JPH06319939A - Method fort cleaning harmful gas - Google Patents

Method fort cleaning harmful gas

Info

Publication number
JPH06319939A
JPH06319939A JP5132720A JP13272093A JPH06319939A JP H06319939 A JPH06319939 A JP H06319939A JP 5132720 A JP5132720 A JP 5132720A JP 13272093 A JP13272093 A JP 13272093A JP H06319939 A JPH06319939 A JP H06319939A
Authority
JP
Japan
Prior art keywords
gas
acid
copper
oxide
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5132720A
Other languages
Japanese (ja)
Inventor
Takashi Shimada
孝 島田
Toshio Okumura
敏雄 奥村
Toshiya Hatakeyama
俊哉 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP5132720A priority Critical patent/JPH06319939A/en
Priority to EP94106928A priority patent/EP0624392B1/en
Priority to DE69412341T priority patent/DE69412341T2/en
Priority to TW083104121A priority patent/TW308551B/zh
Priority to KR1019940010252A priority patent/KR100320372B1/en
Publication of JPH06319939A publication Critical patent/JPH06319939A/en
Priority to US08/560,171 priority patent/US5662872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove efficiently a basic gas such as ammonia which is used in a semiconductor manufacturing process and contained in exhaust gas and air etc., by the leakage etc., of a bomb by contacting a gas containing the basic gas with a cleaning agent in which copper salt is deposited on metal oxide having copper oxide and manganese oxide as the main components. CONSTITUTION:A gas containing a basic gas (for example, ammonia) as a harmful component is contacted with a cleaning agent in which a tetravalent copper salt is deposited on metal oxide having a bivalent copper oxide and a tetravalent manganese oxide as the main components to remove the harmful component from the gas. For the bivalent copper salt, one or two kinds of inorganic acids are selected from carbonic acid, silicic acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, chloric acid, perchloric acid, chlorous acid, and hypochlorous acid. As a result, the basic gas such as ammonia and amine can be removed efficiently which is used in a semiconductor manufacturing process and contained in exhaust gas and air etc., by the leakage, etc., of a bomb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有害ガスの除去方法に関
し、さらに詳細にはアンモニア、アミン類など半導体製
造工程などで使用される塩基性の有害ガスの浄化方法に
関する。近年、半導体工業やオプトエレクトロニクス工
業、精密機器工業の発展とともに、アンモニア、アミン
類などの塩基性ガスの使用量が増加している。これらの
塩基性ガスは化学気相成長法などの半導体製造工程、装
飾・保護膜製造、超硬機器製造などにおいて、不可欠な
物質であるが、いずれも毒性が高く、刺激臭を放つとと
もに人体や環境に悪影響を与える。これらのガスの許容
濃度については例えばアンモニアが25ppm、トリメ
チルアミンが10ppmなどであり、これら有害・有毒
ガスを含むガスは前述した半導体製造工程などに使用後
大気に放出するに先だって有害成分を除去する必要があ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing harmful gases, and more particularly to a method for purifying basic harmful gases such as ammonia and amines used in semiconductor manufacturing processes. In recent years, with the development of the semiconductor industry, the optoelectronics industry, and the precision equipment industry, the amount of basic gases such as ammonia and amines used has been increasing. These basic gases are indispensable substances in semiconductor manufacturing processes such as chemical vapor deposition, decorative / protective film manufacturing, and super hard equipment manufacturing, but they are all highly toxic and give off a pungent odor and Harm to the environment. The permissible concentrations of these gases are, for example, 25 ppm of ammonia and 10 ppm of trimethylamine. It is necessary to remove harmful components from the gas containing these harmful and toxic gases before using them in the semiconductor manufacturing process and before releasing them to the atmosphere. There is.

【0002】これらの塩基性のアンモニア系ガスは通常
は容量が0.1〜50L程度のガスボンベに充填して市
販されている。ガスボンベはガスが漏洩した場合に直接
外部の空気を汚染することを防止するため、通常はボン
ベボックスと呼ばれる換気ダクトに接続されたボンベ収
納器内に収納された状態で半導体プロセスなどへのガス
の供給配管に接続して使用される。このようなボンベボ
ックス内に収納されていても思わぬ事故などにより、例
えば5〜10分程度の短時間でボンベが空になるような
急激な漏洩が発生する危険性が皆無といえず、このよう
な事故に対処しうる万全の対策が強く要望されている。
These basic ammonia-based gases are usually put on the market in a gas cylinder having a capacity of about 0.1 to 50 L. In order to prevent the air from directly contaminating the outside air when a gas leaks, the gas cylinder is normally stored in a cylinder container connected to a ventilation duct called a cylinder box, and the gas to the semiconductor process etc. Used by connecting to the supply pipe. Even if the cylinder is stored in the cylinder box, there is no risk of sudden leakage such as emptying of the cylinder in a short time of about 5 to 10 minutes due to an unexpected accident. There is a strong demand for complete measures to deal with such accidents.

