JPH06330320A - Vacuum deposition device - Google Patents

Vacuum deposition device

Info

Publication number
JPH06330320A
JPH06330320A JP11974193A JP11974193A JPH06330320A JP H06330320 A JPH06330320 A JP H06330320A JP 11974193 A JP11974193 A JP 11974193A JP 11974193 A JP11974193 A JP 11974193A JP H06330320 A JPH06330320 A JP H06330320A
Authority
JP
Japan
Prior art keywords
carrier belt
substrate
vapor deposition
belt
vacuum deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11974193A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nishizawa
康弘 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11974193A priority Critical patent/JPH06330320A/en
Publication of JPH06330320A publication Critical patent/JPH06330320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the deterioration and deformation of a substrate by heat and to enable vacuum deposition over a large length with high sticking efficiency by cooling a carrier belt with an electronic cooler in a winding type vacuum deposition device in which the substrate is transferred along the carrier belt. CONSTITUTION:A carrier belt 4 for transferring a polymer substrate 1 is disposed in the vacuum vessel of a vacuum deposition device and electric current is supplied to an electronic cooler 11 fitted to the carrier belt 4 to cool the belt 4 by Peltier effect. The rise of the temp. of the polymer substrate 1 adhering to the carrier belt 4 can be made small and the substrate 1 is not deteriorated and deformed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子基板上に薄膜を
連続形成する真空蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum vapor deposition apparatus for continuously forming a thin film on a polymer substrate.

【0002】[0002]

【従来の技術】近年、省資源、小型化などの時代要請が
あり薄膜の応用範囲が広がっている。
2. Description of the Related Art In recent years, the application range of thin films has been expanding due to the demand of the times such as resource saving and miniaturization.

【0003】光学的、磁気的に異方性を付与するために
よく用いられる斜方蒸着等では、蒸発された材料の一部
しか基板上に付着させる事ができず、省資源、高生産性
の観点から蒸発物の付着効率を改善する方法として、高
分子基板をキャリヤベルトにより搬送する方式が試みら
れてきた。
In oblique vapor deposition or the like, which is often used to give optical and magnetic anisotropy, only a part of the vaporized material can be deposited on the substrate, which saves resources and high productivity. From the viewpoint of the above, as a method for improving the deposition efficiency of the evaporated material, a method of transporting the polymer substrate by a carrier belt has been tried.

【0004】以下に従来の蒸着装置について説明する。
図3は従来の真空蒸着装置の構造を示すものである。図
3において、1は高分子基板、2・3はキャリヤベルト
駆動軸、4はキャリヤベルト、5は耐火容器、6は蒸発
材料、7は蒸気流、8は電子ビーム、9はマスクであ
る。
A conventional vapor deposition apparatus will be described below.
FIG. 3 shows the structure of a conventional vacuum vapor deposition apparatus. In FIG. 3, 1 is a polymer substrate, 2.3 is a carrier belt drive shaft, 4 is a carrier belt, 5 is a refractory vessel, 6 is an evaporation material, 7 is a vapor flow, 8 is an electron beam, and 9 is a mask.

【0005】以上のように構成された真空蒸着装置につ
いて、以下その動作について説明する。まず、加速され
た電子ビーム8により蒸発材料6を加熱し蒸気流7を生
じせしめる。この蒸気流は磁気テープの製造時によく用
いられる基板1への入射角度を限定するマスク9により
一部さえぎられ移動する基板1に付着する。高分子基板
1は蒸発材料6の輻射熱及び蒸気流7の持つ熱によって
耐熱温度以上に温度上昇しないようキャリヤベルト4に
密着する事により冷却される。
The operation of the vacuum vapor deposition apparatus configured as described above will be described below. First, the vaporized material 6 is heated by the accelerated electron beam 8 to generate the vapor flow 7. This vapor flow adheres to the moving substrate 1 which is partially blocked by a mask 9 which limits the angle of incidence on the substrate 1 which is often used in the manufacture of magnetic tape. The polymer substrate 1 is cooled by being in close contact with the carrier belt 4 so that the radiant heat of the evaporation material 6 and the heat of the vapor flow 7 do not increase above the heat resistant temperature.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、蒸着処理の時間の経過と共に蒸発材料6
からの輻射熱でキャリヤベルト4の温度が上昇し、高分
子基板1が耐熱温度以上の温度となって劣下変形したり
溶断するなどの問題点があった。
However, in the above-mentioned conventional configuration, the evaporation material 6 does not change with the lapse of time in the vapor deposition process.
There is a problem that the temperature of the carrier belt 4 rises due to the radiant heat from the polymer substrate 1 and the polymer substrate 1 becomes a temperature higher than the heat resistant temperature and is deformed or melted.

