に使用すれば良い。勿論これらの焼結助剤を併
用することも可能である。
The addition amount of the sintering aid is usually well be applied in the range of obtaining a known PSZ (partially stabilized zirconia) or TZP (tetragonal zirconia polycrystal), for example in the case of Y 2 O 3 in the zirconium oxide powder About 2 mol% to 5 mol%, about 8 mol% to 10 mol% for MgO, and about 6 mol% to 12 mol% for CeO 2 may be used as targets. Of course, these sintering aids can be used in combination.

反応に際し酸化ジルコニウム粉末と亜酸化チタン粉末
に窒素含有亜酸化チタン粉末や酸化チタンとカーボン等
の還元剤との混合粉末を併用することもできる。これら
を併用する場合には焼結過程での窒化反応によるTiNの
生成が容易で、焼結体物性の低下を生じせしめるZrTiO4
等の化合物が生じ難い等の利点を有する。
In the reaction, a zirconium oxide powder and a titanium suboxide powder may be used in combination with a nitrogen-containing titanium suboxide powder or a mixed powder of titanium oxide and a reducing agent such as carbon. When these are used together, it is easy to generate TiN by a nitriding reaction in the sintering process, and ZrTiO4
And the like.

またTiNの一部を原料中に予め添加存在せしめること
も可能である。
It is also possible to add a part of TiN to the raw material beforehand.

これら酸化ジルコニウムや亜酸化チタンに酸化チタン
とカーボン、TiN等の他の原料を併用する場合には、計
算と簡単な予備実験により所望組成のジルコニア焼結体
となるよう使用原料組成を決定すればよいが、酸化ジル
コニウムに対し、2重量%以上の亜酸化チタン(窒素含
有亜酸化チタンも含む)を使用させるようにする。
In the case of using other materials such as titanium oxide and carbon, TiN together with these zirconium oxide or titanium suboxide, it is necessary to determine the raw material composition to be a zirconia sintered body having a desired composition by calculation and simple preliminary experiments. Preferably, 2% by weight or more of titanium suboxide (including nitrogen-containing titanium suboxide) is used with respect to zirconium oxide.

次いで原料粉末を混合し、必要に応じて成形した後、
焼結する。
Then, after mixing the raw material powder and molding if necessary,
Sinter.

混合、成形は当該分野において公知の方法であればよ
く、例えばボールミル等を用い、湿式および/または環
式方法で混合した後、金型プレス或いは静水圧ラバープ
レス等で成形すればよい。
Mixing and molding may be performed by a method known in the art. For example, after mixing by a wet and / or cyclic method using a ball mill or the like, molding may be performed by a mold press or an isostatic rubber press.

焼結条件は適用する原料組成により一義的ではない
が,通常窒素雰囲気中約1350℃〜約1600℃,1時間以上,
好ましくは約1400℃〜約1550℃,1〜5時間焼成すれば良
い。
The sintering conditions are not unique depending on the raw material composition to be applied, but usually about 1350 ° C to about 1600 ° C for 1 hour or more in a nitrogen atmosphere.
Preferably, firing may be performed at about 1400 ° C. to about 1550 ° C. for 1 to 5 hours.

この時点での焼結体は通常,主として正方晶と立方晶
からなり、さらに約15重量%以下の単斜晶を含有する。
(但しY2O3等の安定化剤を含有しない焼結体にあっては
焼結後において約20%以上の単斜晶からなる。) 次いで焼結体は,必要に応じて熱処理することが出来
る。
The sintered body at this point usually consists mainly of tetragonal and cubic, and further contains about 15% by weight or less of monoclinic.
(However, if the sintered body does not contain a stabilizer such as Y 2 O 3, it is composed of about 20% or more monoclinic after sintering.) Then, the sintered body should be heat-treated as necessary. Can be done.

熱処理条件は被処理物である熱処理前の焼結体の組成
により一義的ではないが、不活性雰囲気中,通常約1000
℃〜約1300℃,1時間以上好ましくは約1100℃〜約1250
℃、1時間〜100時間行えば良い。
The heat treatment conditions are not unique depending on the composition of the sintered body before the heat treatment, that is, the object to be treated.
° C to about 1300 ° C, more than 1 hour, preferably about 1100 ° C to about 1250
C. for 1 hour to 100 hours.

