JPH06326115A - Bipolar transistor and its manufacture - Google Patents

Bipolar transistor and its manufacture

Info

Publication number
JPH06326115A
JPH06326115A JP10862493A JP10862493A JPH06326115A JP H06326115 A JPH06326115 A JP H06326115A JP 10862493 A JP10862493 A JP 10862493A JP 10862493 A JP10862493 A JP 10862493A JP H06326115 A JPH06326115 A JP H06326115A
Authority
JP
Japan
Prior art keywords
layer
diffused
diffusion layer
type
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10862493A
Other languages
Japanese (ja)
Inventor
Hisao Takeda
久雄 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10862493A priority Critical patent/JPH06326115A/en
Publication of JPH06326115A publication Critical patent/JPH06326115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a transistor as small as possible without reducing the size of a diffused emitter layer and to enhance the breakdown strength to the transistor by forming a base layer of a second conductivity type whose surface impurity concentration is at least one order of magnitude lower than that of a first diffused layer and which is composed of a second diffused layer whose depth is a specific value or lower. CONSTITUTION:A diffused active base layer 5 and an n-type diffused collector layer 6 are formed on a surface layer in a region partitioned by a p-type diffused isolation layer 4 for an epitaxial layer 3 provided with an n-type buried diffused layer 2 on a p-type silicon substrate 1. In addition, an n-type diffused emitter layer 7 is formed on the surface layer of the diffused active base layer 5. Then, a diffused inactive base layer 13 whose surface impurity concentration is by one digit or at least one order of magnitude lower than that of the active base diffused layer 5 and whose depth is at 80% or lower is formed. Thereby, the ON characteristic value of a transistor can be kept good without making the area of the n-type diffused emitter layer 7 small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、BipICやBiCM
OSICである半導体集積回路の要素素子として代表さ
れるバイポーラトランジスタおよびその製造方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to BipIC and BiCM.
The present invention relates to a bipolar transistor represented by an element element of a semiconductor integrated circuit which is an OSIC, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】ICと他の電子部品により構成される電
気機器およびシステムの中で、BipICやBiCMO
SICは、特にIC自身の電源耐圧や出力端子耐圧が、
例えば30V以上の比較的大きい値が要求される分野に利
用され、具体的には自動販売機制御IC、モータ駆動I
C、自動車用制御IC、サーマルヘッド駆動用ICある
いはプラズマディスプレイなどのフラットパネル駆動用
ICなどがある。従来のBipICおよびBiCMOS
ICの要素素子として代表されるnpnトランジスタの
耐圧は、図2(a) に示すような拡散領域によって形成さ
れる階段形の平面状接合21、円筒状接合22、球状接合23
の降伏電圧VB の空乏層の曲率半径rj をパラメータと
する図2(b) に示す不純物濃度NB に依存した理論値デ
ータにより設計される。図2(b) に示すようにrj が大
きいほど降伏電圧は大きい。
2. Description of the Related Art Among electric devices and systems composed of ICs and other electronic parts, BipICs and BiCMOs are used.
SIC, especially the power supply breakdown voltage and output terminal breakdown voltage of the IC itself,
For example, it is used in the field where a relatively large value of 30V or more is required. Specifically, it is a vending machine control IC, a motor drive I
C, automobile control ICs, thermal head drive ICs, flat panel drive ICs such as plasma displays, and the like. Conventional BipIC and BiCMOS
The breakdown voltage of an npn transistor typified by an IC element is a step-like planar junction 21, a cylindrical junction 22 and a spherical junction 23 formed by diffusion regions as shown in FIG. 2 (a).
It is designed by theoretical value data depending on the impurity concentration N B shown in FIG. 2 (b) with the radius of curvature r j of the depletion layer of the breakdown voltage V B of FIG. As shown in FIG. 2 (b), the larger the r j , the larger the breakdown voltage.