【0007】本発明は上記従来の問題点を解決するもの
で、高付着効率で長尺の蒸着ができる巻取り式真空蒸着
装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a roll-up type vacuum vapor deposition apparatus capable of performing long vapor deposition with high deposition efficiency.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の真空蒸着装置は、真空槽内に、高分子成形物
基板を搬送するベルト機構、前記ベルトに設けられた電
子冷却機構、電子冷却機構の発熱側を冷却する機構を備
えた構成を有している。
In order to achieve this object, a vacuum vapor deposition apparatus of the present invention comprises a belt mechanism for conveying a polymer molded product substrate in a vacuum chamber, an electronic cooling mechanism provided on the belt, It has a configuration including a mechanism for cooling the heat generation side of the electronic cooling mechanism.

【0009】[0009]

【作用】この構成によって、キャリヤベルトに設けられ
た電子冷却機構に通電する事によりキャリヤベルトを冷
却し高分子基板の温度上昇を抑える事ができる。
With this configuration, the carrier belt is cooled by energizing the electronic cooling mechanism provided on the carrier belt, and the temperature rise of the polymer substrate can be suppressed.

【0010】[0010]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の真空蒸着装置の構造を示す
ものである。図1において、1は高分子基板、2・3は
キャリヤベルト駆動軸、4はキャリヤベルト、5は耐火
容器、6は蒸発材料、7は蒸気流、8は電子ビーム、9
はマスク、10は冷却キャン、11は電子冷却器であ
る。
FIG. 1 shows the structure of the vacuum vapor deposition apparatus of the present invention. In FIG. 1, 1 is a polymer substrate, 2 and 3 are carrier belt drive shafts, 4 is a carrier belt, 5 is a refractory vessel, 6 is an evaporation material, 7 is a vapor flow, 8 is an electron beam, and 9 is a beam.
Is a mask, 10 is a cooling can, and 11 is an electronic cooler.

【0012】以上のように構成された真空蒸着装置につ
いて、その動作を説明する。まず、加速された電子ビー
ム8により蒸発材料6を加熱し蒸気流7を生じせしめ
る。この蒸気流は磁気テープの製造時によく用いられる
高分子基板1への入射角度を限定するマスク9により一
部さえぎられ、キャリヤベルト4に密着して移動する高
分子基板1に付着する。キャリヤベルト4は、高分子基
板1と接触する面の反対側に設けられた電子冷却器11
により冷却される。さらに電子冷却器11の発熱側は水
冷などにより一定の温度に保たれた冷却キャン10に接
触され温度が一定に保たれる。次に電子冷却器11の動
作について説明する。図2は、キャリヤベルト4の一部
を拡大したものである。図1の電子冷却器11は、キャ
リヤベルト4の上に絶縁層(図示せず)を介して電極1
2、P型半導体14、N型半導体15を配し、さらに電
極13でP型半導体14、N型半導体15を接続する事
によりPN接合を形成している。この電子冷却器に直流
電源16を用いて電流を流せばペルチェ効果により吸熱
と発熱が発生し電流の向きを選択する事によりキャリヤ
ベルト4は冷却され、キャリヤベルト4に密着された高
分子基板1も冷却される事になる。
The operation of the vacuum vapor deposition apparatus constructed as above will be described. First, the vaporized material 6 is heated by the accelerated electron beam 8 to generate the vapor flow 7. This vapor flow is partially blocked by a mask 9 that limits the incident angle to the polymer substrate 1 that is often used in the manufacture of magnetic tapes, and adheres to the polymer substrate 1 that moves in close contact with the carrier belt 4. The carrier belt 4 is an electronic cooler 11 provided on the opposite side of the surface in contact with the polymer substrate 1.
Is cooled by. Further, the heat generating side of the electronic cooler 11 is brought into contact with the cooling can 10 kept at a constant temperature by water cooling or the like, so that the temperature is kept constant. Next, the operation of the electronic cooler 11 will be described. FIG. 2 is an enlarged view of a part of the carrier belt 4. The electronic cooler 11 shown in FIG. 1 includes an electrode 1 through an insulating layer (not shown) on the carrier belt 4.
2, a P-type semiconductor 14 and an N-type semiconductor 15 are arranged, and the electrode 13 connects the P-type semiconductor 14 and the N-type semiconductor 15 to form a PN junction. If a current is applied to this electronic cooler using a DC power supply 16, heat and heat are generated due to the Peltier effect, and the carrier belt 4 is cooled by selecting the direction of the current. Will also be cooled.