かかる熱処理を行う場合には、得られる焼結体は熱処
理を行わないものに比較し、正方晶及び/または立方晶
の割合が減少し、少なくとも単斜晶の量が約5重量%以
上増加し普通には結晶相に占める単斜晶が約5重量%〜
約50重量%の組成を有するようになり,理由は明かでは
ないが,熱処理を行わない本発明のものに比し導電性の
低下なくして,更に機械的強度や破壊靭性が著しく向上
する。(但しY2O3を含有しない焼結体にあっては焼結後
において約20%以上の単斜晶よりなるため,焼結後の熱
処理は必ずしも必要ではない。) 本発明に際し,本発明の効果を損なわない範囲で酸化
ジルコニウム、酸窒化チタニウムやチタン酸化物以外の
他の物質を混合することは勿論可能である。例えばAl2O
3,SiO2,SiC,TiC,TiB2等の無機物質等が挙げられる。こ
れらの添加量は添加目的にもよるが,通常酸化ジルコニ
ウムに対し約20容量%の範囲内で使用される。
When such a heat treatment is performed, the ratio of the tetragonal and / or cubic crystals is reduced and the amount of the monoclinic is increased by at least about 5% by weight as compared with the sintered body without the heat treatment. Normally, about 5% by weight of monoclinic in the crystal phase
It has a composition of about 50% by weight, and although the reason is not clear, the mechanical strength and the fracture toughness are remarkably improved without lowering the conductivity as compared with those of the present invention without heat treatment. (However, since the sintered body containing no Y 2 O 3 is composed of about 20% or more of monoclinic after sintering, heat treatment after sintering is not necessarily required.) It is of course possible to mix substances other than zirconium oxide, titanium oxynitride and titanium oxide as long as the effect of the above is not impaired. For example, Al 2 O
3 , inorganic materials such as SiO 2 , SiC, TiC, and TiB 2 . The amount of these additions depends on the purpose of addition, but is usually used within a range of about 20% by volume based on zirconium oxide.

〈発明の効果〉 以上詳述した本発明方法により得られたジルコニア焼
結体は強度、靭性、硬度に優れ,かつ導電性をも有する
ため,マイクロモーター用シャフトや工業用カッター等
の材料自体に導電性を要求される用途や、切削工具や内
燃機関部品等の加工性を要求される分野への適合性を高
め得るとともに,従来のTiNやTiCを原料として用いる方
法のごとく,加圧,高温焼結を行わずとも得られるの
で,極めて経済的でありその工業的価値は頗る大なるも
のである。
<Effect of the Invention> Since the zirconia sintered body obtained by the method of the present invention described above has excellent strength, toughness, hardness, and also has electrical conductivity, it can be used for a material itself such as a shaft for a micromotor or an industrial cutter. It can improve the compatibility with applications that require conductivity and the fields that require workability such as cutting tools and internal combustion engine parts, and can also be used under pressure, high temperature, like the conventional method using TiN or TiC as a raw material. Since it can be obtained without sintering, it is very economical and its industrial value is very large.

〈実施例〉 以下,本発明を実施例により具体的に説明する。<Examples> Hereinafter, the present invention will be described specifically with reference to examples.

尚,本発明において焼結体の各種物性測定は以下の方
法で求めた。
In the present invention, various physical properties of the sintered body were measured by the following methods.

導電率(体積固有抵抗): 焼結体を切り出して得られた試験片を四端子方式の微
小抵抗計で室温でその数値を読み取り、試験片寸法より
算出した。
Conductivity (volume resistivity): A test piece obtained by cutting out a sintered body was read at room temperature with a four-terminal microresistance meter, and calculated from the test piece dimensions.

曲げ強度(3点曲げ強度): JIS−R1601により測定した。Flexural strength (3-point flexural strength): Measured according to JIS-R1601.

