JPS59147453A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59147453A
JPS59147453A JP58020638A JP2063883A JPS59147453A JP S59147453 A JPS59147453 A JP S59147453A JP 58020638 A JP58020638 A JP 58020638A JP 2063883 A JP2063883 A JP 2063883A JP S59147453 A JPS59147453 A JP S59147453A
Authority
JP
Japan
Prior art keywords
type
region
regions
electrode
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58020638A
Other languages
Japanese (ja)
Inventor
Masabumi Kubota
正文 久保田
Takeya Ezaki
豪弥 江崎
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58020638A priority Critical patent/JPS59147453A/en
Publication of JPS59147453A publication Critical patent/JPS59147453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce contact resistance without enlarging a contact hole by boring an indentation in an extent that penetrates a shallow region in P type and N type two regions of different diffusion depth to the shallow region and attaching an electrode to the indentation when the metallic electrode is placed simultaneously in the two regions through one contact hole. CONSTITUTION:An N type layer 2 is grown on an N<-> type Si substrate 1 in an epitaxial manner, and P type ions are implanted while using a photo-resist as a mask, and driven in to form a P type region 3 first. N Type ions are implanted, and driven in similarly to form two N type regions 4, an oxide film 8 with an opening 12 is generated between the two regions 4 on the two regions, and an end section is thinned and used as a gate oxide film 7. The exposed surfaces of the films 8 and 7 are coated with a photo-resist film 13, and a groove 14 slightly deeper than the depth of the opening is bored between the two regions 4 through etching. An electrode 5 is attached in the groove 14 while a gate electrode 6 is formed extending over the end section of the film 8 from the film 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属と不純物領域との間のコンタクト抵抗の低
減を図った新規な金属・不純物間の接触構造を有する半
導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a semiconductor device having a novel metal-to-impurity contact structure that reduces the contact resistance between a metal and an impurity region.

従来例の構成とその問題点 近年、半導体装置の微細化が進むにつれてこれらに使用
されている金属電極と基板表面に形成された不純物領域
との接触部の面積が狭くなり、そのためそれらの間のコ
ンタクト抵抗が増すという問題を生じている。
Conventional configurations and their problems In recent years, as semiconductor devices have become smaller, the area of contact between the metal electrodes used in these devices and the impurity regions formed on the substrate surface has become narrower. This poses a problem of increased contact resistance.

縦型2重拡散型MO8FET  (以下、VDIVIO
8と略す)を例に取って従来の問題点を説明する。第1
図は従来のVDMO3の模式的断面構造図とその等価回
路を示す図である。第1図aにおいて、1がドレインと
在る高濃度N型基板、2はN型エピタキシャル層、3は
P型拡散領域、4はソースとなる高濃度N型拡散領域、
5はソース金属電極、6はゲート電極、7はゲートw化
膜、8は酸化膜。
Vertical double diffused MO8FET (hereinafter referred to as VDIVIO
The problems of the conventional method will be explained by taking the example of 8) as an example. 1st
The figure is a diagram showing a schematic cross-sectional structure of a conventional VDMO3 and its equivalent circuit. In FIG. 1a, 1 is a heavily doped N-type substrate that serves as a drain, 2 is an N-type epitaxial layer, 3 is a P-type diffused region, 4 is a heavily doped N-type diffused region that is a source,
5 is a source metal electrode, 6 is a gate electrode, 7 is a gate oxide film, and 8 is an oxide film.

、である。この構造を等価回路で表わすと第1図すのよ
うになる。’VDMO8はMOS)ランジスタ8と直列
に連なるエピタキシャル層2の抵抗分9及びそれらに並
列のN型領域2,4とP層領域3によって構成される寄
生のNPN)ランジスタ10及びソース電極5とP層領
域3との間のコンタクト抵抗Rcs 11とで表わされ
ている。
, is. This structure can be expressed as an equivalent circuit as shown in FIG. 'VDMO8 is a parasitic NPN (MOS) transistor 10 formed by the resistance component 9 of the epitaxial layer 2 connected in series with the transistor 8, the N-type regions 2, 4 and the P-layer region 3 parallel to them, and the source electrode 5 and the P-layer region 3. The contact resistance Rcs 11 between the layer region 3 and the layer region 3 is represented by Rcs11.