【0003】[0003]

【従来の技術】ガス中に含有される塩基性ガスなどを除
去する方法としては、スクラバー吸収分解させる湿式法
があり、吸収液として主に酸性成分を含む水溶液が用い
られている。また、乾式法では、活性炭や無機化合物系
の多孔質吸着剤を使用する例もある。
2. Description of the Related Art As a method for removing a basic gas contained in a gas, there is a wet method in which a scrubber is absorbed and decomposed, and an aqueous solution mainly containing an acidic component is used as an absorbing liquid. Further, in the dry method, there is an example in which activated carbon or an inorganic compound-based porous adsorbent is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、湿式法
は装置が大型化するとともに後処理に困難性があり、装
置の保守費用も大きくなるという欠点がある。さらに、
吸着効率が必ずしも高くなく、高濃度の有害ガスの場合
には完全に処理しきれないのが現状である。さらには、
塩基性ガス以外の有害ガスを同時に含むこともあり、例
えば半導体工業ではシリコン化合物系のガスも同時に使
用されることから酸化物結晶の生成によりスラッジが生
ずるなどの問題点もある。また、乾式法として活性炭に
よる吸着処理の方法があるが、除害能力が低いばかりで
なく、シランなどの可燃性ガスが共存する場合には、火
災につながる危険性もある。従って、有害ガスの処理速
度および処理容量が大きく、ボンベの異常などで濃度は
比較的低いが大量のガスが漏洩するような緊急時ばかり
でなく、通常、半導体製造プロセスから排出される濃度
の高い有害ガスなどのいずれに対しても除去性能が優
れ、火災の危険性などがなく、かつ、生成物による浄化
筒の閉塞などの恐れのない浄化方法が望まれていた。
However, the wet method has the drawbacks that the size of the apparatus becomes large, the post-treatment is difficult, and the maintenance cost of the apparatus becomes high. further,
Under the present circumstances, the adsorption efficiency is not necessarily high, and in the case of a high concentration of harmful gas, it cannot be completely treated. Moreover,
It may contain harmful gas other than basic gas at the same time. For example, in the semiconductor industry, since silicon compound gas is also used at the same time, there is a problem that sludge is generated due to generation of oxide crystals. In addition, there is a method of adsorption treatment with activated carbon as a dry method, but not only the detoxifying ability is low, but also in the presence of a combustible gas such as silane, there is a risk of causing a fire. Therefore, the processing speed and processing capacity of the harmful gas are large, and the concentration is relatively low due to an abnormality in the cylinder, etc., but not only in an emergency where a large amount of gas leaks, but also the concentration that is usually emitted from the semiconductor manufacturing process is high. There has been a demand for a purification method which is excellent in removing performance against harmful gases and the like, has no risk of fire, and has no fear of clogging of the purification cylinder with products.

【0005】[0005]

【課題を解決するための手段】本発明者らは、これらの
問題点を解決するべく鋭意検討を重ねた結果、酸化銅
(II)、酸化マンガン(IV)を主成分とする金属酸
化物に銅(II)塩を添着させた浄化剤を用いることに
よって、塩基性の有害ガスを極めて効率よく、しかも安
全性が高いことを見い出し、本発明を完成した。すなわ
ち本発明は、有害成分となる塩基性ガスを含有するガス
を、酸化銅(II)および酸化マンガン(IV)を主成
分とする金属酸化物に銅(II)塩を添着せしめてなる
浄化剤と接触させ、該ガスから有害成分を除去すること
を特徴とする有害ガスの浄化方法である。本発明は空
気、窒素および水素などのガス中に含有されるアンモニ
アおよびジメチルアミン、トリメチルアミン、モノメチ
ルアミン、ヒドラジン、ジメチルヒドラジンなどのアミ
ン類など塩基性ガスを含有する有害ガスに適用される。
特に本発明の浄化方法は多量の有害ガスを迅速に、しか
も常温で除去することができ、例えば、半導体製造プロ
セスなどから排出される塩基性の有害ガスの浄化や、ボ
ンベから急激に漏洩するなどで有害ガスによって汚染さ
れた空気の迅速な浄化などに優れた効果が得られる。
Means for Solving the Problems As a result of intensive studies to solve these problems, the present inventors have found that metal oxides containing copper (II) oxide and manganese (IV) oxide as main components are selected. It was found that the use of a purifying agent impregnated with a copper (II) salt is extremely effective in eliminating a basic harmful gas and is highly safe, and has completed the present invention. That is, the present invention is a purifying agent obtained by impregnating a gas containing a basic gas, which is a harmful component, with a metal oxide containing copper (II) oxide and manganese (IV) oxide as main components and a copper (II) salt. And a harmful component is removed from the gas by bringing the gas into contact with the gas. INDUSTRIAL APPLICABILITY The present invention is applicable to harmful gases containing basic gases such as ammonia and dimethylamine, trimethylamine, monomethylamine, hydrazine, dimethylhydrazine and other amines contained in gases such as air, nitrogen and hydrogen.
In particular, the purification method of the present invention can remove a large amount of harmful gas quickly and at room temperature. For example, the basic harmful gas discharged from a semiconductor manufacturing process or the like, or the gas leaks rapidly from a cylinder, etc. With this, excellent effects such as quick purification of air polluted by harmful gas can be obtained.