硬度: ビッカース硬度(荷重20kg) 破壊靭性値: IF法(荷重20Kg)新原の式より算出した。Hardness: Vickers hardness (load: 20 kg) Fracture toughness: IF method (load: 20 kg) Calculated from Niihara's formula.

結晶相: X線回折法により行った。1μmダイヤモンドペース
トで鏡面研磨した試験片をX線回折し、次式より各結晶
相の割合を算出した。
Crystal phase: This was performed by the X-ray diffraction method. A test piece mirror-polished with a 1 μm diamond paste was subjected to X-ray diffraction, and the ratio of each crystal phase was calculated from the following equation.

m/(t+c)=〔Im(111)+Im(111)/ 〔It(111)+Ic(111)〕 c/t=Ic(200)/〔It(200)+It(002)〕 式中、mは単斜晶、tは正方晶、cは立方晶、Imは単
斜晶面の積分強度、Itは正方晶の積分強度、Icは立方晶
の積分強度を示す。
m / (t + c) = [Im (111) + Im (111) / [It (111) + Ic (111)] c / t = Ic (200) / [It (200) + It (002)] where m is Monoclinic, t is tetragonal, c is cubic, Im is the monoclinic plane integrated intensity, It is the tetragonal integrated intensity, and Ic is the cubic integrated intensity.

TiNの生成量: 鏡面研磨した試料面を光学顕微鏡で観察しTiNの容量
%を読み取った。
TiN generation amount: The mirror-polished sample surface was observed with an optical microscope, and the volume% of TiN was read.

焼結体の密度: 水中アルキメデス法により測定した。Density of sintered body: Measured by the Archimedes-in-water method.

固溶窒素量: EPMA分析により測定を行った。(日本電子製JXA−860
0S) 実施例1 市販の平均粒子径0.5μmのジルコニア粉末(3モル
%Y2O3,Y2O3以外の不純物0.1重量%以下,住友化学工業
製)65重量%と平均粒子径0.1μmのチタンブラック粉
末(三菱金属製チタンブラック13M)35重量%とを湿式
ボールミル(エタノールを使用)で混合、粉砕した後,
乾燥,解砕した焼結用原料を得た。このようにして得た
焼結用原料を金型プレス成形機にて予備成形した後,150
0Kg/cm2の圧力でラバープレス成形を行い,得られた成
形体を電気炉で窒素雰囲気中で1550℃の温度下に2時間
保持し焼結を行い,次いで1200℃,10時間熱処理を行っ
た。
Solid solution nitrogen amount: Measured by EPMA analysis. (JEOL JXA-860
0S) Example 1 Commercially available 65% by weight of zirconia powder having an average particle diameter of 0.5 μm (0.1 mol% or less of impurities other than 3 mol% Y 2 O 3 and Y 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.) and an average particle diameter of 0.1 μm 35% by weight of titanium black powder (Mitsubishi Metals Titanium Black 13M) is mixed and pulverized in a wet ball mill (using ethanol).
A dried and crushed raw material for sintering was obtained. After the sintering raw material thus obtained was preformed by a die press forming machine,
Perform rubber press molding at a pressure of 0 kg / cm 2 , sinter the resulting molded body in an electric furnace at a temperature of 1550 ° C in a nitrogen atmosphere for 2 hours, and then perform heat treatment at 1200 ° C for 10 hours. Was.

得られた焼結体の物性を測定した所、密度5.43g/cm3,
体積固有抵抗1×10-2Ω・cm、曲げ強度68kg/mm2、硬度
1250、靭性9.1MPa・m0.5であり、また焼結体を分析し
たところ、TiNは16容量%、ジルコニア固溶体中のTiは1
2.0重量%、固溶窒素量は0.26重量%、ジルコニアの結
晶相は単斜相が40%で残部は立方晶と正方晶であった。
When the physical properties of the obtained sintered body were measured, the density was 5.43 g / cm 3 ,
Volume resistivity 1 × 10 -2 Ω · cm, bending strength 68 kg / mm 2 , hardness
1250, a toughness 9.1 MPa · m 0.5, also was analyzed sintered body, TiN is 16 volume%, the Ti in the zirconia solid solution 1
2.0% by weight, the amount of dissolved nitrogen was 0.26% by weight, and the monocrystalline phase of zirconia was 40% monoclinic, and the rest was cubic and tetragonal.