【0003】最も基本的なnpnトランジスタは図3に
示すような構造で、p形シリコン基板上に界面にn形埋
込拡散層2を有するn形エピタキシャル層3のp形分離
拡散層4で区切られた領域の表面層にp形ベース拡散層
5、n形コレクタ拡散層6を形成し、ベース拡散層5の
表面層にn形エミッタ拡散層7を形成することにより構
成され、表面上の熱酸化膜82の開口部で、エミッタ拡散
層7にエミッタ電極配線9が、ベース拡散層7にベース
電極配線10が、コレクタ拡散層6にコレクタ電極配線11
がそれぞれ接触している。
The most basic npn transistor has a structure as shown in FIG. 3, and is divided by a p-type isolation diffusion layer 4 of an n-type epitaxial layer 3 having an n-type buried diffusion layer 2 at the interface on a p-type silicon substrate. The p-type base diffusion layer 5 and the n-type collector diffusion layer 6 are formed on the surface layer of the formed region, and the n-type emitter diffusion layer 7 is formed on the surface layer of the base diffusion layer 5, so that the heat on the surface is formed. In the opening of the oxide film 82, the emitter electrode layer 9 has the emitter electrode wiring 9, the base diffusion layer 7 has the base electrode wiring 10, and the collector diffusion layer 6 has the collector electrode wiring 11.
Are in contact with each other.

【0004】図5(a) 〜(j) はこのようなnpnトラン
ジスタを有するBipICの製造工程を示す。すなわ
ち、p- シリコン基板1〔同図(a) 〕の表面上に形成し
た酸化膜81に第一のホトマスクを用いて窓を設け〔同図
(b) 〕、Sbを拡散してn+ 埋込拡散層2を形成する〔同
図(c) 〕。次いで表面の酸化膜81を除去し、エピタキシ
ャル成長によりn層3を堆積し、再び表面上に形成した
酸化膜82に第二のホトマスクを用いて窓を明け〔同図
(d) 〕、Bを拡散してp+ 分離拡散層4を形成する〔同
図(e) 〕。次に、第三のホトマスクを用いて酸化膜82に
窓を明け〔同図(f)〕、B+ イオンの注入とドライブイ
ンによりpベース拡散層5を形成し、第四のフォトマス
クを用いてそれまでに形成された酸化膜82にエミッタ、
コレクタ拡散用の窓を明ける〔同図(g) 〕。そして、り
んの拡散によりn+ エミッタ拡散層7およびn+ コレク
タ・コンタクト層6を形成する〔同図(h) 〕。さらに、
第五のフォトマスクを用いて、ベース、エミッタおよび
コレクタのコンタクトホールとしての窓を酸化膜82に明
ける〔同図(i) 〕。このあと、Al蒸着および第六のホト
マスクを用いてのパターニングにより、エミッタ電極配
線9、ベース電極配線10、コレクタ電極配線11を形成す
る〔同図(j) 〕。
FIGS. 5A to 5J show a manufacturing process of a BipIC having such an npn transistor. That is, a window is provided in the oxide film 81 formed on the surface of the p - silicon substrate 1 [(a) in the figure] by using the first photomask.
(b)], Sb is diffused to form the n + buried diffusion layer 2 (FIG. 7 (c)). Then, the oxide film 81 on the surface is removed, the n layer 3 is deposited by epitaxial growth, and a window is opened again on the oxide film 82 formed on the surface by using a second photomask [FIG.
(d)] and B are diffused to form the p + separation diffusion layer 4 [(e) in the same figure]. Next, a window is opened in the oxide film 82 using the third photomask [(f) in the figure], the p base diffusion layer 5 is formed by implantation of B + ions and drive-in, and the fourth photomask is used. The oxide film 82 formed up to that time has an emitter,
Open the collector diffusion window [Fig. (G)]. Then, the n + emitter diffusion layer 7 and the n + collector / contact layer 6 are formed by phosphorus diffusion [FIG. 6 (h)]. further,
Using the fifth photomask, windows as contact holes for the base, the emitter and the collector are opened in the oxide film 82 [(i) in the figure]. After that, the emitter electrode wiring 9, the base electrode wiring 10, and the collector electrode wiring 11 are formed by Al vapor deposition and patterning using a sixth photomask [(j) of the same figure].