【0006】本発明において、銅(II)塩を、酸化銅
(II)、酸化マンガン(IV)を主成分とする金属酸
化物に無機酸または有機酸の銅(II)塩が添着せしめ
られる。無機酸の塩としてはオキソ酸の塩およびハロゲ
ン化物などであり、オキソ酸の塩では、例えば、炭酸、
硅酸、硝酸、硫酸、燐酸、ひ酸、ほう酸、塩素酸、過塩
素酸、亜塩素酸、次亜塩素酸などの銅(II)塩、ま
た、ハロゲン化物では、例えば塩化銅(II)、臭化銅
(II)、よう化銅(II)などが挙げられる。また有
機酸としては、蟻酸、酢酸、プロピオン酸、オレイン
酸、ステアリン酸などの脂肪族モノカルボン酸、蓚酸、
アジピン酸、セバシン酸などの脂肪族ジカルボン酸、乳
酸、酒石酸の様なオキシ酸、安息香酸、トルイル酸など
の芳香族やナフテン酸のような種々の酸の銅(II)塩
が挙げられる。これらの内でも硝酸銅、硫酸銅、塩化
銅、臭化銅および酢酸銅などが水溶性であり、扱い易さ
の点で好適である。また、銅(II)塩として無水物か
ら多水和物まで種々の水和物が知られているが、取り扱
い易さ、空気中での安定性の良さ、有害ガスの除害能力
に悪影響は及ぼさないことなどから水和物を使用するこ
とが一般的に好ましい。
In the present invention, a copper (II) salt is impregnated with a copper (II) salt of an inorganic acid or an organic acid to a metal oxide containing copper (II) oxide or manganese (IV) oxide as a main component. Examples of the inorganic acid salt include oxo acid salts and halides, and examples of the oxo acid salt include carbonic acid,
Copper (II) salts such as silicic acid, nitric acid, sulfuric acid, phosphoric acid, arsenic acid, boric acid, chloric acid, perchloric acid, chlorous acid and hypochlorous acid, and halides such as copper (II) chloride, Copper (II) bromide, copper (II) iodide and the like can be mentioned. As the organic acid, formic acid, acetic acid, propionic acid, oleic acid, aliphatic monocarboxylic acids such as stearic acid, oxalic acid,
Examples thereof include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, oxyacids such as lactic acid and tartaric acid, aromatics such as benzoic acid and toluic acid, and copper (II) salts of various acids such as naphthenic acid. Among these, copper nitrate, copper sulfate, copper chloride, copper bromide, copper acetate and the like are water-soluble and are preferable in terms of easy handling. Various hydrates are known as copper (II) salts, from anhydrous to polyhydrate, but they have no adverse effect on the ease of handling, the stability in air, and the ability to remove harmful gases. It is generally preferred to use a hydrate, since it does not affect.

【0007】また、主成分である酸化銅(II)、酸化
マンガン(IV)の他に金属酸化物として、酸化コバル
ト(III)、酸化銀(I)(II)、酸化アルミニウ
ム(III)、酸化硅素(IV)の1種または2種以上
を混合したものであってもよい。金属酸化物中の酸化銅
(II)および酸化マンガン(IV)の含有量は、通常
は、両者を合わせて60重量%以上、好ましくは70重
量%以上である。また、酸化銅(II)に対する酸化マ
ンガン(IV)の割合は、通常は、1:0.8〜5、好
ましくは1:1.2〜3程度である。これらの金属酸化
物系の組成物は、各成分の混合や公知の種々の方法で調
製することもできるが、ホプカライトとして市販もされ
ているのでそれらを使用すると便利である。ホプカライ
トは、酸化銅(II)40重量%、酸化マンガン(I
V)60重量%の二元素系が中心として市販され、ま
た、銅−マンガン系に、カリウム、マグネシウム、アル
ミニウム、硅素などの酸化物が30重量%程度の割合で
添加物として混合してあるものもあり、それらをそのま
ま、あるいは、これらに前記のその他の金属酸化物を混
合して用いてもよい。
Further, in addition to copper (II) oxide and manganese (IV) oxide which are the main components, cobalt (III) oxide, silver (I) (II) oxide, aluminum (III) oxide, and oxides are used as metal oxides. It may be one or a mixture of two or more of silicon (IV). The content of copper (II) oxide and manganese (IV) oxide in the metal oxide is usually 60% by weight or more, preferably 70% by weight or more in total. The ratio of manganese (IV) oxide to copper (II) oxide is usually about 1: 0.8 to 5, preferably about 1: 1.2 to 3. These metal oxide-based compositions can be prepared by mixing the respective components or by various known methods, but since they are commercially available as hopcalite, it is convenient to use them. Hopcalite is 40% by weight of copper (II) oxide and manganese oxide (I).
V) A 60% by weight binary element system is mainly sold on the market, and an oxide of potassium, magnesium, aluminum, silicon, etc. is mixed as an additive at a ratio of about 30% by weight with a copper-manganese system. Therefore, they may be used as they are, or may be used by mixing them with the above-mentioned other metal oxides.

