JPH04243159A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04243159A
JPH04243159A JP1570991A JP1570991A JPH04243159A JP H04243159 A JPH04243159 A JP H04243159A JP 1570991 A JP1570991 A JP 1570991A JP 1570991 A JP1570991 A JP 1570991A JP H04243159 A JPH04243159 A JP H04243159A
Authority
JP
Japan
Prior art keywords
oxide film
region
silicon oxide
forming
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1570991A
Other languages
Japanese (ja)
Inventor
Shinji Kaneko
新二 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1570991A priority Critical patent/JPH04243159A/en
Publication of JPH04243159A publication Critical patent/JPH04243159A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the manufacture of a semiconductor device which is high in the base-collector breakdown voltage of a bipolar transistor and small in the parasitic capacitance of MOSFET and further can raise the reverse voltage of the parasitic MOSFET. CONSTITUTION:P well 2 and N well 3 are formed in a semiconductor substrate 1 and diffused deeply by the thermal process at a high temperature and for hours so that a silicon oxide film 4 is formed. Then, the silicon oxide film 4 in the region forming a bipolar transistor is removed selectively and the semiconductor substrate 1 is etched by the use of the silicon oxide film as a mask so that a recess 5 is formed. Subsequently, after a silicon oxide film formed in the side wall 6 of the recess 5 and said silicon oxide film 4 are used as masks and an intense N-type diffused layer 7 is formed by ion implantation, an epitaxial layer 8 is formed selectively in said recess. Then, a collector-leading layer 9, field oxide film 10, gate oxide film 11, gate electrode 12 and base region 13 are formed to complete Bi-CMOS semiconductor device.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体装置の製造方
法に関し、特に最適化されたバイポーラトランジスタと
CMOSFETとからなるBi−CMOS半導体装置の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a Bi-CMOS semiconductor device comprising an optimized bipolar transistor and a CMOSFET.

【0002】0002

【従来の技術】従来、バイポーラトランジスタとCMO
SFETとを混載させたBi−CMOSデバイスについ
ては種々の提案がなされている。特にアナログ・デジタ
ル混載回路への応用のために、高速のCMOSFETと
高耐圧のバイポーラトランジスタを有するBi−CMO
Sデバイスの素子領域の形成方法の一例として、特開昭
61−245563号には次のような方法が開示されて
いる。すなわち図7に示すように、まず低濃度のP型半
導体基板101 にN型高濃度埋め込み層102 とP
型埋め込み層103 を形成した後、N型エピタキシャ
ル層104 を形成する。次に図8に示すように、Pウ
ェル105 とNウェル106 及びコレクタ引き出し
層107 を形成し、更にLOCOS法によってフィー
ルド酸化膜108 を形成する。次いで図9に示すよう
に、ゲート酸化膜109 , ゲート電極110 及び
ベース領域111 を順次形成する。この後はエミッタ
領域, ソース・ドレイン領域等を形成し、更に層間絶
縁膜, 配線領域の形成工程を経て、Bi−CMOS半
導体装置を完成させる。
[Prior Art] Conventionally, bipolar transistors and CMO
Various proposals have been made regarding Bi-CMOS devices mixed with SFET. Bi-CMO with high-speed CMOSFET and high-voltage bipolar transistor, especially for application to analog-digital hybrid circuits.
As an example of a method for forming an element region of an S device, the following method is disclosed in Japanese Patent Laid-Open No. 61-245563. That is, as shown in FIG.
After forming the type buried layer 103, an N-type epitaxial layer 104 is formed. Next, as shown in FIG. 8, a P well 105, an N well 106, and a collector lead-out layer 107 are formed, and a field oxide film 108 is further formed by the LOCOS method. Next, as shown in FIG. 9, a gate oxide film 109, a gate electrode 110, and a base region 111 are sequentially formed. After this, an emitter region, source/drain regions, etc. are formed, and an interlayer insulating film and a wiring region are formed to complete the Bi-CMOS semiconductor device.