【0005】このようなBipICは、応用分野の拡大
により要素素子の特性値向上が要求され様々な素子構造
の改良がなされてきた。特に、IC自身の電源耐圧や出
力端子耐圧の向上を図る方法として、基本素子であるn
pnトランジスタの構造のコレクタ−ベース間のpn接
合の曲率半径を大きくするために、図4に示すように、
ベース拡散層5の周辺を拡散深さの大きいp形不活性ベ
ース拡散層12で囲むような構造で対処していた。
[0005] Such BipIC has been required to improve the characteristic values of element elements due to expansion of application fields, and various element structures have been improved. In particular, as a method for improving the power supply breakdown voltage and output terminal breakdown voltage of the IC itself, the basic element n
In order to increase the radius of curvature of the pn junction between the collector and the base of the structure of the pn transistor, as shown in FIG.
The structure is such that the periphery of the base diffusion layer 5 is surrounded by the p-type inactive base diffusion layer 12 having a large diffusion depth.

【0006】[0006]

【発明が解決しようとする課題】BipICの基本素子
であるnpnトランジスタの従来の耐圧向上方法では、
不活性ベース拡散層12と活性ベース拡散層5を形成する
ためにホトマスクが2枚必要となることと、不活性ベー
ス拡散層12の拡散深さを大きくするが、それとエミッタ
拡散層7と重なると電流増幅率が低下するため、エミッ
タ拡散層7の寸法を小さくするか、または素子全体を大
きくする必要が生じるなどの問題がある。
In the conventional withstand voltage improving method for the npn transistor which is the basic element of BipIC,
Two photomasks are required to form the inactive base diffusion layer 12 and the active base diffusion layer 5, and the diffusion depth of the inactive base diffusion layer 12 is increased, but when it overlaps with the emitter diffusion layer 7. Since the current amplification factor decreases, there is a problem that the size of the emitter diffusion layer 7 needs to be reduced or the size of the entire device needs to be increased.

【0007】本発明の目的は、以上述べた従来技術の問
題を解決することであり、エミッタ拡散層の寸法を小さ
くすることなく、かつ素子全体の寸法をできる限り小さ
くして耐圧を向上させる構造を実現したバイポーラトラ
ンジスタならびにその活性および不活性ベース拡散層を
1枚のホトマスクで形成できる製造方法を提供すること
にある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to improve the breakdown voltage by reducing the size of the entire device as much as possible without reducing the size of the emitter diffusion layer. It is an object of the present invention to provide a bipolar transistor and a manufacturing method capable of forming the active and inactive base diffusion layers with a single photomask.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のバイポーラトランジスタは、第一導電形
のコレクタ層の表面層に第一導電形のエミッタ層を囲ん
で第一拡散層および表面においては第一拡散層を囲み、
第一拡散層よりも表面不純物濃度が1桁以上低く、かつ
深さが80%以下である第二拡散層よりなる第二導電形の
ベース層が設けられたものとする。そして、このバイポ
ーラトランジスタがnpnトランジスタであって、半導
体集積回路装置の要素素子であることが有効である。ま
た、このバイポーラトランジスタの製造方法は、第一導
電形の半導体層の表面に被着した酸化膜の表面上にマス
クを形成し、そのマスクの開口部から前記酸化膜を通し
て第一拡散層のためのイオン注入を行い、次いで前記マ
スクの開口部を通してのエッチングにより、開口部に露
出する酸化膜を除去すると共に、サイドエッチングによ
りマスクの下の酸化膜の一部を除去し、残った酸化膜を
マスクとして第二拡散層のためのイオン注入を行うもの
とする。
To achieve the above object, a bipolar transistor of the present invention comprises a first diffusion layer in which a first conductivity type collector layer is surrounded by a surface layer of a first conductivity type emitter layer. And at the surface surrounds the first diffusion layer,
It is assumed that the second-conductivity-type base layer including the second diffusion layer having a surface impurity concentration lower than that of the first diffusion layer by one digit or more and a depth of 80% or less is provided. It is effective that the bipolar transistor is an npn transistor and is an element element of the semiconductor integrated circuit device. Further, in this method for manufacturing a bipolar transistor, a mask is formed on the surface of an oxide film deposited on the surface of a semiconductor layer of the first conductivity type, and the first diffusion layer is formed through the oxide film from the opening of the mask. Then, the oxide film exposed in the opening is removed by etching through the opening of the mask, and a part of the oxide film under the mask is removed by side etching to remove the remaining oxide film. Ion implantation for the second diffusion layer is performed as a mask.

