JP2011041894A - Method for treating exhaust gas and detoxifying agent - Google Patents

Method for treating exhaust gas and detoxifying agent Download PDF

Info

Publication number
JP2011041894A
JP2011041894A JP2009191065A JP2009191065A JP2011041894A JP 2011041894 A JP2011041894 A JP 2011041894A JP 2009191065 A JP2009191065 A JP 2009191065A JP 2009191065 A JP2009191065 A JP 2009191065A JP 2011041894 A JP2011041894 A JP 2011041894A
Authority
JP
Japan
Prior art keywords
exhaust gas
hydrazine
detoxifying agent
detoxifying
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009191065A
Other languages
Japanese (ja)
Other versions
JP5342372B2 (en
Inventor
Kazuhiro Miyazawa
和浩 宮澤
Yoshihiko Kobayashi
芳彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2009191065A priority Critical patent/JP5342372B2/en
Publication of JP2011041894A publication Critical patent/JP2011041894A/en
Application granted granted Critical
Publication of JP5342372B2 publication Critical patent/JP5342372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating exhaust gas, in which hydrazine derivatives included in the exhaust gas to be discharged from a semiconductor manufacturing process can be effectively detoxified and to provide a detoxifying agent. <P>SOLUTION: The exhaust gas including hydrazine or hydrazine derivatives is brought into contact with the detoxifying agent including ferric oxide as a main reactive component. Particularly, the exhaust gas including at least one of an organometallic compound, an amine compound and volatile inorganic hydride is brought into contact with the detoxifying agent first to detoxify the hydrazine or hydrazine derivatives. Then, the organometallic compound, the amine compound and volatile inorganic hydride included in the exhaust gas are surely detoxified. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体製造工程から排出される排ガス中に含まれるヒドラジンやヒドラジン誘導体(以下、ヒドラジンを含めてヒドラジン誘導体という。)を除害処理するための排ガス処理方法及び除害剤に関する。   The present invention relates to an exhaust gas treatment method and an abatement agent for detoxifying hydrazine and hydrazine derivatives (hereinafter referred to as hydrazine derivatives including hydrazine) contained in exhaust gas discharged from a semiconductor manufacturing process.

近年、III−V族化合物半導体の分野において、製膜温度の低下や製膜速度の向上を狙い、ヒドラジン誘導体やアミン化合物を添加する方法が採用されている。   In recent years, in the field of III-V compound semiconductors, a method of adding a hydrazine derivative or an amine compound has been adopted with the aim of lowering the film forming temperature and improving the film forming speed.

また、青色から緑色にかけての領域で発光するLEDやレーザなどの発光素子に使用されるインジウムを含む層を気相成長させる際には、成長温度を通常の1000℃程度から比較的低温の700〜800℃にする必要がある。ダブルヘテロ構造をもつ発光素子を製膜する場合、例えば、n型クラッド層の製膜を約1000℃付近で行った後に、インジウム含有層を700℃付近で製膜し、p型クラッド層の製膜をふたたび約1000℃付近で行う必要がある。しかしながら、インジウムと窒素との結合は熱に比較的弱いため、p型クラッド層の製膜中にインジウムを含む層の劣化が起こり、発光効率が低下する問題がある。特に、V族元素として窒素を使用する化合物半導体については、通常アンモニアが製膜ガスとして使用される。例えば、インジウム層の劣化を抑えるためにp型クラッド層をインジウム含有層と同様の700〜800℃での低温製膜を行う場合、アンモニアの分解効率が著しく低下してp型クラッド層の結晶性が悪化するという問題があった。   Further, when a layer containing indium used for light emitting elements such as LEDs and lasers emitting light in the region from blue to green is vapor-phase grown, the growth temperature is from a normal temperature of about 1000 ° C. to a relatively low temperature of 700 to It is necessary to set the temperature to 800 ° C. When forming a light-emitting element having a double heterostructure, for example, after forming an n-type cladding layer at about 1000 ° C., an indium-containing layer is formed at about 700 ° C. to form a p-type cladding layer. It is necessary to perform the film again at around 1000 ° C. However, since the bond between indium and nitrogen is relatively weak to heat, there is a problem in that the layer containing indium deteriorates during the formation of the p-type cladding layer and the luminous efficiency decreases. In particular, for a compound semiconductor that uses nitrogen as a group V element, ammonia is usually used as a film forming gas. For example, in order to suppress the deterioration of the indium layer, when the p-type cladding layer is formed at a low temperature of 700 to 800 ° C. similar to the indium-containing layer, the decomposition efficiency of ammonia is remarkably lowered, and the crystallinity of the p-type cladding layer is reduced. There was a problem of getting worse.