【0013】本実施例による真空蒸着装置と従来の真空
蒸着装置の比較を、高密度記録に適した蒸着磁気テープ
を試作する事により比較した。
The vacuum vapor deposition apparatus according to this embodiment was compared with the conventional vacuum vapor deposition apparatus by making a trial vapor deposition magnetic tape suitable for high density recording.

【0014】キャリヤベルトは厚さ0.5mmのステン
レス鋼板を用いキャリヤベルトに沿って、厚み5μm、
長さ6000mのポリエチレンテレフタレートフィルム
を120m/分の速度で移動させ、この基板上にCo8
0%−Ni120%からなる厚さ0.2μmの磁性層を
形成するという試作を行った。本実施例では、電子冷却
器に流す直流電流を100Aとし、冷却キャンは水を循
環させて5℃に保った。その結果、比較例では蒸着開始
後5〜10分後に高分子基板が温度上昇により溶断し
た。本実施例では、全く問題なく全長蒸着する事ができ
た。
The carrier belt is made of a stainless steel plate having a thickness of 0.5 mm, and the thickness is 5 μm along the carrier belt.
A 6000 m long polyethylene terephthalate film is moved at a speed of 120 m / min, and Co8 is deposited on this substrate.
A prototype was formed in which a magnetic layer of 0% -Ni120% and a thickness of 0.2 μm was formed. In this example, the direct current passed through the electronic cooler was set to 100 A, and the cooling can was kept at 5 ° C. by circulating water. As a result, in the comparative example, the polymer substrate was melted due to temperature rise 5 to 10 minutes after the start of vapor deposition. In this example, full length vapor deposition could be performed without any problem.

【0015】以上のように本実施例によれば、キャリヤ
ベルトを電子的に直接冷却する事により高分子基板が効
率よく冷却され長尺の蒸着が可能になり、高付着効率で
長尺の蒸着が可能な巻取り式真空蒸着装置を提供でき
る。
As described above, according to the present embodiment, by directly cooling the carrier belt electronically, the polymer substrate is efficiently cooled and long vapor deposition is possible, and long vapor deposition with high deposition efficiency. It is possible to provide a roll-up type vacuum vapor deposition device capable of performing the above.

【0016】[0016]

【発明の効果】以上のように本発明は、真空槽内に、高
分子成形物基板を搬送するベルト機構、前記ベルトに設
けられた電子冷却機構、電子冷却機構の発熱側を冷却す
る機構を、備える事により蒸着中の基板の温度上昇を低
く抑える事ができ、高付着効率で長尺の蒸着が可能な巻
取り式真空蒸着装置を実現できるものである。
As described above, according to the present invention, a belt mechanism for conveying a polymer molded product substrate, an electronic cooling mechanism provided on the belt, and a mechanism for cooling the heat generating side of the electronic cooling mechanism are provided in a vacuum chamber. By providing the above, the temperature rise of the substrate during vapor deposition can be suppressed to a low level, and a roll-up type vacuum vapor deposition apparatus capable of long vapor deposition with high deposition efficiency can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における真空蒸着装置の構成図FIG. 1 is a configuration diagram of a vacuum vapor deposition device in an embodiment of the present invention.

【図2】本発明の実施例における電子冷却器の動作説明
のための構成図
FIG. 2 is a configuration diagram for explaining the operation of the electronic cooler in the embodiment of the present invention.