【0009】[0009]

【作用】第一導電形のコレクタ層の表面層の第一導電形
のエミッタ層を囲む第二導電形の活性ベース層である第
一拡散層のほかに、表面においては第一拡散層を囲み、
表面不純物濃度が1桁以上低く、深さが80%以下である
第二導電形の不活性ベース層である第二拡散層を設ける
ことにより、コレクタ層と活性ベース層との間のpn接
合の外周部の曲率の大きい部分は不活性ベース層との間
のpn接合がつながることにより解消され、浅い不活性
ベース層の外周部ではpn接合の曲率が小さくなり、p
n接合に逆電圧が加わるときに生ずる空乏層の外縁の曲
率半径もそれに応じて大きくなるため、pn接合に加わ
る電界が緩和され、耐圧が向上する。
In addition to the first diffusion layer which is the active base layer of the second conductivity type surrounding the emitter layer of the first conductivity type of the surface layer of the collector layer of the first conductivity type, the first diffusion layer is surrounded on the surface. ,
By providing a second diffusion layer which is a second conductivity type inactive base layer having a surface impurity concentration lower by one digit or more and a depth of 80% or less, a pn junction between the collector layer and the active base layer is formed. The large curvature of the outer peripheral portion is eliminated by connecting the pn junction with the inactive base layer, and the curvature of the pn junction becomes small in the outer peripheral portion of the shallow inactive base layer.
Since the radius of curvature of the outer edge of the depletion layer generated when a reverse voltage is applied to the n-junction also increases accordingly, the electric field applied to the pn junction is relaxed and the breakdown voltage improves.

【0010】[0010]

【実施例】図1(a) 、(b) は本発明の一実施例のBip
ICに集積されたnpnトランジスタの断面図および平
面図を示し、図3、図4と共通の部分には同一の符号が
付されている。この場合は、図4のp形活性ベース拡散
層5より深い不活性ベース拡散層12の代わりに、拡散層
5より表面濃度が低く、深さが浅い不活性ベース拡散層
13が設けられている。このバイポーラトランジスタの製
造工程を、図5と共通の部分に同一の符号を付した図6
(a) 〜(e) を引用して説明する。
1 (a) and 1 (b) show a Bip of an embodiment of the present invention.
A cross-sectional view and a plan view of an npn transistor integrated in an IC are shown, and the same parts as those in FIGS. 3 and 4 are denoted by the same reference numerals. In this case, instead of the inactive base diffusion layer 12 deeper than the p-type active base diffusion layer 5 in FIG. 4, the inactive base diffusion layer having a lower surface concentration and a shallower depth than the diffusion layer 5 is formed.
13 are provided. The manufacturing process of this bipolar transistor is shown in FIG. 6 in which the same parts as those in FIG.
The explanation will be given by citing (a) to (e).