【0003】この方法によれば、MOSFETを比較的
高濃度のウェル領域105, 106に形成し、バイポ
ーラトランジスタのコレクタ領域として比較的低濃度の
エピタキシャル層104 を用いることができるため、
パンチスルー耐性が高いMOSFETと、ベース・コレ
クタ耐圧が高いバイポーラトランジスタを有するBi−
CMOS半導体装置を製造することができる。更にこの
方法によれば、上部から拡散されるウェル領域105,
 106と、高濃度の埋め込み層102, 103が電
気的に接続されているので実質的に深いウェル領域が形
成され、高いラッチアップ耐性を得ることができる。
According to this method, MOSFETs can be formed in the relatively highly doped well regions 105 and 106, and the relatively lightly doped epitaxial layer 104 can be used as the collector region of the bipolar transistor.
Bi-
CMOS semiconductor devices can be manufactured. Furthermore, according to this method, the well region 105, which is diffused from above,
106 and the heavily doped buried layers 102 and 103 are electrically connected, a substantially deep well region is formed and high latch-up resistance can be obtained.

【0004】0004

【発明が解決しようとする課題】しかしながら上記従来
の製造方法においては、N型高濃度埋め込み層102 
の上方拡散によるバイポーラトランジスタのコレクタ・
ベース間耐圧の低下を防止するため、MOSFETを形
成するウェル領域105, 106の拡散のための熱工
程が制限されるので、ウェル領域105, 106と埋
め込み層102, 103を電気的に接続するためには
、ウェルの表面濃度を必要なパンチスルー耐性を得るた
めに必要な値よりも高くして、制限された熱工程で深く
まで拡散させなければならない。このため、MOSFE
Tのソース・ドレイン領域の寄生容量が増大し、MOS
FETの動作速度が低下するという問題点がある。
[Problems to be Solved by the Invention] However, in the above conventional manufacturing method, the N-type high concentration buried layer 102
Collector of bipolar transistor due to upward diffusion of
In order to prevent a decrease in the base-to-base breakdown voltage, the thermal process for diffusion of the well regions 105, 106 forming the MOSFET is limited, so that the thermal process for electrically connecting the well regions 105, 106 and the buried layers 102, 103 is limited. To achieve this, the surface concentration of the well must be higher than necessary to achieve the required punch-through resistance, and the diffusion must be deep with a limited thermal step. For this reason, MOSFE
The parasitic capacitance of the source/drain region of T increases, and the MOS
There is a problem that the operating speed of the FET decreases.

【0005】更に上記製造方法では、P型ウェル領域1
05 がN型エピタキシャル層104 上に形成される
が、このエピタキシャル層104 の濃度は、バイポー
ラトランジスタのパンチスルーやカーク効果を抑制する
ため、通常1E16/cm2 程度の濃度に設定されて
いる。したがってフィールド酸化膜の形成工程において
、フィールド領域表面におけるエピタキシャル層中のリ
ンのパイルアップによってP型ウェル領域のフィールド
領域での表面濃度が低下するため、フィールド酸化膜を
ゲート絶縁膜とする寄生MOSFETの反転電圧が低下
するといった問題点もあった。
Furthermore, in the above manufacturing method, the P-type well region 1
05 is formed on the N-type epitaxial layer 104, and the concentration of this epitaxial layer 104 is usually set to about 1E16/cm2 in order to suppress the punch-through and Kirk effect of the bipolar transistor. Therefore, in the process of forming the field oxide film, the surface concentration in the field region of the P-type well region decreases due to the pile-up of phosphorus in the epitaxial layer on the surface of the field region. There was also the problem that the reversal voltage decreased.

【0006】本発明は、従来のBi−CMOS半導体装
置の製造方法における上記問題点を解消するためになさ
れたもので、バイポーラトランジスタのベース・コレク
タ耐圧が高く、MOSFETの寄生容量が小さく、更に
寄生MOSFETの反転電圧を高くすることの可能な半
導体装置の製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems in the conventional method of manufacturing Bi-CMOS semiconductor devices, and has a high base-collector breakdown voltage of a bipolar transistor, a small parasitic capacitance of a MOSFET, and a low parasitic capacitance. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can increase the inversion voltage of a MOSFET.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、半導体基板の第1の領域に1導電型の低
濃度ウェル領域を形成し、第2の領域に他の導電型の低
濃度ウェル領域を形成する工程と、次いで第3の領域に
選択的に、高濃度の1導電型埋め込み層と1導電型エピ
タキシャル層を形成する工程を含み、前記第1の領域に
他の導電型のMOSFETを形成し、第2の領域に1導
電型のMOSFETを形成し、第3の領域にバイポーラ
トランジスタを形成して半導体装置を製造するものであ
る。
[Means for Solving the Problems] In order to solve the above problems, the present invention forms a low concentration well region of one conductivity type in a first region of a semiconductor substrate, and a well region of another conductivity type in a second region. forming a low concentration well region, and then selectively forming a high concentration buried layer of one conductivity type and an epitaxial layer of one conductivity type in the third region; A semiconductor device is manufactured by forming a conductive type MOSFET, forming a single conductive type MOSFET in a second region, and forming a bipolar transistor in a third region.