周波数特性を良効にするにはチップ面積を小さくする必
要がありそのためパターンの微細化が進められている。
In order to improve the frequency characteristics, it is necessary to reduce the chip area, and therefore patterns are being made smaller.

他方、コンタクト孔の幅wc(第1図aに図示)を狭く
するとコンタクト抵抗Rcs11力贈LA RC8があ
る値以上になるとVDMO8のドレイン・ソース間耐圧
BvDsの低下を引き起こす。このことは、第1図すに
おいてRcsが増すにつれてP層領域3の電位が高くな
るのでNPNトランジスタ10のコレクタ・エミッタ間
耐圧BvcEがそれとともに低くなるということと、B
VcEがMOS)ランジスタ8のドレイン・ソース間耐
圧BvDsよりも低くなるとこのVDMO8のB V 
D SはBvcEで決まってしまうということで説明さ
ね、ている。
On the other hand, if the width wc of the contact hole (shown in FIG. 1a) is narrowed, the drain-source breakdown voltage BvDs of VDMO8 will decrease when the contact resistance Rcs11 and LARC8 exceed a certain value. This means that as Rcs increases in FIG. 1, the potential of the P layer region 3 increases, and the collector-emitter breakdown voltage BvcE of the NPN transistor 10 decreases accordingly.
When VcE becomes lower than the drain-source breakdown voltage BvDs of the transistor 8 (MOS), the B V of this VDMO8
Let's explain that DS is determined by BvcE.

コンタクト抵抗RCS11がコンタクト孔の幅Wcを狭
くするにつれて大きくなるのはP領域3が電極5に接触
している幅Wc′がWcとともに狭くなり、その直下の
ソース領域4に囲まれたP層領域3の抵抗がWc′に逆
比例して大きくなるからである。このため従来はB V
 Dsの低下を防ぐ必要上、Wcを8ミクロン以下にす
ることができなかった。
The reason why the contact resistance RCS11 increases as the width Wc of the contact hole is narrowed is that the width Wc' where the P region 3 is in contact with the electrode 5 becomes narrower along with Wc, and the P layer region surrounded by the source region 4 immediately below it becomes smaller. This is because the resistance of No. 3 increases in inverse proportion to Wc'. For this reason, conventionally B V
Due to the need to prevent a decrease in Ds, Wc could not be reduced to 8 microns or less.

発明の目的 本発明はこのような1つのコンタクト孔からP型、N型
の2つの領域に電極との接触を取る場合に、パターンの
微細化に伴ってコンタクト抵抗が増大するという問題に
鑑みてなされたもので、コンタクト孔の大きさを変える
ことなくコンタクト抵抗を小さくできる電極・不純物領
域間の接触溝造を有する半導体装置を提供するものであ
る。
Purpose of the Invention The present invention has been developed in view of the problem that when making contact with an electrode from one contact hole to two regions of P type and N type, contact resistance increases as the pattern becomes finer. The present invention provides a semiconductor device having a contact groove structure between an electrode and an impurity region, which can reduce contact resistance without changing the size of a contact hole.

発明の構成 本発明は1つのコンタクト孔を通じて拡散深さの異なる
P型碩域及びN型領域の両方に同時に電・極との接触を
取る場合に、2つの領域のうち浅い方の拡散深さ程度ま
たはそれ以上に深い窪みをP型領域及びN型領域の境界
に形成しておき、そこで電極との接触を取ることを特徴
とした半導体装置である。
Structure of the Invention The present invention provides a method for making contact with an electrode at the same time through one contact hole to both a P-type subregion and an N-type region having different diffusion depths. This semiconductor device is characterized in that a recess that is approximately or even deeper is formed at the boundary between the P-type region and the N-type region, and that the recess is brought into contact with the electrode there.