【0011】図5(e) の分離拡散の終了した時点で表面
上の酸化膜82を除去し、n層3の上に新たに熱酸化膜8
を100 〜200nm の厚さに成長させ、その上にレジスト膜
14を約1μmの厚さに全面に塗布する〔図6(a) 〕。次
に、ホトマスクを用いて露光し、レジスト現像液により
レジスト膜14を除去して開口部15を有するマスクを形
成、イオン注入装置により活性ベース層5のための注入
イオン16としてB11を、熱酸化膜8の厚さに応じた50〜
70keVの加速電圧により必要なドーズ量、例えば5×10
14/cm2 のドーズ量で注入する〔図6(b) 〕。ほう素17
は、n層3の開口部15の直下の表面層に注入される。こ
のイオン注入の直後に5〜20%程度の弗酸薬液で熱酸化
膜8を選択的にエッチングする。開口部15の下の酸化膜
8には、イオン注入の影響で多数の欠陥が存在している
ので、その部分の熱酸化膜8はすばやくエッチングされ
る。さらにエッチングを進めると、レジスト膜14直下の
熱酸化膜8は、徐々に横方向にエッチングされる、いわ
ゆるサイドエッチ現象が起きる〔図6(c) 〕。必要なサ
イドエッチ量wを確保したらエッチングを終了する。こ
のエッチング工程では、酸化膜8とレジスト膜14の密着
性が充分でないと界面近傍で弗酸薬液がしみ込み、酸化
膜エッチング形状がみだれるので、レジスト膜14塗布前
に、酸化膜8表面の吸湿性を低下させる処理を行うなど
の注意が必要である。次いで、レジスト膜8を全面除去
し、不活性ベース層用のB1116のイオン注入を10〜20ke
Vと低加速電圧により、活性ベース層に対し約1桁以上
少ないだけのドーズ量で行う〔図6(d) 〕。その後、ベ
ースドライブ酸化を行い、各々の注入ほう素17をシリコ
ン内部に拡散させると同時に、酸化膜8の開口部15の酸
化膜成長を行う〔図6(e) 〕。さらに、工程を図5(g)
の第四のフォトマスク使用工程以降につなげると最終的
に、図1に示した構造を得る。なお、図6のベース拡散
層5、13の構造を得る方法としては、マスク1枚に縛ら
れる事なく、2枚のマスクを利用することも本発明の思
想に含まれる。また、上記実施例のnpnトランジスタ
にも限定されることはなく、pnpトランジスタにおい
ても実施できる。
At the time when the separation and diffusion shown in FIG. 5 (e) is completed, the oxide film 82 on the surface is removed and a new thermal oxide film 8 is formed on the n layer 3.
To a thickness of 100-200 nm, and a resist film on it.
14 is applied to the entire surface to a thickness of about 1 μm [FIG. 6 (a)]. Next, exposure is performed using a photomask, the resist film 14 is removed by a resist developing solution to form a mask having an opening 15, and B 11 is used as the implanted ions 16 for the active base layer 5 by an ion implantation device. 50 to 50 depending on the thickness of the oxide film 8
A dose amount required by the acceleration voltage of 70 keV, for example, 5 × 10
Implant at a dose of 14 / cm 2 [Fig. 6 (b)]. Boron 17
Is injected into the surface layer of the n layer 3 immediately below the opening 15. Immediately after this ion implantation, the thermal oxide film 8 is selectively etched with a hydrofluoric acid chemical solution of about 5 to 20%. Since many defects exist in the oxide film 8 below the opening 15 due to the effect of ion implantation, the thermal oxide film 8 in that part is quickly etched. When the etching is further advanced, the thermal oxide film 8 immediately below the resist film 14 is gradually etched in the lateral direction, so-called side etching phenomenon occurs (FIG. 6 (c)). When the required side etch amount w is secured, the etching is finished. In this etching process, if the adhesiveness between the oxide film 8 and the resist film 14 is not sufficient, the hydrofluoric acid solution will soak into the vicinity of the interface and the oxide film etching shape will be exposed. It is necessary to take precautions such as performing processing that reduces the sex. Then, the resist film 8 is entirely removed and ion implantation of B 11 16 for the inert base layer is performed at 10 to 20 ke.
Due to V and the low acceleration voltage, the dose is smaller than the active base layer by about one digit or more [FIG. 6 (d)]. After that, base drive oxidation is performed to diffuse each implanted boron 17 into the silicon and simultaneously grow an oxide film in the opening 15 of the oxide film 8 [FIG. 6 (e)]. Furthermore, the process is shown in Fig. 5 (g).
Finally, the structure shown in FIG. 1 is obtained by connecting after the fourth photomask using step. As a method of obtaining the structure of the base diffusion layers 5 and 13 of FIG. 6, it is not limited to one mask and the use of two masks is included in the concept of the present invention. Further, the present invention is not limited to the npn transistor of the above-mentioned embodiment, and can be applied to a pnp transistor.