【0008】[0008]

【作用】本発明の製造方法によれば、高濃度埋め込み層
及びエピタキシャル層の形成に先立ってMOSFETを
形成するための低濃度ウェル領域を形成するため、比較
的低濃度のウェル領域を深く形成することができ、寄生
容量が小さくラッチアップ耐性の高いMOSFETを得
ることが可能となり、更にMOSFETがエピタキシャ
ル層上に形成されないので、低濃度の基板を用いること
によって、フィールド酸化膜の形成工程におけるフィー
ルド領域表面におけるリンのパイルアップに起因する、
P型ウェル領域のフィールド領域での表面濃度の低下に
よる、フィールド酸化膜をゲート絶縁膜とする寄生MO
SFETの反転電圧の低下を防止することができる。
[Operation] According to the manufacturing method of the present invention, in order to form a low concentration well region for forming a MOSFET prior to forming a high concentration buried layer and an epitaxial layer, a relatively low concentration well region is formed deeply. This makes it possible to obtain a MOSFET with small parasitic capacitance and high latch-up resistance.Furthermore, since the MOSFET is not formed on an epitaxial layer, by using a low-concentration substrate, the field region in the field oxide film formation process can be reduced. Due to phosphorus pile-up on the surface,
Parasitic MO using the field oxide film as the gate insulating film due to the decrease in surface concentration in the field region of the P-type well region
It is possible to prevent the inversion voltage of the SFET from decreasing.

【0009】[0009]

【実施例】次に実施例について説明する。図1〜図6は
、本発明に係る半導体装置の実施例を説明するための製
造工程図である。まず図1に示すように、半導体基板1
にPウェル2とNウェル3を形成し、高温・長時間の熱
工程によって深くまで拡散させ、更に第1のシリコン酸
化膜4を形成する。次に図2に示すように、バイポーラ
トランジスタを形成する領域の第1のシリコン酸化膜4
を選択的に除去し、残存するシリコン酸化膜4をマスク
として半導体基板1をエッチングして、バイポーラトラ
ンジスタ形成領域に凹部5を形成する。次に図3に示す
ように、CVDによって前記第1のシリコン酸化膜4よ
りも薄い第2のシリコン酸化膜を形成し、エッチバック
によって凹部5の側壁6部分を残して他の部分の第2の
シリコン酸化膜を除去し、更に第1のシリコン酸化膜4
と側壁6をマスクとして砒素をイオン注入して、高濃度
のN型拡散層7を形成する。次に図4に示すように、フ
ッ酸等の溶液によって側壁6のシリコン酸化膜を除去す
る。このとき凹部5以外の領域に存在する第1のシリコ
ン酸化膜4の一部は残存するようにする。続いて選択的
エピタキシャル成長によって凹部5にN型エピタキシャ
ル層8を形成する。次に図5に示すように、第1のシリ
コン酸化膜4を除去し、N型エピタキシャル層8にコレ
クタ引き出し層9を形成し,LOCOS法によってフィ
ールド酸化膜10を形成する。次に図6に示すように、
ゲート酸化膜11,ゲート電極12及びベース領域13
を順次形成する。この後はエミッタ領域,ソース・ドレ
イン領域等を形成し、更に層間絶縁膜,配線領域の形成
工程を経てBi−CMOS半導体装置を完成させる。
[Example] Next, an example will be explained. 1 to 6 are manufacturing process diagrams for explaining embodiments of a semiconductor device according to the present invention. First, as shown in FIG.
A P-well 2 and an N-well 3 are formed, and the silicon oxide film 4 is diffused deeply by a high-temperature and long-term thermal process, and then a first silicon oxide film 4 is formed. Next, as shown in FIG. 2, a first silicon oxide film 4 is formed in a region where a bipolar transistor is to be formed.
is selectively removed, and the semiconductor substrate 1 is etched using the remaining silicon oxide film 4 as a mask to form a recess 5 in the bipolar transistor formation region. Next, as shown in FIG. 3, a second silicon oxide film that is thinner than the first silicon oxide film 4 is formed by CVD, and by etching back, leaving a portion of the side wall 6 of the recess 5 and a second silicon oxide film of the other portion. The first silicon oxide film 4 is removed, and the first silicon oxide film 4 is removed.
Using the sidewalls 6 as a mask, arsenic ions are implanted to form a highly concentrated N-type diffusion layer 7. Next, as shown in FIG. 4, the silicon oxide film on the side wall 6 is removed using a solution such as hydrofluoric acid. At this time, a portion of the first silicon oxide film 4 existing in the region other than the recessed portion 5 is made to remain. Subsequently, an N-type epitaxial layer 8 is formed in the recess 5 by selective epitaxial growth. Next, as shown in FIG. 5, the first silicon oxide film 4 is removed, a collector lead-out layer 9 is formed on the N-type epitaxial layer 8, and a field oxide film 10 is formed by the LOCOS method. Next, as shown in Figure 6,
Gate oxide film 11, gate electrode 12 and base region 13
are formed sequentially. After this, an emitter region, source/drain regions, etc. are formed, and an interlayer insulating film and a wiring region are formed to complete the Bi-CMOS semiconductor device.