これを解決するために、低温でIII−V族化合物半導体を成長させる方法として、低温での分解効率の高い別の有機窒素原料としてジメチルヒドラジンを使用する方法(例えば、特許文献1参照。)、アンモニアとヒドラジンとを使用する方法(例えば、特許文献2参照。)、アミン化合物を使用する方法(例えば、特許文献3参照。)などが開示されている。   In order to solve this, as a method for growing a group III-V compound semiconductor at a low temperature, a method using dimethylhydrazine as another organic nitrogen source having a high decomposition efficiency at a low temperature (for example, see Patent Document 1). A method using ammonia and hydrazine (for example, refer to Patent Document 2), a method using an amine compound (for example, refer to Patent Document 3), and the like are disclosed.

また、アミン化合物は高温で分解されるとヒドラジン誘導体を生成するため排ガス処理においてはこの点も考慮しなくてはならない。膜中の窒素原としてヒドラジン誘導体やアミン化合物を用いる場合、ヒドラジン誘導体やアミン化合物とアンモニアとを同時に用いることも可能であるし、例えば、装置側でアンモニアとヒドラジン誘導体、アミン化合物とを必要に応じて切り替えて使うことも可能である。   In addition, when an amine compound is decomposed at a high temperature, a hydrazine derivative is formed, and this point must be taken into consideration in the exhaust gas treatment. When a hydrazine derivative or an amine compound is used as the nitrogen source in the film, it is possible to use the hydrazine derivative, the amine compound and ammonia at the same time. For example, if necessary, ammonia, a hydrazine derivative and an amine compound are used on the apparatus side. It is also possible to switch and use.

しかしながら、上述のような系の除害処理では、アンモニアとヒドラジン誘導体、アミン化合物と有機金属化合物及び揮発性無機水素化物を処理する必要があるが、アンモニアやアミン化合物は、加熱触媒分解装置によって除害可能である。ところが、ヒドラジン誘導体は除去できず、専用の除害剤が必要であった。しかも、この除害剤はアンモニアとも反応するため、多量のアンモニアの存在下では除害剤が急激に消費され、除害剤が失活し、ヒドラジン誘導体の除害が不可能になってしまうという問題があった。   However, in the above-mentioned system detoxification treatment, it is necessary to treat ammonia and hydrazine derivatives, amine compounds and organometallic compounds, and volatile inorganic hydrides. However, ammonia and amine compounds are removed by a heated catalytic decomposition apparatus. It can be harmful. However, the hydrazine derivative could not be removed, and a special detoxifying agent was required. Moreover, since this abatement agent also reacts with ammonia, the abatement agent is rapidly consumed in the presence of a large amount of ammonia, the abatement agent is deactivated, and the abatement of the hydrazine derivative becomes impossible. There was a problem.

さらに、ヒドラジン誘導体は、有機金属化合物や揮発性無機水素化物用の除害剤とも反応してしまうため、ヒドラジン誘導体を多量に使用する系においては除害剤が急激に消費され、除害剤が失活して有機金属化合物や揮発性無機水素化物の除害が不可能になるという問題があった。   Furthermore, since the hydrazine derivative also reacts with an organometallic compound and a detoxifying agent for volatile inorganic hydrides, the detoxifying agent is consumed rapidly in a system in which a large amount of the hydrazine derivative is used. There is a problem that the deactivation of the organometallic compound and the volatile inorganic hydride is impossible due to deactivation.

これを解決するため、装置後段に切換弁を用いて排気系を分離し、アンモニアとヒドラジン誘導体の除害を装置の使用ガスに合わせて切り替えることで解決を図ることが開示されている(例えば、特許文献4参照。)。   In order to solve this, it is disclosed that the exhaust system is separated using a switching valve at the rear stage of the apparatus, and the solution is achieved by switching the detoxification of ammonia and the hydrazine derivative according to the gas used in the apparatus (for example, (See Patent Document 4).

特開2001−144325号公報JP 2001-144325 A 特開平9−251957号公報JP-A-9-251957 特開2003−37288号公報JP 2003-37288 A 特許4196767号公報Japanese Patent No. 4196767

しかし、上述の特許文献4のものでは、アンモニアとヒドラジン誘導体とが混合して使用される系や、アミン化合物を使用する系で反応後の副生成物としてヒドラジン誘導体が発生する系においては処理が不可能であった。   However, in the above-mentioned Patent Document 4, in a system in which ammonia and a hydrazine derivative are mixed and used, or in a system in which an amine compound is used and a hydrazine derivative is generated as a by-product after the reaction, the treatment is performed. It was impossible.

そこで本発明は、半導体製造工程から排出される排ガス中に含まれるヒドラジン誘導体を効果的に除害処理することができる排ガス処理方法及び除害剤を提供することを目的としている。   Accordingly, an object of the present invention is to provide an exhaust gas treatment method and a detoxifying agent that can effectively remove an hydrazine derivative contained in an exhaust gas discharged from a semiconductor manufacturing process.