実施例2 市販の平均粒子径0.5μmのジルコニア粉末(3モル
%Y2O3,Y2O3以外の不純物0.1重量%以下,住友化学工業
製)55重量%と平均粒子径0.1μmのチタンブラック粉
末(三菱金属製チタンブラック13M)45重量%とを湿式
ボールミル(エタノールを使用)で混合,粉砕した後,
乾燥,解砕し焼結用原料を得た。このようにして得た焼
結用原料を金型プレス成形機にて予備成形した後,1500K
g/cm2の圧力でラバープレス成形を行い,得られた成形
体を電気炉で窒素雰囲気中1400℃の温度下に4時間保持
し焼結を行い,次いで1100℃,40時間熱処理を行った。
Example 2 55% by weight of commercially available zirconia powder having an average particle diameter of 0.5 μm (3% by mole or less of impurities other than Y 2 O 3 and Y 2 O 3 , 0.1% by weight or less, manufactured by Sumitomo Chemical Co., Ltd.) and titanium having an average particle diameter of 0.1 μm After mixing and pulverizing black powder (Mitsubishi Metals Titanium Black 13M) 45% by weight with a wet ball mill (using ethanol),
Drying and crushing yielded a raw material for sintering. After preforming the sintering raw material obtained in this way with a die press molding machine,
Rubber press molding was performed at a pressure of g / cm 2 , and the obtained compact was sintered in an electric furnace at a temperature of 1400 ° C. for 4 hours in a nitrogen atmosphere, and then heat-treated at 1100 ° C. for 40 hours. .

得られた焼結体の物性を測定した所、密度5.30g/c
m3、体積固有抵抗3×10-3Ω・cm、曲げ強度73kg/mm2
硬度1290、靭性6.0MPa・m0.5であり、また焼結体を分
析したところ、TiNは22容量%、ジルコニア固溶体中のT
iは15.2重量%、固溶窒素量は0.33重量%、ジルコニア
の結晶相は単斜晶が20%で残部は立方晶と正方晶であっ
た。
When the physical properties of the obtained sintered body were measured, the density was 5.30 g / c.
m 3 , volume resistivity 3 × 10 -3 Ω · cm, bending strength 73 kg / mm 2 ,
The hardness was 1290 and the toughness was 6.0 MPa · m 0.5. When the sintered body was analyzed, the TiN content was 22% by volume and the T in the zirconia solid solution.
i was 15.2% by weight, the amount of solute nitrogen was 0.33% by weight, the crystal phase of zirconia was 20% monoclinic, and the rest was cubic and tetragonal.

比較例1 市販の平均粒子径0.5μmのジルコニア粉末(3モル
%Y2O3,Y2O3以外の不純物0.1重量%以下,住友化学工業
製)81重量%と平均粒子径0.1μmのチタンブラック粉
末(三菱金属製チタンブラック13M)19重量%とを湿式
ボールミル(エタノールを使用)で混合,粉砕した後,
乾燥,解砕し焼結用原料を得た。このようにして得た焼
結用原料を金型プレス成形機にて予備成形した後,1500K
g/cm2の圧力でラバープレス成形を行い,得られた成形
体を電気炉で窒素雰囲気中1550℃の温度下に2時間保持
し焼結を行った。
Comparative Example 1 81% by weight of commercially available zirconia powder having an average particle diameter of 0.5 μm (3 mol% or less other than 0.1% by weight of impurities other than Y 2 O 3 and Y 2 O 3 , manufactured by Sumitomo Chemical) and titanium having an average particle diameter of 0.1 μm After mixing and pulverizing a black powder (Mitsubishi Metals Titanium Black 13M) 19% by weight with a wet ball mill (using ethanol),
Drying and crushing yielded a raw material for sintering. After preforming the sintering raw material obtained in this way with a die press molding machine,
Rubber press molding was performed at a pressure of g / cm 2 , and the obtained molded body was sintered in an electric furnace at a temperature of 1550 ° C. for 2 hours in a nitrogen atmosphere.