【0008】金属酸化物は、破砕品、押し出し成型品、
打錠成型品などであり、そのサイズは、破砕品であれば
4〜20メッシュ程度、押し出し成型品であれば1.5
〜4mmφ×3〜20mm程度、打錠成型品であれば通
常は円筒状で3〜6mmφ×3〜6mm程度の大きさの
ものが好ましい。
Metal oxides are crushed products, extruded products,
A tablet-molded product or the like, the size of which is about 4 to 20 mesh for a crushed product and 1.5 for an extruded product.
˜4 mmφ × 3 to 20 mm, and if it is a tablet-molded product, it is usually preferably cylindrical and has a size of about 3 to 6 mmφ × 3 to 6 mm.

【0009】金属酸化物に添着される銅(II)塩の量
には特に制限はなく、塩基性ガスの種類、濃度などによ
って選択されるが、例えば、ホプカライト100重量部
に対して3〜100重量部、好ましくは5〜50重量部
程度である。銅(II)塩が3重量部より少ないと浄化
効率が低くなり、一方、50重量部を越えるとホプカラ
イトなどの金属酸化物に充分に保持されず、かつ、高価
にもなる。本発明において、有害成分の除去効率をより
高める目的で浄化剤に銅(II)塩の結晶水に加え、遊
離水分を保有せしめることが望ましい。遊離水分の保有
量としては通常は、浄化剤全重量に対し、1〜50重量
%、好ましくは5〜30重量%である。銅(II)塩を
添着して浄化剤を得るには、例えば硫酸銅を温水に溶解
し、これを金属酸化物に含浸せしめた後、30〜100
℃程度で所定の水分含有量になるまで乾燥することによ
って製造することができる。このようにして得られた浄
化剤は、塩基性ガスと同時に半導体製造プロセスで使用
され、排出ガスに混入してくるモノシランを分解し、無
害化しうるという利点も兼ね備えている。
The amount of the copper (II) salt attached to the metal oxide is not particularly limited and may be selected depending on the type and concentration of the basic gas. For example, 3 to 100 relative to 100 parts by weight of hopcalite. It is about 5 to 50 parts by weight, preferably about 5 to 50 parts by weight. If the amount of copper (II) salt is less than 3 parts by weight, the purification efficiency will be low, while if it exceeds 50 parts by weight, it will not be sufficiently retained by metal oxides such as hopcalite and will be expensive. In the present invention, it is desirable to add free water to the purifying agent in addition to the water of crystallization of copper (II) salt for the purpose of further increasing the efficiency of removing harmful components. The amount of free water retained is usually 1 to 50% by weight, preferably 5 to 30% by weight, based on the total weight of the cleaning agent. To obtain a purifying agent by impregnating a copper (II) salt, for example, copper sulfate is dissolved in warm water, and this is impregnated with a metal oxide, and then 30-100
It can be produced by drying at about 0 ° C. until a predetermined water content is reached. The purifying agent thus obtained has the advantage that it can be used in a semiconductor manufacturing process at the same time as the basic gas and decomposes monosilane mixed in the exhaust gas to render it harmless.

【0010】本発明において、塩基性有害ガスの濃度
は、通常は1%以下、好ましくは1000ppm以下で
ある。また、浄化剤とガスとの接触温度は0〜90℃程
度であり、通常は室温(10〜50℃)で操作され、特
に加熱や冷却を必要としない。なお接触開始後は反応熱
によって、有害ガスの濃度に応じて温度上昇が見られ
る。接触時の圧力は、通常は常圧であるが、減圧乃至1
kg/cm2 Gのような加圧下で操作することも可能で
ある。本発明で浄化の対象となる空気、窒素および水素
などのガスは乾燥状態または湿潤状態であっても結露を
生じない程度であればよいが、一般的には通常の大気に
相当する30〜100%の相対湿度で使用されることが
多く、このような場合には浄化剤中の遊離水分が5〜3
0重量%程度のものが好適である。また、空気中などの
炭酸ガスによって悪影響を受けることはなく、炭酸ガス
の存在は状況によっては却って浄化能力を高めることも
ある。
In the present invention, the concentration of the basic harmful gas is usually 1% or less, preferably 1000 ppm or less. Further, the contact temperature between the purifying agent and the gas is about 0 to 90 ° C., which is usually operated at room temperature (10 to 50 ° C.), and heating or cooling is not particularly required. After the contact is initiated, the reaction heat causes a temperature rise depending on the concentration of the harmful gas. The pressure at the time of contact is usually atmospheric pressure, but reduced pressure to 1
It is also possible to operate under pressure such as kg / cm 2 G. The gas to be purified in the present invention, such as air, nitrogen and hydrogen, may be in a dry state or a wet state as long as it does not cause dew condensation, but it is generally 30 to 100 which corresponds to a normal atmosphere. % Relative humidity is often used, in which case the free water content in the purifier is 5 to 3
It is preferably about 0% by weight. Further, carbon dioxide in the air or the like is not adversely affected, and the presence of carbon dioxide may rather increase the purification capacity depending on the situation.