上記目的を達成するため、本発明の排ガス処理方法は、ヒドラジン又はヒドラジン誘導体を含む排ガスを、酸化鉄(III)を反応主成分とする除害剤に接触させることを特徴としている。特に、有機金属化合物、アミン化合物、揮発性無機水素化物のいずれか少なくとも一種を含む排ガスの除害処理を行う際には、該排ガスを前記除害剤に最初に接触させてヒドラジン又はヒドラジン誘導体を除害処理した後、該排ガスに含まれる有機金属化合物、アミン化合物、揮発性無機水素化物の除害処理を行うことを特徴としている。   In order to achieve the above object, the exhaust gas treatment method of the present invention is characterized in that exhaust gas containing hydrazine or a hydrazine derivative is brought into contact with a detoxifying agent containing iron (III) oxide as a main reaction component. In particular, when performing a detoxification treatment of exhaust gas containing at least one of an organometallic compound, an amine compound, and a volatile inorganic hydride, the exhaust gas is first contacted with the abatement agent to obtain hydrazine or a hydrazine derivative. After the detoxification treatment, the detoxification treatment of the organometallic compound, amine compound and volatile inorganic hydride contained in the exhaust gas is performed.

また、本発明の除害剤は、排ガス中に含まれるヒドラジン,ヒドラジン誘導体の処理処理を行うための除害剤であって、酸化鉄(III)を反応主成分とすることを特徴としている。   Further, the detoxifying agent of the present invention is a detoxifying agent for treating hydrazine and hydrazine derivatives contained in exhaust gas, and is characterized by containing iron (III) oxide as a main reaction component.

本発明において、ヒドラジン誘導体とは、分子内にN−N結合を含み、一般式ではRN−NR(R,R,R,Rは、H又は有機側鎖を示す。)と表記される化合物である。具体的には、ヒドラジン、メチルヒドラジン、1,1ジメチルヒドラジン、1,2ジメチルヒドラジン、エチルヒドラジン、1,1ジエチルヒドラジン、1,2ジエチルヒドラジン、1メチル1エチルヒドラジン、1メチル2エチルヒドラジン、フェニルヒドラジン、1,1ジフェニルヒドラジン、1,2ジフェニルヒドラジン、1メチル1フェニルヒドラジン、1メチル2フェニルヒドラジン、1エチル1フェニルヒドラジン、1エチル2フェニルヒドラジンを挙げることができる。 In the present invention, a hydrazine derivative includes an NN bond in a molecule, and R 1 R 2 N—NR 3 R 4 (R 1 , R 2 , R 3 , R 4 is H or an organic side in the general formula. A chain.). Specifically, hydrazine, methyl hydrazine, 1,1 dimethyl hydrazine, 1,2 dimethyl hydrazine, ethyl hydrazine, 1,1 diethyl hydrazine, 1,2 diethyl hydrazine, 1 methyl 1 ethyl hydrazine, 1 methyl 2 ethyl hydrazine, phenyl Examples thereof include hydrazine, 1,1-diphenylhydrazine, 1,2-diphenylhydrazine, 1-methyl-1-phenylhydrazine, 1-methyl-2-phenylhydrazine, 1-ethyl-1-phenylhydrazine, and 1-ethyl-2-phenylhydrazine.

また、アミン化合物とは、分子内に窒素を含み、一般式ではNR(R,R,RはH又は有機側鎖を示す。)と表記されるアンモニアを除く化合物である。具体的には、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、アリールアミン、ジアリールアミン、トリアリールアミン、イソブチルアミン、ジイソブチルアミン、トリイソブチルアミン、ノルマルプロピルアミン、ジノルマルプロピルアミン、トリノルマルプロピルアミン、フェニルアミン、ジフェニルアミン、トリフェニルアミンを挙げることができる。 The amine compound includes nitrogen in the molecule, and is a compound excluding ammonia represented by NR 1 R 2 R 3 (R 1 , R 2 , R 3 are H or an organic side chain) in the general formula. It is. Specifically, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, arylamine, diarylamine, triarylamine, isobutylamine, diisobutylamine, triisobutylamine, normal propylamine, dinormal propylamine, trinormal Mention may be made of propylamine, phenylamine, diphenylamine, triphenylamine.

さらに、前記揮発性無機水素化物としては、具体的には、アンモニア、アルシン、ホスフィン、シラン、ジシラン、セレン化水素、モノゲルマン、ジボランを挙げることができ、前記有機金属化合物としては、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、テトラメチルガリウム、テトラエチルガリウム、トリエチルインジウム、ジメチル亜鉛、ジエチル亜鉛、シクロペンタジエニルマグネシウムを挙げることができる。   Furthermore, specific examples of the volatile inorganic hydride include ammonia, arsine, phosphine, silane, disilane, hydrogen selenide, monogermane, and diborane. Specific examples of the organometallic compound include May include trimethylaluminum, triethylaluminum, tetramethylgallium, tetraethylgallium, triethylindium, dimethylzinc, diethylzinc, and cyclopentadienylmagnesium.