得られた焼結体の物性を測定した所、密度5.82g/c
m3、体積固有抵抗>1Ω・cm、曲げ強度30kg/mm2、硬度
1000、靭性3.0MPa・m0.であり、また焼結体を分析した
ところ、TiNは8容量%、ジルコニア固溶体中のTiは6.4
重量%、固溶窒素量は0.15重量%、ジルコニアの結晶相
は単斜晶は検出されず立方晶と正方晶であった。
When the physical properties of the obtained sintered body were measured, the density was 5.82 g / c.
m 3 , volume resistivity> 1Ω · cm, bending strength 30kg / mm 2 , hardness
1000, a toughness 3.0 MPa · m 0., also was analyzed sintered body, TiN 8 volume%, the Ti in the zirconia solid solution 6.4
% By weight, the amount of solute nitrogen was 0.15% by weight, and the crystal phase of zirconia was cubic and tetragonal without any monoclinic crystal being detected.

比較例2 市販の平均粒子径0.5μmのジルコニア粉末(3モル
%Y2O3,Y2O3以外の不純物0.1重量%以下,住友化学工業
製)45重量%と平均粒子径0.1μmのチタンブラック粉
末(三菱金属製チタンブラック13M)55重量%とを湿式
ボールミル(エタノールを使用)で混合,粉砕した後,
乾燥,解砕し焼結用原料を得た。このようにして得た焼
結用原料を金型プレス成形機にて予備成形した後,1500K
g/cm2の圧力でラバープレス成形を行い,得られた成形
体を電気炉で窒素雰囲気中1550℃の温度下に2時間保持
し焼結を行い,次いで1100℃、40時間熱処理を行った。
Comparative Example 2 45% by weight of commercially available zirconia powder having an average particle diameter of 0.5 μm (3 mol% or less than 0.1% by weight of impurities other than Y 2 O 3 and Y 2 O 3 , manufactured by Sumitomo Chemical Co., Ltd.) and titanium having an average particle diameter of 0.1 μm 55% by weight of black powder (Mitsubishi Metals Titanium Black 13M) is mixed and pulverized with a wet ball mill (using ethanol).
Drying and crushing yielded a raw material for sintering. After preforming the sintering raw material obtained in this way with a die press molding machine,
Rubber press molding was performed at a pressure of g / cm 2 , and the obtained molded body was held in an electric furnace at 1550 ° C. for 2 hours in a nitrogen atmosphere at a temperature of 1550 ° C., followed by heat treatment at 1100 ° C. for 40 hours. .

得られた焼結体の物性を測定した所、密度5.10g/c
m3、体積固有抵抗4×10-3Ω・cm、曲げ強度48kg/mm2
硬度1249、靭性4.6MPa・m0.5であり、また焼結体を分
析したところ、TiNは26容量%、ジルコニア固溶体中のT
iは18.6重量%でZrTiO4が生成しており、ジルコニアの
結晶相は単斜晶が12%で残部は立方晶と正方晶であっ
た。
When the physical properties of the obtained sintered body were measured, the density was 5.10 g / c.
m 3 , volume resistivity 4 × 10 -3 Ω · cm, bending strength 48 kg / mm 2 ,
The hardness was 1249 and the toughness was 4.6 MPa · m 0.5. When the sintered body was analyzed, the TiN was 26% by volume, and the T
i was 18.6% by weight to form ZrTiO 4 , and the crystal phase of zirconia was 12% monoclinic and the rest was cubic and tetragonal.