実施例の説明 本発明の具体的な実施例を図面を用いて説明する。第2
図は本発明をVDMO3に適用した場合の断面図である
。説明を容易にするため従来例と共通の構成要素は同一
番号にしである。1は高濃度N型シリコン基板、2はN
211エピタキシヤル層。
DESCRIPTION OF EMBODIMENTS Specific embodiments of the present invention will be described with reference to the drawings. Second
The figure is a sectional view when the present invention is applied to a VDMO3. For ease of explanation, components common to the conventional example are given the same numbers. 1 is a high concentration N-type silicon substrate, 2 is N
211 epitaxial layer.

3がP型拡散領域、4がソースN型拡散領域。3 is a P-type diffusion region, and 4 is a source N-type diffusion region.

6.6はそれぞれソース及びゲート電極、7はゲー酸化
膜、8は酸化膜である。図かられかるように丸印で囲ん
だソースのコンタクト領域の界面はソース領域4以上の
深さに窪んでおり、不純物類。
Reference numerals 6 and 6 are source and gate electrodes, 7 is a gate oxide film, and 8 is an oxide film. As shown in the figure, the interface of the source contact region surrounded by a circle is recessed to a depth greater than source region 4, and contains impurities.

域3,4と金属電極5の間の接触面積が従来例に比べて
ほぼ倍になっていることがわかる。特にこのVDMO8
の耐用B V p s低下の原因となった電極6とP層
領域3とのコンタクト抵抗は、電極6がP層領域3の内
部に入り込んだことによって格段に小さくなった。従来
はN型領域4に対するコンタクト抵抗は比較的低かった
が、P層領域3に対するコンタクト抵抗は非常にばらつ
きが大きかった。これは従来例の第1図aからも知るこ
とができるように、N型領域4の横方向の拡散の状況に
よってP層領域3と電極5の接触面積及びN型領域4に
囲まれたP層領域3の幅が大きく変わるためと考えられ
る。これに対して本発明を適用した場合、第2図のよう
に電極がN型領域4の底面程度あるいはそれよりも深く
壕でシリコン中に侵入しているのでP層領域3の電位は
確実にソース電位に保たれ、従来のように2.3.4の
領域からなるNPN構造の耐圧でVDMO3の耐圧が制
限されるという事態は生じない。また、N型領域4に対
するN極6の接触面積も従来とほとんど変らないので、
これに対するコンタクト抵抗の増大は見られなかった。
It can be seen that the contact area between the regions 3 and 4 and the metal electrode 5 is approximately double that of the conventional example. Especially this VDMO8
The contact resistance between the electrode 6 and the P-layer region 3, which was the cause of the decrease in the durability B V ps, was significantly reduced by the electrode 6 entering the inside of the P-layer region 3. Conventionally, the contact resistance to the N-type region 4 was relatively low, but the contact resistance to the P-layer region 3 varied greatly. As can be seen from FIG. 1a of the conventional example, this depends on the lateral diffusion situation of the N-type region 4 and the contact area between the P-layer region 3 and the electrode 5 and the P layer surrounded by the N-type region 4. This is considered to be because the width of the layer region 3 changes greatly. On the other hand, when the present invention is applied, as shown in FIG. 2, the electrode penetrates into the silicon in a trench about the bottom of the N-type region 4 or deeper than that, so the potential of the P-layer region 3 is reliably maintained. The source potential is maintained, and the situation where the breakdown voltage of VDMO3 is limited by the breakdown voltage of the NPN structure consisting of the 2.3.4 region as in the conventional case does not occur. Also, since the contact area of the N-pole 6 with the N-type region 4 is almost the same as before,
No increase in contact resistance was observed in response to this.