【図3】従来の真空蒸着装置の構成図FIG. 3 is a block diagram of a conventional vacuum vapor deposition device.

【符号の説明】 1 高分子基板 2,3 キャリヤベルト駆動軸 4 キャリヤベルト 5 耐火容器 6 蒸発材料 7 蒸気流 8 電子ビーム 9 マスク 10 冷却キャン 11 電子冷却器 12,13 電極 14 P型半導体 15 N型半導体 16 直流電源[Explanation of symbols] 1 polymer substrate 2, 3 carrier belt drive shaft 4 carrier belt 5 refractory container 6 evaporation material 7 vapor flow 8 electron beam 9 mask 10 cooling can 11 electron cooler 12, 13 electrode 14 P-type semiconductor 15 N Type semiconductor 16 DC power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空槽内に、高分子成形物基板を搬送す
るベルト機構、前記ベルトに設けられた電子冷却機構、
電子冷却機構の発熱側を冷却する機構を備えたことを特
徴とする真空蒸着装置。
1. A belt mechanism for conveying a polymer molded product substrate in a vacuum chamber, an electronic cooling mechanism provided on the belt,
A vacuum vapor deposition apparatus comprising a mechanism for cooling the heat generating side of an electronic cooling mechanism.
JP11974193A 1993-05-21 1993-05-21 Vacuum deposition device Pending JPH06330320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11974193A JPH06330320A (en) 1993-05-21 1993-05-21 Vacuum deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11974193A JPH06330320A (en) 1993-05-21 1993-05-21 Vacuum deposition device

Publications (1)

Publication Number Publication Date
JPH06330320A true JPH06330320A (en) 1994-11-29

Family

ID=14768990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11974193A Pending JPH06330320A (en) 1993-05-21 1993-05-21 Vacuum deposition device

Country Status (1)

Country Link
JP (1) JPH06330320A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589000A (en) * 1995-09-06 1996-12-31 Minnesota Mining And Manufacturing Company Fixture for deposition
JP2008150636A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Film deposition apparatus and film deposition method
US9770890B2 (en) 2013-05-30 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Apparatus and method for manufacturing thin film, electro-chemical device and method for manufacturing electro-chemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589000A (en) * 1995-09-06 1996-12-31 Minnesota Mining And Manufacturing Company Fixture for deposition
JP2008150636A (en) * 2006-12-14 2008-07-03 Matsushita Electric Ind Co Ltd Film deposition apparatus and film deposition method
US9770890B2 (en) 2013-05-30 2017-09-26 Panasonic Intellectual Property Management Co., Ltd. Apparatus and method for manufacturing thin film, electro-chemical device and method for manufacturing electro-chemical device

Similar Documents

Publication Publication Date Title
WO2014119580A1 (en) Thin substrate processing device
US4393091A (en) Method of vacuum depositing a layer on a plastic film substrate
JPH06330320A (en) Vacuum deposition device
US5258074A (en) Evaporation apparatus comprising film substrate voltage applying means and current measurement means
US5180433A (en) Evaporation apparatus
JP6022373B2 (en) Thin substrate processing equipment
JP2005179716A (en) Sputtering apparatus
JP4074672B2 (en) Sputtering method
JP3365207B2 (en) Vacuum deposition equipment
JP3024148B2 (en) Etching equipment
JPS61206225A (en) Temperature controller
JPH04116160A (en) Film forming device
JP2594935B2 (en) Sputter film forming method and apparatus
JP3103676B2 (en) Vacuum evaporation method
JPS6130027B2 (en)
JP2004339546A (en) Apparatus and method for vacuum treatment
US20210020419A1 (en) Target structure and film forming apparatus
JP2996997B2 (en) Laser melting recrystallization method for semiconductor thin film
JPS59150083A (en) Vacuum deposition device
JPH11269645A (en) Chemical vapor deposition system
GB2301480A (en) Thermo chuck for mounting wafers
JP2000339675A (en) Manufacture and manufacturing device of magnetic tape
JP2000339680A (en) Manufacture and manufacturing device of magnetic tape
JPS54141609A (en) Production of metal thin film type magnetic recording medium
JPH1036959A (en) Thin coating forming device