【0011】本発明の浄化方法が適用されるガス中に含
有されるアンモニアなどの塩基性ガスの濃度および流速
には特に制限はないが、一般に濃度が高いほど流速を小
さくすることが望ましい。除去可能な有害ガスの濃度は
通常は1%以下であるが、流量が小さい場合にはさらに
高濃度の塩基性ガスの処理も可能である。浄化筒は有害
ガス濃度、処理対象ガスの量などに応じて設計される
が、有害ガス濃度が0.1%以下のような比較的低濃度
では空筒線速度(LV)は0.5〜50cm/sec、
有害ガス濃度が0.1〜1%程度ではLVは0.05〜
20cm/sec、濃度が1%以上の様な高濃度では1
0cm/sec以下の範囲で設計する事が好ましい。従
って、半導体製造工程プロセスから定常的に排出される
濃度の高い有害ガスの様な場合には10cm/sec以
下、有害ガスがガスボンベから急激に漏洩し、多量の空
気などで希釈されるような場合にはLVは0.5〜50
cm/secが一般的な基準となる。
There are no particular restrictions on the concentration and flow rate of the basic gas such as ammonia contained in the gas to which the purification method of the present invention is applied, but it is generally desirable to reduce the flow rate as the concentration increases. The concentration of the harmful gas that can be removed is usually 1% or less, but if the flow rate is small, it is possible to treat a basic gas having a higher concentration. The purifying cylinder is designed according to the harmful gas concentration, the amount of gas to be treated, etc., but at a relatively low concentration of the harmful gas concentration of 0.1% or less, the hollow cylinder linear velocity (LV) is 0.5 to. 50 cm / sec,
When the harmful gas concentration is 0.1 to 1%, the LV is 0.05 to
1 at high concentration such as 20 cm / sec and concentration of 1% or more
It is preferable to design in the range of 0 cm / sec or less. Therefore, in the case of toxic gas with a high concentration constantly emitted from the semiconductor manufacturing process, 10 cm / sec or less, and when the toxic gas suddenly leaks from the gas cylinder and is diluted with a large amount of air, etc. LV is 0.5 to 50
cm / sec is a general standard.

【0012】浄化剤は、通常は有害ガスの浄化筒に充填
され、固定床として用いられるが移動床、流動床として
用いることも可能である。通常は浄化剤は浄化筒内に充
填され、アンモニア系塩基性ガスを含有するガスは浄化
筒内に流され、浄化剤と接触させる事により、有害分で
あるアンモニア系塩基性ガスが除去される。本発明にお
いて浄化剤が浄化筒に充填されたときの充填密度は1.
0〜1.5g/ml程度である。浄化剤は、例えば図1
および図2のフローシートで示されたような浄化筒1に
充填されて使用される。そして図1のように半導体製造
装置2からの排ガスの浄化をおこなう場合には、それら
の製造装置2より導かれたダクト6と接続して使用され
る。また、ガスボンベからの漏洩ガスの処理などに使用
する場合には、図2のように浄化筒1は有害ガスのボン
ベ3が収納されたボンベボックス4と空気を連続的に吸
引換気するためのブロアー5とを接続する換気用のダク
ト6の介在させて使用される。浄化剤は有害ガスの濃度
が1%を超えるような高濃度では発熱が大きくなるた
め、除熱手段が必要となる場合がある。しかしながら、
図2のような設備では通常、有害ガスの急激な漏洩が生
じても空気もしくは窒素などの希釈ガスとの混合によっ
て、その濃度が1%以下に希釈されるに充分な容量のブ
ロアーが設けられている。
The purifying agent is usually packed in a column for purifying harmful gas and used as a fixed bed, but it can also be used as a moving bed or a fluidized bed. Normally, the purifying agent is filled in the purifying cylinder, and the gas containing the ammonia-based basic gas is caused to flow in the purifying cylinder, and the harmful ammonia-based basic gas is removed by bringing the gas into contact with the purifying agent. . In the present invention, the packing density when the cleaning agent is packed in the cleaning column is 1.
It is about 0 to 1.5 g / ml. The cleaning agent is, for example, FIG.
And, it is used by being filled in the purification cylinder 1 as shown in the flow sheet of FIG. When purifying the exhaust gas from the semiconductor manufacturing apparatus 2 as shown in FIG. 1, the exhaust gas is connected to the duct 6 led from the manufacturing apparatus 2 and used. When used for treating leaked gas from a gas cylinder, as shown in FIG. 2, the purifying cylinder 1 has a cylinder box 4 containing a cylinder 3 of harmful gas and a blower for continuously sucking and ventilating air. It is used by interposing a ventilation duct 6 for connecting with 5. The purifying agent generates a large amount of heat when the concentration of the harmful gas exceeds 1%, and thus heat removal means may be required. However,
In the equipment as shown in FIG. 2, a blower having a capacity sufficient to dilute the concentration to 1% or less is usually provided by mixing with a diluting gas such as air or nitrogen even if a rapid leak of harmful gas occurs. ing.