【0012】[0012]

【発明の効果】本発明によれば、ベース層を、エミッタ
層に近接した活性ベース拡散層とその外側にあって表面
不純物濃度が低く、浅い不活性ベース拡散層より構成す
ることにより、コレクタ・ベース間のpn接合の表面近
傍での電界緩和が図られ、耐圧の向上したバイポーラト
ランジスタが得られた。しかも、エミッタ層の面積を小
さくしないで済むのでトランジスタのオン特性値を良好
に保つ事が出来る。さらに、熱酸化膜のサイドエッチ現
象を利用し、1枚のホトマスクを活性、不活性の二ベー
ス拡散層を形成できるので、工数増大を極力小さくでき
る。また、活性ベース層と不活性ベース層とをセルフア
ライメント方式で形成できるので、耐圧特性値のばらつ
きが低減し、アライメントマージン設計を0とする事が
できるなどの効果が得られる。
According to the present invention, the base layer is composed of an active base diffusion layer close to the emitter layer and a shallow inactive base diffusion layer outside the active base diffusion layer having a low surface impurity concentration. An electric field was relaxed in the vicinity of the surface of the pn junction between the bases, and a bipolar transistor having an improved breakdown voltage was obtained. Moreover, since the area of the emitter layer does not have to be reduced, the ON characteristic value of the transistor can be kept good. Further, by utilizing the side etching phenomenon of the thermal oxide film, one photomask can be formed as an active / inactive bi-base diffusion layer, so that the increase in the number of steps can be minimized. Further, since the active base layer and the inactive base layer can be formed by the self-alignment method, variations in withstand voltage characteristic values can be reduced, and the alignment margin design can be made zero.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のnpnトランジスタを示
し、(a) が断面図、(b) が平面図
FIG. 1 shows an npn transistor according to an embodiment of the present invention, (a) is a sectional view and (b) is a plan view.

【図2】階段接合pn接合の降伏電圧を示し、(a) は接
合の種類を示す斜視図、(b) は各種pn接合の降伏電圧
と不純物濃度の関係線図
2A and 2B show a breakdown voltage of a staircase junction pn junction, FIG. 2A is a perspective view showing types of junctions, and FIG. 2B is a relationship diagram of breakdown voltage and impurity concentration of various pn junctions.

【図3】従来のnpnトランジスタの断面図FIG. 3 is a sectional view of a conventional npn transistor.

【図4】耐圧を向上させた従来のnpnトランジスタの
断面図
FIG. 4 is a cross-sectional view of a conventional npn transistor with improved breakdown voltage.

【図5】図2のnpnトランジスタの製造工程を(a) な
いし(j) の順に示す断面図
FIG. 5 is a cross-sectional view showing the manufacturing process of the npn transistor of FIG. 2 in the order of (a) to (j).

【図6】図1のnpnトランジスタの製造工程の要部を
(a) ないし(e) の順に概念的に示す断面図
FIG. 6 shows a main part of a manufacturing process of the npn transistor of FIG.
Sectional views conceptually shown in order from (a) to (e)

【符号の説明】[Explanation of symbols]

1 p形シリコン基板 2 n形エピタキシャル層 5 p形活性ベース拡散層 6 n形コレクタ拡散層 7 n形エミッタ拡散層 8 熱酸化膜 9 エミッタ電極 10 ベース電極 11 コレクタ電極 13 p形不活性ベース拡散層 14 レジスト膜 15 マスク開口部 16 B11 17 ほう素1 p-type silicon substrate 2 n-type epitaxial layer 5 p-type active base diffusion layer 6 n-type collector diffusion layer 7 n-type emitter diffusion layer 8 thermal oxide film 9 emitter electrode 10 base electrode 11 collector electrode 13 p-type inactive base diffusion layer 14 resist film 15 mask opening 16 B 11 17 boron