本発明の排ガス処理方法によれば、ヒドラジン誘導体(ヒドラジンを含む)を含有する排ガスを、酸化鉄(III)を反応主成分とする除害剤に接触させることにより、ヒドラジン誘導体を除害することができる。   According to the exhaust gas treatment method of the present invention, an exhaust gas containing a hydrazine derivative (including hydrazine) is brought into contact with a detoxifying agent containing iron (III) oxide as a main reaction component, thereby detoxifying the hydrazine derivative. Can do.

また、ヒドラジン誘導体、有機金属化合物、アミン化合物、揮発性無機水素化物を含む排ガスの場合は、除害処理の最初の段階で酸化鉄(III)を反応主成分とする除害剤に接触させてヒドラジン誘導体を除害処理することにより、後段での有機金属化合物、アミン化合物、揮発性無機水素化物を除害処理するための除害剤がヒドラジン誘導体によって消費されることがなくなるので、有機金属化合物、アミン化合物、揮発性無機水素化物を確実に除害処理することができる。   Also, in the case of exhaust gas containing hydrazine derivatives, organometallic compounds, amine compounds, and volatile inorganic hydrides, it is brought into contact with a detoxifying agent containing iron (III) oxide as a main reaction component in the first stage of detoxification treatment. By detoxifying the hydrazine derivative, the detoxifying agent for detoxifying the organometallic compound, amine compound and volatile inorganic hydride in the subsequent stage is not consumed by the hydrazine derivative. In addition, the amine compound and the volatile inorganic hydride can be reliably detoxified.

本発明の排ガス処理方法に用いられる除害剤は、酸化鉄(III)(Fe)(酸化第二鉄)を反応主成分とするものである。酸化鉄としては各種のものが存在するが、酸化鉄(II,III)(Fe)はヒドラジン誘導体とは反応せず、酸化鉄(II)(FeO)はヒドラジン誘導体以外の、例えばアンモニアとも反応することから、ヒドラジン誘導体の除害処理を行うための除害剤としては、ヒドラジン誘導体を選択的に除害処理することができる酸化鉄(III)を反応主成分として使用する。 The detoxifying agent used in the exhaust gas treatment method of the present invention contains iron (III) oxide (Fe 2 O 3 ) (ferric oxide) as a main reaction component. Various iron oxides exist, but iron oxide (II, III) (Fe 3 O 4 ) does not react with hydrazine derivatives, and iron oxide (II) (FeO) is other than hydrazine derivatives such as ammonia. As a detoxifying agent for detoxifying the hydrazine derivative, iron (III) oxide that can selectively detoxify the hydrazine derivative is used as a main reaction component.

除害剤は、球状、円柱状、筒型、破砕状などの形状で、最大長が1〜20mmの範囲、最短長が1〜20mmの範囲の大きさとした粒状に成形して用いることが好ましい。除害剤の成形方法は、押し出し造粒、転動造粒、打錠、破砕などの一般的な成形方法を採用することができるが、造粒時に圧力が掛かりにくく、内部にガスが拡散しやすい状態に成形できる転動造粒法が最適である。また、成形に際しては、必要に応じて少量の水や溶剤を加えてもよい。   The detoxifying agent is preferably shaped into a spherical shape, a cylindrical shape, a cylindrical shape, a crushed shape, etc., and shaped into a granule having a maximum length in the range of 1 to 20 mm and a shortest length in the range of 1 to 20 mm. . As a molding method of the pesticide, general molding methods such as extrusion granulation, rolling granulation, tableting and crushing can be adopted, but pressure is not easily applied during granulation, and gas diffuses inside. The rolling granulation method, which can be molded into an easy state, is optimal. In molding, a small amount of water or solvent may be added as necessary.

このような粒状に成形された除害剤は、通常は、除害カラムに充填した状態で排ガスの除害処理に用いられる。除害カラムへの除害剤の充填密度は、除害剤の形状や成形方法によっても異なるが、一般には、0.5〜1.0g/cmの範囲とすることが望ましい。充填密度が0.5g/cmより小さくなると成形物の強度が弱くなって単位体積当たりの処理量が低下し、充填密度が1.0g/cmよりも大きい場合には差圧が上昇するため、除害効率の低下を招くことがある。 Such a granular form of the detoxifying agent is usually used for the detoxification treatment of exhaust gas in a state where the detoxifying column is packed. The packing density of the detoxifying agent in the detoxifying column varies depending on the shape of the detoxifying agent and the molding method, but it is generally desirable that the density be in the range of 0.5 to 1.0 g / cm 3 . When the packing density is less than 0.5 g / cm 3 , the strength of the molded product is weakened, and the throughput per unit volume is reduced. When the packing density is greater than 1.0 g / cm 3 , the differential pressure increases. For this reason, the detoxification efficiency may be reduced.