【0013】[0013]

【実施例】【Example】

実施例1〜4 浄化剤の調製 硫酸銅5水和物25〜250gを400〜800mlの
温水に溶解し、バット中にて酸化銅(II)40wt
%、酸化マンガン(IV)60wt%の2成分系のホプ
カライト(日産ガードラー製)500gと混合した後、
100℃にて乾燥させ、硫酸銅の含有量および遊離水分
含有量の異なる4種類の浄化剤を得た。この4種類の浄
化剤を用いてそれぞれ有害ガスの浄化試験をおこなっ
た。浄化剤85mlを内径19mm、長さ500mmの
石英ガラス製の浄化筒に充填し、アンモニアを1%含有
する乾燥窒素を20℃、常圧下で170ml/min
(LV=1.0cm/sec)の流量で流通させた。浄
化筒の出口ガスの一部をサンプリングし、ガス検知管
(ガステック社製、検知下限2ppm)およびガス検知
器(バイオニクス機器(株)製、型番TG−2400B
A)で測定し、アンモニアが許容濃度上限(25pp
m)に到達するまでの時間(有効処理時間)を測定し
た。その結果を表1に示す。
Examples 1 to 4 Preparation of Purifying Agent 25 to 250 g of copper sulfate pentahydrate is dissolved in 400 to 800 ml of warm water, and 40 wt% of copper (II) oxide is placed in a vat.
%, Manganese (IV) oxide 60 wt% binary hopcalite (manufactured by Nissan Gardler)
It was dried at 100 ° C. to obtain four kinds of purifying agents having different copper sulfate contents and free water contents. A purification test for harmful gas was conducted using each of these four types of purifying agents. A purifying agent of 85 ml was filled in a purifying cylinder made of quartz glass having an inner diameter of 19 mm and a length of 500 mm, and dry nitrogen containing 1% of ammonia was heated at 20 ° C. under atmospheric pressure to 170 ml / min.
It was circulated at a flow rate of (LV = 1.0 cm / sec). A part of the outlet gas of the purification column is sampled, and a gas detection tube (Gastec, detection lower limit 2 ppm) and a gas detector (Bionics Equipment Co., Ltd., model number TG-2400B)
Measured in A), ammonia has an upper limit of allowable concentration (25 pp
The time required to reach m) (effective treatment time) was measured. The results are shown in Table 1.

【0014】[0014]

【表1】 表1 実施例 硫酸銅 遊離水分 有害ガス 空筒線速度 有効処理時間 含有率 含有率 の濃度 LV (wt%)(wt%) (%) (cm/sec) (min) 1 5 7 1 1.0 5012 2 10 〃 〃 〃 6950 3 40 8 〃 〃 9005 4 100 9 〃 〃 9996[Table 1] Table 1 Example Copper sulfate Free water Hazardous gas Empty cylinder linear velocity Effective treatment time Content rate Content rate concentration LV (wt%) (wt%) (%) (cm / sec) (min) 1 57 1 1.0 5012 2 10 〃 〃 〃 6950 3 40 8 〃 〃 9005 4 100 9 〃 〃 9996

【0015】実施例5〜7 実施例3と同じ浄化剤を用い、アンモニア濃度およびガ
スの流通速度(LV)を種々変えた他は実施例1と同様
にして浄化試験をおこなった。その結果を表2に示す。
Examples 5 to 7 Purification tests were conducted in the same manner as in Example 1 except that the same purifying agent as in Example 3 was used and the ammonia concentration and the gas flow rate (LV) were variously changed. The results are shown in Table 2.

【0016】[0016]

【表2】 表2 実施例 硫酸銅 遊離水分 有害ガス 空筒線速度 有効処理時間 含有率 含有率 の濃度 LV (wt%)(wt%) (%) (cm/sec) (min) 5 40 8 1.0 10.0 901 6 〃 〃 〃 0.5 18016 7 〃 〃 0.1 10.0 9012[Table 2] Table 2 Examples Copper sulphate Free water Hazardous gas Empty cylinder linear velocity Effective treatment time Content rate Content rate concentration LV (wt%) (wt%) (%) (cm / sec) (min) 5 40 8 1.0 10.0 901 6 〃 〃 〃 0.5 18016 7 〃 〃 0.1 10.1 10.0 9012

【0017】実施例8、9 実施例3と同じ浄化剤を用い、アンモニアの代りにトリ
メチルアミンを1%含有する窒素について流通速度(L
V)を変え、実施例1と同様にして浄化試験をおこない
トリメチルアミンの濃度が許容濃度上限(10ppm)
に達するまでの時間を測定した。その結果を表3に示
す。
Examples 8 and 9 Using the same purifying agent as in Example 3, the flow rate (L) of nitrogen containing 1% of trimethylamine in place of ammonia was used.
V) was changed, and a purification test was conducted in the same manner as in Example 1, and the concentration of trimethylamine was the upper limit of allowable concentration (10 ppm).
The time to reach was measured. The results are shown in Table 3.