第3図は本実施例の製造工程を説明するものでまず第3
図aに示すようにn型のたとえば0.01゜Q cm 
基板−、に2.6ΩcmN型エピタキシャル層2を5〜
20 It m程度成長させる。次に7オトレジストを
マスクとしてホウ素をイオン打込みしドライブインして
P型領域3を形成する。”J tcヒ素をイオン打込み
してドライブインし、領域4を形成する。化学的気相成
長法で酸化膜8を形成し、熱酸化によりゲート配化n’
A7を形成する。ここ迄は周知の技術であり従来のVD
MO3の製造方法と同じであるので詳細は触れない。次
に同図すの様にコンタクト孔中央部12を除いてウェハ
の全面をフォトレジスト13でおおい、CC工。笠のガ
ス雰囲気でリアクティブイオンエツチングを行ない。
Figure 3 explains the manufacturing process of this example.
For example, 0.01°Q cm of n-type as shown in figure a.
A 2.6Ωcm N-type epitaxial layer 2 is applied to the substrate.
Grow to about 20 It m. Next, using the No. 7 photoresist as a mask, boron ions are implanted and driven in to form the P-type region 3. "J tc Arsenic is ion-implanted and driven in to form region 4. Oxide film 8 is formed by chemical vapor deposition, and gate wiring n' is formed by thermal oxidation.
Form A7. Up to this point, it is a well-known technology and conventional VD
Since it is the same as the manufacturing method of MO3, the details will not be described. Next, as shown in the figure, the entire surface of the wafer except for the central part 12 of the contact hole is covered with photoresist 13, and CC processing is performed. Reactive ion etching is performed in the gas atmosphere of the Kasa.

N型領域4の拡散深さ程度かそれより少し深い溝14を
形成する。リアクティブイオンエツチング゛を用いると
同図Cの様に比較的垂直にシリコンがエツチングされ、
1だパターン幅の変化も少ない。
A groove 14 is formed which is approximately the same depth as the diffusion depth of the N-type region 4 or slightly deeper than the diffusion depth. When reactive ion etching is used, silicon is etched relatively vertically as shown in Figure C.
1. There is also little change in pattern width.

次に同図dの様に電極6,6を付けてVDMO3装置が
出来あがる。
Next, as shown in Figure d, electrodes 6, 6 are attached to complete the VDMO3 device.

発明の効果 以上の様に、本発明の半導体装置は電極とシリコンの界
面に窪みを設けてコンタクト抵抗を減少させるものであ
り、コンタクト孔を大きくすることなしにコンタクト抵
抗を減少することができ、微細化された素子や集積回路
の高性能化に大きく寄与するものである。
As described above, the semiconductor device of the present invention reduces the contact resistance by providing a depression at the interface between the electrode and the silicon, and the contact resistance can be reduced without enlarging the contact hole. This will greatly contribute to improving the performance of miniaturized elements and integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