この酸化鉄(III)を反応主成分とする除害剤は、半導体製造工程から排出される排ガスを除害処理する際に、他の除害対象成分を除害処理する前に使用することにより、後段で他の除害対象成分を効率よく除害処理することが可能となる。   This detoxifying agent mainly composed of iron (III) oxide is used by detoxifying exhaust gas discharged from the semiconductor manufacturing process before detoxifying other components to be detoxified. In addition, it is possible to efficiently perform the detoxification process for other detoxification target components in the subsequent stage.

例えば、ヒドラジン誘導体を含むとともに、他の除害対象成分として、アンモニア等の揮発性無機水素化物、有機金属化合物、アミン化合物いずれか少なくとも一種を含む排ガスを除害処理する場合、除害処理工程の最初の段階で前記酸化鉄(III)を反応主成分とする前記除害剤に排ガスを接触させ、排ガス中のヒドラジン誘導体をあらかじめ選択的に除害処理することにより、除害処理工程後段における他の除害対象成分の除害処理を、ヒドラジン誘導体の影響を受けることなく、確実に行うことができる。   For example, in the case of detoxifying exhaust gas containing at least one of volatile inorganic hydrides such as ammonia, organometallic compounds, and amine compounds as other detoxifying components, including hydrazine derivatives, In the first stage, exhaust gas is brought into contact with the detoxifying agent containing iron (III) oxide as a main component of the reaction, and the hydrazine derivative in the exhaust gas is selectively detoxified in advance. It is possible to reliably perform the detoxification treatment of the detoxification target component without being affected by the hydrazine derivative.

また、他の除害対象成分の除害処理を、他の除害対象成分に対応した除害剤で行う場合には、一つの除害カラムの上流側に前記酸化鉄(III)を反応主成分とする除害剤を充填し、下流側に他の除害対象成分に対応した除害剤を充填することにより、一つの除害カラムでヒドラジン誘導体の除害処理と、他の除害対象成分の除害処理とを行うことができ、設備コストの低減が図れる。   In addition, when the detoxification treatment of other detoxification target components is performed with a detoxifying agent corresponding to the other detoxification target component, the iron (III) oxide is added to the upstream side of one detoxification column. Detoxification treatment of hydrazine derivatives in one detoxification column and other detoxification targets by filling the detoxification agent as the component and filling the detoxification agent corresponding to other detoxification target components on the downstream side Component detoxification treatment can be performed, and the equipment cost can be reduced.

酸化鉄(II)ベース、酸化鉄(III)ベース、酸化鉄(II,III)ベース、酸化亜鉛(ZnO)ベース、酸化チタン(TiO)ベース、アルミナ(Al)ベース、酸化銅(CuO)−酸化亜鉛(ZnO)ベースの各除害剤を3mmφ×5mmの押し出し成形品に加工した。50mm間隔で熱電対を挿入した内径50mmのカラムに、各除害剤をそれぞれ100mmの高さに充填した。各除害剤の充填量は100〜130gの範囲であった。 Iron oxide (II) base, iron oxide (III) base, iron oxide (II, III) base, zinc oxide (ZnO) base, titanium oxide (TiO 2 ) base, alumina (Al 2 O 3 ) base, copper oxide ( Each detoxifying agent based on (CuO) -zinc oxide (ZnO) was processed into an extruded product of 3 mmφ × 5 mm. Each detoxifying agent was packed to a height of 100 mm in a column with an inner diameter of 50 mm into which thermocouples were inserted at intervals of 50 mm. The filling amount of each detoxifying agent was in the range of 100 to 130 g.

各除害剤をそれぞれ充填したカラムに、窒素ガス中に、アンモニア(NH)、1,1−ジメチルヒドラジン(DMHy)、トリメチルガリウム(TMG)、アルシン(AsH)をそれぞれ1体積%で含有する試料ガスを、毎分1リットルの流量で流通させ、破過するまでの時間をそれぞれ測定した。なお、破過の判定は、アンモニアはアンモニア用の定電位電解式検知器(バイオニクス機器製TG−2400)、アルシンはアルシン用の定電位電解式検知器(バイオニクス機器製TG−4000),1,1−ジメチルヒドラジン及びトリメチルガリウムはFT−IR(堀場製作所製:FT−730G)をそれぞれ使用した。その結果を表1に示す(単位は時間である。以下同じ。)。