【0018】[0018]

【表3】 表3 実施例 硫酸銅 遊離水分 有害ガス 空筒線速度 有効処理時間 含有率 含有率 の濃度 LV (wt%)(wt%) (%) (cm/sec) (min) 8 40 8 1 10.0 805 9 〃 〃 〃 1.0 8753[Table 3] Table 3 Example Copper sulfate Free water Hazardous gas Empty cylinder linear velocity Effective treatment time Content rate Content rate concentration LV (wt%) (wt%) (%) (cm / sec) (min) 8 40 8 1 10.0 805 9 〃 〃 〃 1.0 8753

【0019】実施例10、11 塩基性ガス以外の有害ガスの浄化剤に及ぼす影響を見る
ために、モノシラン1%を含む窒素を流通速度を一定に
して100分、1000分、5000分間流通した後、
それぞれの場合について実施例1と同様にしてアンモニ
アの除去能力を測定した。結果を表4に示す。
Examples 10 and 11 In order to examine the effect of harmful gases other than basic gases on the purifying agent, nitrogen containing 1% of monosilane was passed for 100 minutes, 1000 minutes and 5000 minutes at a constant flow rate. ,
In each case, the ability to remove ammonia was measured in the same manner as in Example 1. The results are shown in Table 4.

【0020】[0020]

【表4】 表5 実施例 モノシラン流通時間 有効処理時間 (min) (min) 10 100 8997 11 1000 8861[Table 4] Table 5 Examples Monosilane flow time Effective treatment time (min) (min) 10 100 8997 11 1000 8861

【0021】実施例12 実施例3と同じ浄化剤を用い、アンモニア1%およびモ
ノシラン1%を含む窒素を速度を一定にして流通し、実
施例1と同様にしてアンモニアおよびモノシランの除去
能力を測定した。結果を表4に示す。
Example 12 Using the same purifying agent as in Example 3, nitrogen containing 1% ammonia and 1% monosilane was circulated at a constant rate, and the removal ability of ammonia and monosilane was measured in the same manner as in Example 1. did. The results are shown in Table 4.

【0022】[0022]

【表4】 表4 実施例 硫酸銅 空筒線速度 シラン アンモニア 含有率 LV 有効処理時間 有効処理時間 (wt%)(cm/sec) (min) (min) 13 40 1.0 1600 8985[Table 4] Table 4 Example Copper sulfate empty cylinder linear velocity Silane Ammonia content rate LV Effective treatment time Effective treatment time (wt%) (cm / sec) (min) (min) 13 40 1.0 1600 8985

【0023】比較例1 実施例1と同じホプカライト(日産ガードラー製)で銅
(II)塩を添着しないホプカライトを浄化剤として用
いた他は実施例1と同様にしてアンモニアの除去能力を
測定した。結果を表5に示す。
Comparative Example 1 Ammonia removing ability was measured in the same manner as in Example 1 except that the same hopcalite (manufactured by Nissan Gardler) as in Example 1 was used as a purifying agent without copper (II) salt impregnation. The results are shown in Table 5.

【0024】[0024]

【表5】 表5 比較例 空筒線速度 有害ガス濃度 有効処理時間 (cm/sec) (%) (min) 1 1.0 1 18[Table 5] Table 5 Comparative example Empty cylinder linear velocity Hazardous gas concentration Effective treatment time (cm / sec) (%) (min) 1 1.0 1 18

【0025】[0025]

【発明の効果】本発明のガスの浄化方法によれば、ガス
中に含有されるアンモニア、トリメチルアミンなどのア
ンモニア系塩基性ガスを効率よく除去することができ
る。高濃度、低濃度に係わらず有害ガスを効率よく、し
かも極めて迅速に除去することができる。また、シラン
などの他の有害ガスが共存しても塩基性ガスと同時に除
去できるので、例えば、半導体製造プロセスの排気ガス
の浄化や、ガスボンベから有害ガスが急激に漏洩するな
どの緊急時の除害装置に使用することによって優れた効
果が得られる。
According to the gas purification method of the present invention, ammonia-based basic gases such as ammonia and trimethylamine contained in the gas can be efficiently removed. Regardless of whether the concentration is high or low, harmful gas can be removed efficiently and extremely quickly. Also, even if other harmful gases such as silane coexist, they can be removed at the same time as the basic gas, so that, for example, purification of exhaust gas in the semiconductor manufacturing process or emergency removal such as sudden leakage of harmful gas from a gas cylinder is possible. An excellent effect can be obtained by using it in a harmful device.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】 有害ガスの浄化方法の例を示すフローシー
ト。
FIG. 1 is a flow sheet showing an example of a method for purifying harmful gas.

【図2】 図1とは異なる態様の浄化方法のフローシー
ト。
FIG. 2 is a flow sheet of a purification method having an aspect different from that of FIG.