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第一導電形のコレクタ層の表面層に第一導
電形のエミッタ層を囲んで第一拡散層および表面におい
ては第一拡散層を囲み、第一拡散層よりも表面不純物濃
度が1桁以上低く、かつ深さが80%以下である第二拡散
層よりなる第二導電形のベース層が設けられたことを特
徴とするバイポーラトランジスタ。
1. A surface layer of a collector layer of the first conductivity type surrounds an emitter layer of the first conductivity type to surround a first diffusion layer and a first diffusion layer on the surface, and a surface impurity concentration higher than that of the first diffusion layer. A bipolar transistor having a second conductivity type base layer comprising a second diffusion layer having a depth of one digit or more and a depth of 80% or less.
【請求項2】npnトランジスタであって、半導体集積
回路装置の要素素子である請求項1記載のバイポーラト
ランジスタ。
2. The bipolar transistor according to claim 1, which is an npn transistor and is an element element of a semiconductor integrated circuit device.
【請求項3】第一導電形の半導体層表面に被着した酸化
膜の表面上にマスクを形成し、そのマスクの開口部から
前記酸化膜を通して第一拡散層のためのイオン注入を行
い、次いで前記マスクの開口部を通してのエッチングに
より、開口部に露出する酸化膜を除去すると共に、サイ
ドエッチングによりマスクの下の酸化膜の一部を除去
し、残った酸化膜をマスクとして第二拡散層のためのイ
オン注入を行うことを特徴とする請求項1あるいは2記
載のバイポーラトランジスタの製造方法。
3. A mask is formed on the surface of an oxide film deposited on the surface of the semiconductor layer of the first conductivity type, and ion implantation for the first diffusion layer is performed from the opening of the mask through the oxide film. Then, the oxide film exposed in the opening is removed by etching through the opening of the mask, and part of the oxide film under the mask is removed by side etching, and the remaining oxide film is used as a mask for the second diffusion layer. 3. The method for manufacturing a bipolar transistor according to claim 1, wherein the ion implantation for the purpose is performed.
JP10862493A 1993-05-11 1993-05-11 Bipolar transistor and its manufacture Pending JPH06326115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10862493A JPH06326115A (en) 1993-05-11 1993-05-11 Bipolar transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10862493A JPH06326115A (en) 1993-05-11 1993-05-11 Bipolar transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH06326115A true JPH06326115A (en) 1994-11-25

Family

ID=14489523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10862493A Pending JPH06326115A (en) 1993-05-11 1993-05-11 Bipolar transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH06326115A (en)

Similar Documents

Publication Publication Date Title
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
US4144106A (en) Manufacture of an I2 device utilizing staged selective diffusion thru a polycrystalline mask
JPH06326115A (en) Bipolar transistor and its manufacture
JP2001291781A (en) Method for manufacturing semiconductor device
US6448125B1 (en) Electronic power device integrated on a semiconductor material and related manufacturing process
JP3138356B2 (en) I.2 L-structure semiconductor device and method of manufacturing the same
JPH01187868A (en) Semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH0945675A (en) Semiconductor integrated circuit device and its manufacture
JPH03165522A (en) Semiconductor device
JPS62141764A (en) Manufacture of semiconductor device
JPH0376154A (en) Manufacture of semiconductor device
JPS62274769A (en) Manufacture of semiconductor device
JPS6329585A (en) Semiconductor integrated circuit device
JPS6346769A (en) Manufacture of semiconductor device
JPH01161764A (en) Manufacture of semiconductor integrated circuit
JPS60257170A (en) Manufacture of semiconductor device
JP2002343878A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0247865A (en) Manufacture of semiconductor integrated circuit device
JPS6376374A (en) Manufacture of semiconductor device
JPS59147453A (en) Semiconductor device
JPH04243159A (en) Manufacture of semiconductor device
JP2002076132A (en) Semiconductor device and manufacturing method
JPH02159035A (en) Integrated circuit device
JPH06181215A (en) Semiconductor integrated circuit