実施例3 市販の平均粒子径1.0μmのジルコニア粉末(安定化
剤であるY2O3含まず、不純物0.1重量%以下,住友化学
工業製)55重量%と平均粒子径0.1μmのチタンブラッ
ク粉末(三菱金属製チタンブラック13M)45重量%とを
湿式ボールミル(エタノールを使用)で混合,粉砕した
後,乾燥,解砕し焼結用原料を得た。このようにして得
た焼結用原料を金型プレス成形機にて予備成形した後,1
500Kg/cm2の圧力でラバープレス成形を行い,得られた
成形体を電気炉で窒素雰囲気中1400℃の温度下に4時間
保持し焼結を行った。
Example 3 Commercially available 55% by weight of zirconia powder having an average particle diameter of 1.0 μm (not including Y 2 O 3 as a stabilizer, impurities of 0.1% by weight or less, manufactured by Sumitomo Chemical Co., Ltd.) and titanium black powder having an average particle diameter of 0.1 μm (Mitsubishi Metals Titanium Black 13M) 45% by weight was mixed with a wet ball mill (using ethanol), pulverized, dried and disintegrated to obtain a raw material for sintering. After the sintering raw material thus obtained was preformed by a die press forming machine,
Rubber press molding was performed at a pressure of 500 kg / cm 2 , and the obtained compact was sintered in an electric furnace at a temperature of 1400 ° C. for 4 hours in a nitrogen atmosphere.

得られた焼結体の物性を測定した所、密度5.28g/c
m3、体積固有抵抗3×10-3Ω・cm、曲げ強度60kg/mm2
硬度950、靭性5.3MPa・m0.5であり、また焼結体を分析
したところ、TiNは22容量%、ジルコニア固溶体中のTi
は15.2重量%、固溶窒素量は0.33重量%、ジルコニアの
結晶相は単斜晶が50%で残部は立方晶と正方晶であっ
た。
When the physical properties of the obtained sintered body were measured, the density was 5.28 g / c.
m 3 , volume resistivity 3 × 10 −3 Ω · cm, bending strength 60 kg / mm 2 ,
The hardness was 950 and the toughness was 5.3 MPa · m 0.5. When the sintered body was analyzed, the TiN was 22% by volume, and the Ti in the zirconia solid solution was
Was 15.2% by weight, the amount of dissolved nitrogen was 0.33% by weight, and the crystal phase of zirconia was 50% monoclinic and the rest was cubic and tetragonal.

実施例4 市販の平均粒子径1.0μmのジルコニア粉末(安定化
剤であるY2O3含まず、不純物0.1重量%以下,住友化学
工業製)65重量%と平均粒子径0.1μmのチタンブラッ
ク粉末(三菱金属製チタンブラック13M)35重量%に平
均粒径13μmの窒化チタン(日本新金属製)28.5重量%
(ジルコニア粉末とチタンブラック粉末に対し)を湿式
ボールミル(エタノールを使用)で混合,粉砕した後,
乾燥,解砕し焼結用原料を得た。このようにして得た焼
結用原料を金型プレス成形機にて予備成形した後,1500K
g/cm2の圧力でラバープレス成形を行い,得られた成形
体を電気炉で窒素雰囲気中1550℃の温度下に2時間保持
し焼結を行った。
Example 4 Commercially available zirconia powder having an average particle diameter of 1.0 μm (not including Y 2 O 3 as a stabilizer, impurities of 0.1% by weight or less, manufactured by Sumitomo Chemical Co., Ltd.) 65% by weight and titanium black powder having an average particle diameter of 0.1 μm (Mitsubishi Metals Titanium Black 13M) 35% by weight and 28.5% by weight of titanium nitride (made by Nippon Shinmetal) with an average particle size of 13μm
(For zirconia powder and titanium black powder) mixed and pulverized by wet ball mill (using ethanol)
Drying and crushing yielded a raw material for sintering. After preforming the sintering raw material obtained in this way with a die press molding machine,
Rubber press molding was performed at a pressure of g / cm 2 , and the obtained molded body was sintered in an electric furnace at a temperature of 1550 ° C. for 2 hours in a nitrogen atmosphere.