【符号の説明】[Explanation of symbols]

1 浄化筒 2 半導体製造装置 3 ガスボンベ 4 ボンベボックス 5 ブロアー 6 ダクト 1 Purification Cylinder 2 Semiconductor Manufacturing Equipment 3 Gas Cylinder 4 Cylinder Box 5 Blower 6 Duct

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】有害成分となる塩基性ガスを含有するガス
を、酸化銅(II)および酸化マンガン(IV)を主成
分とする金属酸化物に銅(II)塩を添着せしめてなる
浄化剤と接触させ、該ガスから有害成分を除去すること
を特徴とする有害ガスの浄化方法。
1. A purifying agent obtained by impregnating a gas containing a harmful basic gas with a metal oxide containing copper (II) oxide and manganese (IV) oxide as a main component and a copper (II) salt. A method for purifying noxious gas, which comprises contacting the gas with a gas to remove harmful components from the gas.
【請求項2】塩基性ガスがアンモニア、モノメチルアミ
ン、ジメチルアミン、トリメチルアミン、ヒドラジン、
ジメチルヒドラジンから選ばれる1種または2種以上で
ある請求項1に記載の有害ガスの浄化方法。
2. The basic gas is ammonia, monomethylamine, dimethylamine, trimethylamine, hydrazine,
The method for purifying a harmful gas according to claim 1, which is one kind or two or more kinds selected from dimethylhydrazine.
【請求項3】銅(II)塩が、炭酸、硅酸、硝酸、硫
酸、燐酸、ほう酸、塩素酸、過塩素酸、亜塩素酸、次亜
塩素酸の無機酸塩から選ばれる1種または2種以上であ
る請求項1に記載の有毒ガスの浄化方法。
3. A copper (II) salt selected from the group consisting of carbonic acid, silicic acid, nitric acid, sulfuric acid, phosphoric acid, boric acid, chloric acid, perchloric acid, chlorous acid and hypochlorous acid. The method for purifying toxic gas according to claim 1, wherein there are two or more kinds.
JP5132720A 1993-05-11 1993-05-11 Method fort cleaning harmful gas Pending JPH06319939A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5132720A JPH06319939A (en) 1993-05-11 1993-05-11 Method fort cleaning harmful gas
EP94106928A EP0624392B1 (en) 1993-05-11 1994-05-04 Process for cleaning harmful gas
DE69412341T DE69412341T2 (en) 1993-05-11 1994-05-04 Process for cleaning harmful gas
TW083104121A TW308551B (en) 1993-05-11 1994-05-06
KR1019940010252A KR100320372B1 (en) 1993-05-11 1994-05-11 Hazardous Gas Purification Method
US08/560,171 US5662872A (en) 1993-05-11 1995-11-17 Process for cleaning harmful gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132720A JPH06319939A (en) 1993-05-11 1993-05-11 Method fort cleaning harmful gas

Publications (1)

Publication Number Publication Date
JPH06319939A true JPH06319939A (en) 1994-11-22

Family

ID=15088007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132720A Pending JPH06319939A (en) 1993-05-11 1993-05-11 Method fort cleaning harmful gas

Country Status (1)

Country Link
JP (1) JPH06319939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135415A (en) * 1998-10-30 2000-05-16 Japan Pionics Co Ltd Cleaning agent for noxious gas and noxious gas cleaning using the same
JP2008302338A (en) * 2007-06-11 2008-12-18 Sud-Chemie Catalysts Inc Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas
JP2011041894A (en) * 2009-08-20 2011-03-03 Taiyo Nippon Sanso Corp Method for treating exhaust gas and detoxifying agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000135415A (en) * 1998-10-30 2000-05-16 Japan Pionics Co Ltd Cleaning agent for noxious gas and noxious gas cleaning using the same
JP2008302338A (en) * 2007-06-11 2008-12-18 Sud-Chemie Catalysts Inc Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas
JP2011041894A (en) * 2009-08-20 2011-03-03 Taiyo Nippon Sanso Corp Method for treating exhaust gas and detoxifying agent

Similar Documents

Publication Publication Date Title
KR100320372B1 (en) Hazardous Gas Purification Method
US4786483A (en) Process for removing hydrogen sulfide and mercury from gases
US5126117A (en) Device for preventing accidental releases of hazardous gases
US6004522A (en) Solid filtration media incorporating elevated levels of permanganate and water
JPH07308538A (en) Cleaner for harmful gas
US6837917B2 (en) Process for the removal of ethylene oxide from air
JPH0616818B2 (en) Exhaust gas purification method and device
JP2581642B2 (en) Etching exhaust gas abatement agent and exhaust gas treatment method
JPH05237324A (en) Method for purifying harmful gas
JPH05161841A (en) Air purifying agent and production thereof
US5756060A (en) Process for cleaning harmful gas
JP3340510B2 (en) Hazardous gas purification method
JPH06319939A (en) Method fort cleaning harmful gas
JPH06319938A (en) Method for cleaning harmful gas
JPH10235185A (en) Agent for purifying toxic gas and process therefor
JP2009082785A (en) Method and apparatus for treating gas containing harmful substance
JP3340528B2 (en) Hazardous gas purification method
JPS63185431A (en) Removal of silicon hydride and gas treatment apparauts used therein
JP3260825B2 (en) How to purify harmful gases
JPH09873A (en) Purifying process for toxic gas
JPH05154333A (en) Method for purifying harmful gas
JPH06154535A (en) Method for purifying harmful gas
JPH0910545A (en) Cleaning of noxious gas
JP3131480B2 (en) Air purifier and method for producing the same
JPH07100128B2 (en) Gas purification method