Figure 2011041894
Each column filled with each detoxifying agent contains ammonia (NH 3 ), 1,1-dimethylhydrazine (DMHy), trimethylgallium (TMG), and arsine (AsH 3 ) in a volume of 1% by volume in nitrogen gas. The sample gas was circulated at a flow rate of 1 liter per minute, and the time until breakthrough was measured. In addition, the determination of breakthrough is that ammonia is a constant potential electrolytic detector for ammonia (TG-2400 made by bionics equipment), arsine is a constant potential electrolytic detector for arsine (TG-4000 made by bionics equipment), For 1,1-dimethylhydrazine and trimethylgallium, FT-IR (manufactured by Horiba: FT-730G) was used. The results are shown in Table 1 (the unit is time. The same applies hereinafter).
Figure 2011041894

DMHy/NHの能力比が比較的高かった酸化鉄(III)ベース、酸化亜鉛ベースの除害剤と、アンモニア及びジメチルヒドラジンの処理能力が高かったアルミナベース、酸化鉄(II)ベースの除害剤とを前記カラムに前記同様に充填した。各カラムに、窒素ガス中にアンモニアを10体積%含む試料ガスを毎分1リットルの流量で、カラムに差し込んだ熱電対で測定した除害剤の発熱が無くなり、全てが常温に戻るまで流通させた後、各カラムに、窒素ガス中に1,1−ジメチルヒドラジンを1体積%含む試料ガスを毎分1リットルの流量で流通させ、破過するまでの時間をそれぞれ測定した。結果を表2に示す。

Figure 2011041894
Iron oxide (III) -based and zinc oxide-based detoxifying agents with relatively high DMHy / NH 3 capacity ratios, and alumina and iron (II) oxide-based detoxifying agents with high ammonia and dimethylhydrazine treatment capabilities The column was packed in the same manner as above. A sample gas containing 10% by volume of ammonia in nitrogen gas is flowed through each column at a flow rate of 1 liter per minute until the scavenger heat generated by the thermocouple inserted into the column disappears and all returns to room temperature. Thereafter, a sample gas containing 1% by volume of 1,1-dimethylhydrazine in nitrogen gas was passed through each column at a flow rate of 1 liter per minute, and the time until breakthrough was measured. The results are shown in Table 2.
Figure 2011041894

酸化鉄(III)ベースの除害剤を前記カラムに前記同様に充填したカラムに、窒素ガス中にヒドラジン(Hy)、モノメチルヒドラジン(MMHy)、フェニルヒドラジン(PhHy)をそれぞれ1体積%含む4種の試料ガスを毎分1リットルの流量でそれぞれ流通させ、破過するまでの時間をそれぞれ測定した。結果を表3に示す。

Figure 2011041894
Four types containing 1% by volume each of hydrazine (Hy), monomethylhydrazine (MMHy), and phenylhydrazine (PhHy) in nitrogen gas in a column in which the column is filled with an iron (III) oxide-based detoxifying agent as described above. The sample gas was circulated at a flow rate of 1 liter per minute, and the time until breakthrough was measured. The results are shown in Table 3.
Figure 2011041894

これらの結果から、表1に示すとおり、酸化鉄(II)やアルミナは、アンモニアのみ、1,1−ジメチルヒドラジンのみの試料ガスに対しては、それぞれ高い除害能力を示すが、表2の結果からも明らかなように、アンモニアと1,1−ジメチルヒドラジンが共存した場合、アンモニアとの反応が先に進んで失活し、1,1−ジメチルヒドラジンに対する除害能力が低くなってしまうことがわかる。これに対して、酸化鉄(III)は、アンモニアと接触させた後も、1,1−ジメチルヒドラジンと反応して除害できることがわかる。   From these results, as shown in Table 1, iron oxide (II) and alumina show a high detoxification ability for sample gases containing only ammonia and 1,1-dimethylhydrazine, respectively. As is clear from the results, when ammonia and 1,1-dimethylhydrazine coexist, the reaction with ammonia proceeds and deactivates, and the ability to remove 1,1-dimethylhydrazine is reduced. I understand. On the other hand, iron (III) oxide can be removed by reacting with 1,1-dimethylhydrazine even after contacting with ammonia.

したがって、半導体の製造工程から排出される排ガスに、ヒドラジン誘導体、アンモニア、有機金属化合物、揮発性無機水素化物が混在している場合、酸化鉄(III)を反応主成分とした除害剤に排ガスを接触させることにより、排ガス中からヒドラジン誘導体のみを選択的に除害処理することができることがわかる。   Therefore, when hydrazine derivatives, ammonia, organometallic compounds, and volatile inorganic hydrides are mixed in the exhaust gas discharged from the semiconductor manufacturing process, the exhaust gas is used as a detoxifying agent mainly composed of iron (III) oxide. It can be seen that only the hydrazine derivative can be selectively detoxified from the exhaust gas.