重拡散型MO3FETの構造断面図、第3図a −dは
本発明を適用(また縦型2重拡散型MO3FETの製造
工程断面図である。 1・・・・・・N 型シリコン基板、2 ・・N型エピ
タギシャル層、3・・・・・P型不純物領域、4・・・
・・・N型不純物領域、5・・・・金属電極、6・・・
・・・ゲート電極、T・・・・ゲート酸化膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第2図 1事件の表示 昭和68年特許願第 20638  号2発明の名称 半導体装置 3補正をする者  ゛ 事件との関係      特   許   出   願
  人住 所  大阪府門真市大字門真1006番地名
 称 (582)松下電器産業株式会社代表者    
山  下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内
3a to 3d are cross-sectional views of the structure of a heavy diffusion type MO3FET to which the present invention is applied (and are cross-sectional views of the manufacturing process of a vertical double diffusion type MO3FET. 1... N type silicon substrate, 2 ...N-type epitaxial layer, 3...P-type impurity region, 4...
...N-type impurity region, 5...metal electrode, 6...
...gate electrode, T...gate oxide film. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 1 Display of the case 1986 Patent Application No. 20638 2 Name of the invention Semiconductor device 3 Person making the amendment Relationship to the case Patent application Address 1006 Kadoma, Kadoma City, Osaka Name Name (582) Representative of Matsushita Electric Industrial Co., Ltd.
Toshihiko Yamashita 4 Agent 571 Address 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】 to半導体基板表面に形成された2つの隣接しかつ表面
から底面までの深さの異なる第1導電型及び第2導電型
の不純物物領域と、前記隣接した不純物領域の境界の表
面の少なくとも一部分を含んで形成された窪み領域と、
前記窪み領域を含んで前記第1導電型及び第2導電型の
不純物領域と接触している電極とを有し、前記窪みの深
さが概略前記第1導電型及び第2導電型の不純物領域の
深さの浅い方の深さに等しいかあるいはそれ以上である
ことを特徴とする半導体装置。 シ)第1導電型、第2導亀型の不純物領域及び電極がそ
れぞれソース領域、チャンネル領域及びソース電極であ
ることを特徴とする特許請求の範囲第1項に記載の半導
体装置。
[Scope of Claims] to Two adjacent impurity regions of a first conductivity type and a second conductivity type formed on a surface of a semiconductor substrate and having different depths from the surface to the bottom, and a boundary between the adjacent impurity regions. a depression region formed including at least a portion of the surface of the
an electrode that includes the recessed region and is in contact with the impurity regions of the first conductivity type and the second conductivity type, and the depth of the recess is approximately the impurity region of the first conductivity type and the second conductivity type. A semiconductor device characterized in that the depth is equal to or greater than the shallower of the depths. (c) The semiconductor device according to claim 1, wherein the impurity regions and electrodes of the first conductivity type and the second conductivity type are a source region, a channel region, and a source electrode, respectively.
JP58020638A 1983-02-10 1983-02-10 Semiconductor device Pending JPS59147453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58020638A JPS59147453A (en) 1983-02-10 1983-02-10 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020638A JPS59147453A (en) 1983-02-10 1983-02-10 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59147453A true JPS59147453A (en) 1984-08-23

Family

ID=12032762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020638A Pending JPS59147453A (en) 1983-02-10 1983-02-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59147453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305564A (en) * 1987-06-05 1988-12-13 Fuji Electric Co Ltd Manufacture of semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305564A (en) * 1987-06-05 1988-12-13 Fuji Electric Co Ltd Manufacture of semiconductor element

Similar Documents

Publication Publication Date Title
KR0169275B1 (en) Semiconductor device having trench structure for element isolating regions and fabricating method therefor
JPH0613617A (en) Manufacture of power mosfet transistor
JPH05315620A (en) Semiconductor device and manufacture thereof
US7517759B2 (en) Method of fabricating metal oxide semiconductor device
JP2002016080A (en) Manufacturing method of trench-gate type mosfet
US4675981A (en) Method of making implanted device regions in a semiconductor using a master mask member
US5451805A (en) VDMOS transistor with reduced projective area of source region
WO2006082618A1 (en) Semiconductor device and method for manufacturing the same
US7605445B2 (en) Sealed nitride layer for integrated circuits
JPH05283520A (en) Manufacture of semiconductor device
JPS59147453A (en) Semiconductor device
KR100273120B1 (en) Method for manufacturing bipolar transistors
JPH11340242A (en) Lateral transistor and its manufacture
KR100434715B1 (en) Semiconductor device with trench isolation layer for surrounding bottom of junction region and manufacturing method thereof
KR0175329B1 (en) Semiconductor device and its fabrication
JPS62159468A (en) Semiconductor device
JPH0462849A (en) Manufacture of semiconductor device
JPS6337643A (en) Manufacture of semiconductor device
KR940009359B1 (en) Bicmos and manufacturing metod thereof
KR101024869B1 (en) Semiconductor device and manufacturing method thereof
JPH03104283A (en) Mos type semiconductor device
JPH08340108A (en) Mos field effect transistor and manufacture thereof
JPH098144A (en) Semiconductor device and its manufacture
JPH0484438A (en) Semiconductor device
JPH01225357A (en) Semiconductor device