得られた焼結体の物性を測定した所、密度5.37g/c
m3、体積固有抵抗5×10-4Ω・cm、曲げ強度51kg/mm2
硬度1097、靭性5.2MPa・m0.5であり、また焼結体を分
析したところ、TiNは40容量%、ジルコニア固溶体中のT
iは12.2重量%、固溶窒素量は0.26重量%、ジルコニア
の結晶相は単斜晶が35%で残部は立方晶と正方晶であっ
た。
When the physical properties of the obtained sintered body were measured, the density was 5.37 g / c.
m 3 , volume resistivity 5 × 10 -4 Ωcm, bending strength 51 kg / mm 2 ,
The hardness was 1097 and the toughness was 5.2 MPa · m 0.5. When the sintered body was analyzed, the TiN was 40% by volume and the T in the zirconia solid solution was 40%.
i was 12.2% by weight, the amount of dissolved nitrogen was 0.26% by weight, the crystal phase of zirconia was 35% monoclinic, and the rest was cubic and tetragonal.

実施例5〜22,比較例7 実施例1において使用したものと同様な安定化剤を含
むジルコニア粉末を使用し,さらに実施例4で使用した
ものと同様な窒化チタンを第1表記載の量比で添加した
他は実施例1と同様な方法で焼結体を得,この焼結体の
物性を測定した。その結果を第1表に示す。
Examples 5 to 22, Comparative Example 7 A zirconia powder containing the same stabilizer as that used in Example 1 was used, and titanium nitride similar to that used in Example 4 was added in the amount shown in Table 1. A sintered body was obtained in the same manner as in Example 1 except that it was added in a ratio, and the physical properties of the sintered body were measured. Table 1 shows the results.

比較例3 市販の平均粒子径0.5μmのジルコニア粉末(3モル
%Y2O3,Y2O3以外の不純物0.1重量%以下,住友化学工業
製)のみで原料調整を行い他は実施例1と同様な方法で
焼結体を得,この焼結体の物性を測定した。その結果を
第1表に示す。
Comparative Example 3 Commercially available average particle diameter 0.5μm zirconia powder (3 mol% Y 2 O 3, Y 2 O 3 0.1 wt% impurities other than the following, manufactured by Sumitomo Chemical Co., Ltd.) Other performs only material preparation in Example 1 A sintered body was obtained in the same manner as described above, and the physical properties of the sintered body were measured. Table 1 shows the results.

比較例4 比較例3においてジルコニア粉末の他,実施例4で使
用したものと同様な窒化チタンを第1表記載の量比で添
加した他は実施例1と同様な方法で焼結体を得,この焼
結体の物性を測定した。その結果を第1表に示す。
Comparative Example 4 A sintered body was obtained in the same manner as in Example 1 except that in addition to zirconia powder in Comparative Example 3, titanium nitride similar to that used in Example 4 was added at the ratio shown in Table 1. The physical properties of the sintered body were measured. Table 1 shows the results.

比較例5 比較例4に使用した原料粉末をホットプレスで1550
℃,0.5時間保持し焼結体を得た。
Comparative Example 5 The raw material powder used in Comparative Example 4 was hot-pressed to 1550.
The temperature was maintained at ℃ for 0.5 hour to obtain a sintered body.

この焼結体の物性を測定した。その結果を第1表に示
す。
The physical properties of this sintered body were measured. Table 1 shows the results.

比較例6 実施例2においてチタンブラックを平均粒径0.3μm
の酸化チタン(石原産業製,タイペークA−100)に替
え,かつ熱処理を行わない他は実施例2と同様な方法で
焼結体を得,この焼結体の物性を測定した。その結果を
第1表に示す。
Comparative Example 6 In Example 2, the titanium black was changed to an average particle diameter of 0.3 μm.
A sintered body was obtained in the same manner as in Example 2 except that the titanium oxide was replaced with Titanium Oxide (manufactured by Ishihara Sangyo Co., Ltd., Taipaek A-100), and the heat treatment was not performed. Table 1 shows the results.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】焼結後の焼結体が,酸化ジルコニウム固溶
体60〜90容量%と窒化チタニウム10〜40容量%からな
り,該固溶体が酸化ジルコニウムとチタニウムとして0
<Ti≦16重量%含有するチタニウム酸化物よりなるよう
に酸化ジルコニウム粉末と亜酸化チタン粉末を混合,成
形した後,窒素雰囲気下で焼結することを特徴とする導
電性ジルコニア焼結体の製造方法。
The sintered body after sintering is composed of 60 to 90% by volume of a zirconium oxide solid solution and 10 to 40% by volume of titanium nitride, and the solid solution is composed of zirconium oxide and titanium as 0%.
<Production of a conductive zirconia sintered body characterized in that zirconium oxide powder and titanium suboxide powder are mixed and formed so as to be made of a titanium oxide containing Ti ≦ 16% by weight, and then sintered under a nitrogen atmosphere. Method.
JP1044096A 1988-02-24 1989-02-23 Method for producing conductive zirconia sintered body Expired - Lifetime JP2727628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044096A JP2727628B2 (en) 1988-02-24 1989-02-23 Method for producing conductive zirconia sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-42920 1988-02-24
JP4292088 1988-02-24
JP1044096A JP2727628B2 (en) 1988-02-24 1989-02-23 Method for producing conductive zirconia sintered body