【0010】この方法によれば、バイポーラトランジス
タを形成する領域とは無関係に、CMOSFETのウェ
ル領域の形成のための熱工程を設定できるので、比較的
低濃度で深いウェル領域を形成できる。したがってラッ
チアップ耐性が高く、寄生容量が小さいCMOSFET
を形成することができる。更に、CMOSFETがエピ
タキシャル層に形成されないため、フィールド酸化膜の
形成工程において、フィールド領域表面におけるリンの
パイルアップによってP型ウェル領域のフィールド領域
での表面濃度が低下することはなく、フィールド酸化膜
をゲート絶縁膜とする寄生MOSFETの反転電圧が低
下することはない。
According to this method, the thermal process for forming the well region of the CMOSFET can be set independently of the region in which the bipolar transistor is formed, so that a deep well region can be formed with a relatively low concentration. Therefore, CMOSFETs with high latch-up resistance and low parasitic capacitance
can be formed. Furthermore, since the CMOSFET is not formed in an epitaxial layer, the surface concentration in the field region of the P-type well region does not decrease due to phosphorus pile-up on the surface of the field region during the field oxide film formation process, and the field oxide film is The inversion voltage of the parasitic MOSFET used as the gate insulating film does not decrease.

【0011】[0011]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、バイポーラトランジスタのベース・コ
レクタ耐圧を高く維持しながら、MOSFETの寄生容
量が小さく、更に寄生MOSFETの反転電圧を高くし
た、バイポーラトランジスタとCMOSFETの両方の
構造を最適化した半導体装置を容易に製造することがで
きる。
[Effect of the invention] As explained above based on the embodiments,
According to the present invention, a semiconductor device with optimized structures of both a bipolar transistor and a CMOSFET, which maintains a high base-collector breakdown voltage of the bipolar transistor, reduces the parasitic capacitance of the MOSFET, and increases the inversion voltage of the parasitic MOSFET. can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る半導体装置の製造方法の実施例を
説明するための製造工程を示す図である。
FIG. 1 is a diagram showing a manufacturing process for explaining an embodiment of a method for manufacturing a semiconductor device according to the present invention.

【図2】図1に続く製造工程を示す図である。FIG. 2 is a diagram showing a manufacturing process following FIG. 1.

【図3】図2に続く製造工程を示す図である。FIG. 3 is a diagram showing a manufacturing process following FIG. 2;

【図4】図3に続く製造工程を示す図である。4 is a diagram showing a manufacturing process following FIG. 3. FIG.