内径50mmのカラムのガス流れ方向上流側に酸化鉄(III)ベースの除害剤を900mmの高さで、下流側に水酸化銅(Cu(OH))ベースの除害剤を100mmの高さで積層充填した。このカラム内に窒素とアンモニアとの混合ガスを流し、発熱が終了して除害剤温度が安定した後、カラム内に窒素ガス中に、1,1−ジメチルヒドラジン1%、トリメチルガリウム500ppm、メチルアミン1%、アンモニア10%を含む試料ガスを毎分1リットルの流量で流通させ、破過時間を測定した(実施例)。 An iron (III) -based detoxifying agent is 900 mm high on the upstream side in the gas flow direction of a column with an inner diameter of 50 mm, and a copper hydroxide (Cu (OH) 2 ) -based detoxifying agent is 100 mm high on the downstream side. The layers were stacked and filled. After flowing a mixed gas of nitrogen and ammonia into this column, the exothermic reaction was completed and the temperature of the harmful agent was stabilized. Then, 1-1,1-dimethylhydrazine 1%, trimethylgallium 500 ppm, methyl A sample gas containing 1% amine and 10% ammonia was circulated at a flow rate of 1 liter per minute, and the breakthrough time was measured (Example).

また、ガス流れ方向上流側に前記水酸化銅ベースの除害剤を、下流側に前記酸化鉄(III)ベースの除害剤を積層充填したカラムを使用し、他の条件を同一として破過時間を測定した(比較例)。結果を表4に示す。

Figure 2011041894
In addition, a column packed with the copper hydroxide-based detoxifying agent on the upstream side in the gas flow direction and the iron (III) oxide-based detoxifying agent on the downstream side is used, and breakthrough is performed under the same conditions. Time was measured (comparative example). The results are shown in Table 4.
Figure 2011041894

比較例では、水酸化銅ベースの除害剤と1,1−ジメチルヒドラジンとが反応してトリメチルガリウムの除害効率が低下していることがわかる。したがって、ヒドラジン誘導体、アンモニア、有機金属化合物、揮発性無機水素化物が混在している排ガスの除害処理を行う場合、排ガスを酸化鉄(III)を反応主成分とした除害剤に最初に接触させてヒドラジン誘導体を選択的に除害処理した後、後段の水酸化銅ベースでアンモニア、有機金属化合物、揮発性無機水素化物の除害処理を行うことにより、これらの除害処理を効果的に行えることがわかる。   In the comparative example, it can be seen that the removal efficiency of trimethylgallium is reduced by the reaction between the copper hydroxide-based harmful agent and 1,1-dimethylhydrazine. Therefore, when exhaust gas that contains hydrazine derivatives, ammonia, organometallic compounds, and volatile inorganic hydrides is to be detoxified, the exhaust gas is first contacted with an abatement agent whose main component is iron (III) oxide. The hydrazine derivative is selectively detoxified, and the detoxification treatment of ammonia, organometallic compounds, and volatile inorganic hydrides is performed effectively based on the subsequent copper hydroxide base. I understand that I can do it.

Claims (3)

ヒドラジン又はヒドラジン誘導体を含む排ガスを、酸化鉄(III)を反応主成分とする除害剤に接触させることを特徴とする排ガス処理方法。 An exhaust gas treatment method comprising contacting exhaust gas containing hydrazine or a hydrazine derivative with a detoxifying agent containing iron (III) oxide as a main component of reaction. 前記排ガスは、有機金属化合物、アミン化合物、揮発性無機水素化物のいずれか少なくとも一種を含み、該排ガスを前記除害剤に最初に接触させてヒドラジン又はヒドラジン誘導体を除害処理した後、該排ガスに含まれる有機金属化合物、アミン化合物、揮発性無機水素化物の除害処理を行うことを特徴とする請求項1記載の排ガス処理方法。 The exhaust gas contains at least one of an organometallic compound, an amine compound, and a volatile inorganic hydride, and after the exhaust gas is first contacted with the detoxifying agent to detoxify hydrazine or a hydrazine derivative, the exhaust gas The exhaust gas treatment method according to claim 1, wherein a detoxification treatment of the organometallic compound, the amine compound, and the volatile inorganic hydride contained in the catalyst is performed. 排ガス中に含まれるヒドラジン,ヒドラジン誘導体の除害処理を行うための除害剤であって、酸化鉄(III)を反応主成分とすることを特徴とする除害剤。 A detoxifying agent for detoxifying hydrazine and hydrazine derivatives contained in exhaust gas, characterized by comprising iron (III) oxide as a main reaction component.
JP2009191065A 2009-08-20 2009-08-20 Exhaust gas treatment method and detoxifying agent Expired - Fee Related JP5342372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191065A JP5342372B2 (en) 2009-08-20 2009-08-20 Exhaust gas treatment method and detoxifying agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191065A JP5342372B2 (en) 2009-08-20 2009-08-20 Exhaust gas treatment method and detoxifying agent

Publications (2)

Publication Number Publication Date
JP2011041894A true JP2011041894A (en) 2011-03-03
JP5342372B2 JP5342372B2 (en) 2013-11-13