Publications (2)

Publication Number Publication Date
JPH01308870A JPH01308870A (en) 1989-12-13
JP2727628B2 true JP2727628B2 (en) 1998-03-11

Family

ID=12649458

Family Applications (2)

Application Number Title Priority Date Filing Date
JP1044812A Expired - Lifetime JP2808637B2 (en) 1988-02-24 1989-02-22 Conductive zirconia sintered body
JP1044096A Expired - Lifetime JP2727628B2 (en) 1988-02-24 1989-02-23 Method for producing conductive zirconia sintered body

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP1044812A Expired - Lifetime JP2808637B2 (en) 1988-02-24 1989-02-22 Conductive zirconia sintered body

Country Status (1)

Country Link
JP (2) JP2808637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3541108B2 (en) * 1995-11-07 2004-07-07 日本特殊陶業株式会社 Ceramic sintered body and ceramic mold
JP2003212652A (en) * 2002-01-18 2003-07-30 Ngk Spark Plug Co Ltd Zirconia sintered compact manufacturing method and zirconia sintered compact
CN113321503A (en) * 2021-07-01 2021-08-31 浙江大学 Low-temperature sintering method of conductive ceramic composite material, product and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832067A (en) * 1981-08-13 1983-02-24 日本特殊陶業株式会社 Tenacious zirconia sintered body
JPH066509B2 (en) * 1986-02-28 1994-01-26 住友セメント株式会社 Electric discharge machinable ceramics and manufacturing method thereof

Also Published As

Publication number Publication date
JP2808637B2 (en) 1998-10-08
JPH01308870A (en) 1989-12-13
JPH01308871A (en) 1989-12-13

Similar Documents

Publication Publication Date Title
JP3368090B2 (en) Zirconia-based sintered body, method for producing the same, crushing component material and orthodontic bracket material
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
JP2736380B2 (en) Method for producing silicon carbide material and raw material composition
JP2563392B2 (en) Silicon nitride ceramics and method for producing the same
Barnier et al. Synthesis and hot-pressing of single-phase ZrCxOy and two-phase ZrCxOy ZrO2 materials
JP2847818B2 (en) Conductive zirconia sintered body and method for producing the same
JP2727628B2 (en) Method for producing conductive zirconia sintered body
KR900005510B1 (en) Method for producing siliconcarbide-sinteringbody
EP0365553B1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
JP2651935B2 (en) Method for producing composite material and raw material composition
JP2645894B2 (en) Method for producing zirconia ceramics
EP0250593B1 (en) High-strength ceramics containing alpha-sialon
JPH05508611A (en) Cerium phase in silicon nitride containing cerium
JP5111736B2 (en) Silicon nitride material and manufacturing method thereof
JPH0543333A (en) Production of high-strength sialon-based sintered compact
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JPS6337075B2 (en)
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH0283265A (en) Production of silicon nitride
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JPH0585830A (en) Sintered zirconium boride and its production
JPH01239068A (en) Sintered material of titanium boride base and production thereof
JPH06263533A (en) High-toughness ceramic sintered compact excellent in thermal stability and its production
JPH01219062A (en) Production of silicon nitride sintered body
JPH0559074B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 12