【図5】図4に続く製造工程を示す図である。5 is a diagram showing a manufacturing process following FIG. 4. FIG.

【図6】図5に続く製造工程を示す図である。6 is a diagram showing a manufacturing process following FIG. 5. FIG.

【図7】従来の半導体装置の製造工程を示す図である。FIG. 7 is a diagram showing a manufacturing process of a conventional semiconductor device.

【図8】図7に続く製造工程を示す図である。8 is a diagram showing a manufacturing process following FIG. 7. FIG.

【図9】図8に続く製造工程を示す図である。9 is a diagram showing a manufacturing process following FIG. 8. FIG.

【符号の説明】[Explanation of symbols]

1  半導体基板 2  Pウェル 3  Nウェル 4  第1のシリコン酸化膜 5  凹部 6  側壁 7  N型高濃度埋め込み層 8  N型エピタキシャル層 9  コレクタ引き出し層 10  フィールド酸化膜 11  ゲート酸化膜 12  ゲート電極 13  ベース領域 1 Semiconductor substrate 2 P well 3 N well 4 First silicon oxide film 5 Recess 6 Side wall 7 N-type high concentration buried layer 8 N type epitaxial layer 9 Collector drawer layer 10 Field oxide film 11 Gate oxide film 12 Gate electrode 13 Base area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の第1の領域に1導電型の
低濃度ウェル領域を形成し、第2の領域に他の導電型の
低濃度ウェル領域を形成する工程と、次いで第3の領域
に選択的に、高濃度の1導電型埋め込み層と1導電型エ
ピタキシャル層を形成する工程を含み、前記第1の領域
に他の導電型のMOSFETを形成し、第2の領域に1
導電型のMOSFETを形成し、第3の領域にバイポー
ラトランジスタを形成することを特徴とする半導体装置
の製造方法。
1. A step of forming a low concentration well region of one conductivity type in a first region of a semiconductor substrate, forming a low concentration well region of another conductivity type in a second region, and then forming a low concentration well region of a third conductivity type. selectively forming a high concentration buried layer of one conductivity type and an epitaxial layer of one conductivity type, forming a MOSFET of another conductivity type in the first region, and forming a MOSFET of another conductivity type in the second region.
1. A method of manufacturing a semiconductor device, comprising forming a conductive type MOSFET and forming a bipolar transistor in a third region.
JP1570991A 1991-01-17 1991-01-17 Manufacture of semiconductor device Withdrawn JPH04243159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1570991A JPH04243159A (en) 1991-01-17 1991-01-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1570991A JPH04243159A (en) 1991-01-17 1991-01-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04243159A true JPH04243159A (en) 1992-08-31

Family

ID=11896298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1570991A Withdrawn JPH04243159A (en) 1991-01-17 1991-01-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04243159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017603A (en) * 2001-06-28 2003-01-17 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017603A (en) * 2001-06-28 2003-01-17 Mitsubishi Electric Corp Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US4694562A (en) Method for manufacturing a semiconductor integrated device including bipolar and CMOS transistors
JPH058583B2 (en)
JPH0315346B2 (en)
JP3186421B2 (en) Method for manufacturing semiconductor device
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH04226064A (en) Interconnection body for semiconductor device use its manufacture
JPH0348458A (en) Bi-cmos integrated circuit and manufacture thereof
US6297119B1 (en) Semiconductor device and its manufacture
KR100336502B1 (en) The fabrication method of smart power IC technology concluding trench gate MOS power device
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPH04243159A (en) Manufacture of semiconductor device
JP2611450B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH056961A (en) Manufacture of semiconductor device
KR100332115B1 (en) Semiconductor power device and fabricating method thereof
KR101024869B1 (en) Semiconductor device and manufacturing method thereof
JPH04346263A (en) Manufacture of bi-cmos semiconductor device
JP2573303B2 (en) Method for manufacturing semiconductor device
JP3902412B2 (en) Manufacturing method of semiconductor device
JPS63269558A (en) Semiconductor device
JPH01123474A (en) Insulated gate type semiconductor device
JPH0243348B2 (en)
JPS63164356A (en) Manufacture of semiconductor integrated circuit
JP2001308104A (en) Semiconductor device and its manufacturing method
JPH0240220B2 (en)
JPH09298206A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514