Family

ID=43829742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191065A Expired - Fee Related JP5342372B2 (en) 2009-08-20 2009-08-20 Exhaust gas treatment method and detoxifying agent

Country Status (1)

Country Link
JP (1) JP5342372B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319939A (en) * 1993-05-11 1994-11-22 Japan Pionics Co Ltd Method fort cleaning harmful gas
JPH06319947A (en) * 1993-05-10 1994-11-22 Ube Ind Ltd Toxicity-removing agent for etching exhaust gas and method for using the same
JPH09187623A (en) * 1996-01-11 1997-07-22 Nippon Sanso Kk Harmful matter removing agent for organometallic compound and removing method of harmful matter in harmful gas
JPH10180042A (en) * 1996-12-20 1998-07-07 Mitsui Chem Inc Treatment of hydrazine-containing steam and catalyst for same
JP2002526369A (en) * 1998-10-02 2002-08-20 エアロネクス インコーポレイテッド Method and apparatus for purifying hydride gas streams
JP2005026602A (en) * 2003-07-01 2005-01-27 Sony Corp Exhaust processor, and growth equipment
JP2006508798A (en) * 2002-12-09 2006-03-16 アドヴァンスド テクノロジー マテリアルズ インコーポレイテッド Method and apparatus for removing toxic gas components from semiconductor manufacturing process waste streams

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319947A (en) * 1993-05-10 1994-11-22 Ube Ind Ltd Toxicity-removing agent for etching exhaust gas and method for using the same
JPH06319939A (en) * 1993-05-11 1994-11-22 Japan Pionics Co Ltd Method fort cleaning harmful gas
JPH09187623A (en) * 1996-01-11 1997-07-22 Nippon Sanso Kk Harmful matter removing agent for organometallic compound and removing method of harmful matter in harmful gas
JPH10180042A (en) * 1996-12-20 1998-07-07 Mitsui Chem Inc Treatment of hydrazine-containing steam and catalyst for same
JP2002526369A (en) * 1998-10-02 2002-08-20 エアロネクス インコーポレイテッド Method and apparatus for purifying hydride gas streams
JP2006508798A (en) * 2002-12-09 2006-03-16 アドヴァンスド テクノロジー マテリアルズ インコーポレイテッド Method and apparatus for removing toxic gas components from semiconductor manufacturing process waste streams
JP2005026602A (en) * 2003-07-01 2005-01-27 Sony Corp Exhaust processor, and growth equipment

Also Published As

Publication number Publication date
JP5342372B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
Keller et al. Metalorganic chemical vapor deposition of group III nitrides—a discussion of critical issues
US8110889B2 (en) MOCVD single chamber split process for LED manufacturing
CN110047979B (en) Ultraviolet light-emitting diode epitaxial wafer and manufacturing method thereof
TWI641718B (en) MOCVD layer growth method including subsequent multi-stage purification steps
TWI496935B (en) Decontamination of mocvd chamber using nh3 purge after in-situ cleaning
WO2011136077A1 (en) Vapor deposition device, vapor deposition method, and semiconductor element manufacturing method
JP2006237582A (en) Method of growing crystalline gallium nitride-based compound and semiconductor device including gallium nitride-based compound
CN105200396A (en) Metalorganic chemical vapor deposition (MOCVD) equipment and method for removing parasitic particles thereof
JP2007019052A (en) Nitride semiconductor manufacturing apparatus and nitride semiconductor element
US20110207256A1 (en) In-situ acceptor activation with nitrogen and/or oxygen plasma treatment
JP3603598B2 (en) Method for manufacturing group 3-5 compound semiconductor
JPH0140000B2 (en)
JP5342372B2 (en) Exhaust gas treatment method and detoxifying agent
KR101311974B1 (en) Systems and methods for forming semiconductor material by atomic layer deposition
CN103597583B (en) The cleaning method of semiconductor manufacturing apparatus member, the rinser of semiconductor manufacturing apparatus member and epitaxially growing equipment
JP4196767B2 (en) Growth equipment
WO2014038105A1 (en) Epitaxial wafer and method for producing same
US20120258581A1 (en) Mocvd fabrication of group iii-nitride materials using in-situ generated hydrazine or fragments there from
JP2004356522A (en) Group 3-5 compound semiconductor, its manufacturing method, and its use
JP5416602B2 (en) MOCVD equipment
JP2004087565A (en) Method for manufacturing gallium nitride-based semiconductor light emitting device
JP4048108B2 (en) How to clean harmful gases
JP2998002B2 (en) Organometallic compound abatement agent and harmful gas abatement method
JP2014222691A (en) Nitride semiconductor template, method of manufacturing the same, and nitride semiconductor light-emitting element
JP3303391B2 (en) Purification method of solid organic metal filled in container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R150 Certificate of patent or registration of utility model

Ref document number: 5342372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees