JP2008302338A - Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas - Google Patents
Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas Download PDFInfo
- Publication number
- JP2008302338A JP2008302338A JP2007153911A JP2007153911A JP2008302338A JP 2008302338 A JP2008302338 A JP 2008302338A JP 2007153911 A JP2007153911 A JP 2007153911A JP 2007153911 A JP2007153911 A JP 2007153911A JP 2008302338 A JP2008302338 A JP 2008302338A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- exhaust gas
- detoxifying
- metal hydride
- ammonia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は金属水素化物含有排ガスの除害剤及び除害方法に関し、詳しくは、半導体製造工場、もしくは液晶製造工場などで発生する金属水素化物含有排ガスの除害剤および除害方法に関する。 The present invention relates to a detoxifying agent and detoxification method for metal hydride-containing exhaust gas, and more particularly to a detoxifying agent and detoxification method for metal hydride-containing exhaust gas generated in a semiconductor manufacturing factory or a liquid crystal manufacturing factory.
半導体製造工場では、その製造中にシラン、ホスフィン、アルシンなどの各種金属水素化物ガス、ハロゲン化物ガス類が使用されている。これらのガスは可燃性及び/又は有害性であることから、これらを含有する排ガスを環境保全上、大気中にそのまま放出することはできず、その危険性、有害性をなくするための処理が必要である。 In semiconductor manufacturing factories, various metal hydride gases and halide gases such as silane, phosphine, and arsine are used during the manufacturing process. Since these gases are flammable and / or harmful, the exhaust gas containing them cannot be released into the atmosphere as it is for environmental conservation, and there are no treatments to eliminate the danger or harm. is necessary.
排ガス処理には湿式法と乾式法があり、前者は薬液で排ガスを洗浄処理する方法である。一方、後者は、粒状固体処理剤の充填塔に排ガスを流通させ、除害対象ガスと処理剤との化学的作用、即ち、吸着及び/又は化学反応により、危険性、有害性ガスを分離、除害する方法であり、金属水素化物含有排ガス或いはハロゲン化物ガス含有排ガスの処理で多く行われている。 There are a wet method and a dry method for exhaust gas treatment, and the former is a method of cleaning exhaust gas with a chemical solution. On the other hand, in the latter, exhaust gas is circulated through a packed column of a granular solid processing agent, and the hazardous and harmful gas is separated by chemical action between the gas to be removed and the processing agent, that is, adsorption and / or chemical reaction. It is a detoxifying method and is often performed in the treatment of exhaust gas containing metal hydride or exhaust gas containing halide gas.
金属水素化物含有排ガス処理剤には多くの特許が見られ、金属酸化物からなる除害剤(特許文献1参照)、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩からなる除害剤(特許文献2、3、4参照)、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩などをアルカリ金属など塩基性化合物で修飾した除害剤(特許文献5、6参照)などが開示されている。 There are many patents for metal hydride-containing exhaust gas treatment agents, and a detoxifying agent made of a metal oxide (see Patent Document 1), a detoxifying agent made of a metal hydroxide, a metal carbonate or a basic metal carbonate. (See Patent Documents 2, 3, and 4), a detoxifying agent obtained by modifying a metal hydroxide, metal carbonate, or basic metal carbonate with a basic compound such as an alkali metal (see Patent Documents 5 and 6), etc. Has been.
しかしながら、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩からなる除害剤は、優れた除害能力を有するが、近年の技術進歩とともに特殊ガス使用量の増加と共により除害能力の高い剤が求められてきており、前記のような除害剤の容量当たりの排ガス処理量では十分ではなくなってきている。 However, the detoxifying agent composed of metal hydroxide, metal carbonate or basic metal carbonate has excellent detoxifying ability, but it has higher detoxifying ability as the amount of special gas used increases with recent technological progress. Therefore, the amount of exhaust gas treated per volume of the detoxifying agent as described above is no longer sufficient.
金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩などをアルカリ金属など塩基性化合物で修飾した除害剤についても、同様に除害剤の容量当たりの排ガス処理量が十分ではない。また、除害成分である粉体と強アルカリ成分を共に混合した後、成形する工程を有し、工業規模で、大量に生産する場合には、強アルカリを使用するために安全上の問題が発生する。また、安全対策を行うためには、閉鎖系にするなど、各種の設備投資が必要となり、生産コストが高くなる。 Similarly, the amount of exhaust gas treated per volume of the detoxifying agent is not sufficient for a detoxifying agent obtained by modifying a metal hydroxide, metal carbonate or basic metal carbonate with a basic compound such as an alkali metal. In addition, there is a step of molding after mixing the abatement component powder and strong alkali component together, and when producing in large quantities on an industrial scale, there is a safety problem due to the use of strong alkali. appear. In addition, in order to implement safety measures, various capital investments such as a closed system are required, resulting in high production costs.
本発明は、半導体製造工程で発生する金属水素化物含有排ガスの除害処理において、高い除害能力を示す除害剤と除害方法を提供することを目的とする。 An object of the present invention is to provide a detoxifying agent and a detoxifying method exhibiting high detoxifying ability in the detoxification treatment of exhaust gas containing metal hydride generated in a semiconductor manufacturing process.
本発明者等が、上記課題を解決するために鋭意行った検討の中で、金属水酸化物、金属炭酸塩、又は金属塩基性炭酸塩の又はこれら化合物の混合物の成型体に、アンモニアを吸収させた除害剤は金属水素化物含有排ガスに対して優れた除害性能を有することを見出し、本発明を完成した。 In the study conducted by the present inventors in order to solve the above-mentioned problems, ammonia is absorbed in a molded body of a metal hydroxide, a metal carbonate, or a metal basic carbonate or a mixture of these compounds. The present invention was completed by finding that the detoxifying agent made has excellent detoxifying performance for exhaust gas containing metal hydride.
すなわち、本発明は、金属酸化物、金属水酸化物、金属炭酸塩、又は金属塩基性炭酸塩の何れか一種又は二種以上のこれら化合物の混合物の成型体にアンモニアを吸収させたことを特徴とする金属水素化物含有排ガス除害剤である。 That is, the present invention is characterized in that ammonia is absorbed in a molded body of any one of a metal oxide, a metal hydroxide, a metal carbonate, or a metal basic carbonate, or a mixture of two or more of these compounds. It is a metal hydride-containing exhaust gas abatement agent.
より詳しくは、金属酸化物、金属水酸化物、金属炭酸塩、又は金属塩基性炭酸塩の何れか一種又は二種以上のこれら化合物の混合物の成型体の金属成分が、銅、鉄、コバルト、ニッケル、マンガン、亜鉛、クロムからなる群より選択される少なくとも一種類の金属成分であることを特徴とする金属水素化物含有排ガス除害剤である。 More specifically, the metal component of the molded body of any one of metal oxide, metal hydroxide, metal carbonate, or metal basic carbonate or a mixture of two or more of these compounds is copper, iron, cobalt, A metal hydride-containing exhaust gas abatement agent characterized by being at least one metal component selected from the group consisting of nickel, manganese, zinc, and chromium.
さらに、アンモニアの含有量が、除害剤全重量に対して0.1〜5.0%であることを特徴とする金属水素化物含有排ガス除害剤である。 Furthermore, it is a metal hydride-containing exhaust gas abatement agent characterized in that the ammonia content is 0.1 to 5.0% with respect to the total weight of the abatement agent.
また、吸収させるアンモニアはアンモニアガスであることを特徴とする金属水素化物含有排ガス除害剤である。 Moreover, the ammonia to be absorbed is an ammonia gas, which is a metal hydride-containing exhaust gas abatement agent.
また、本発明の処理方法は、金属酸化物、金属水酸化物、金属炭酸塩、又は金属塩基性炭酸塩の何れか一種又は二種以上のこれら化合物の混合物を成型し、その成型体にアンモニアを吸収させた後に金属水素化物を含む排ガスを接触させることを特徴とする金属水素化物含有排ガスの除害方法である。 In addition, the treatment method of the present invention comprises molding one kind of a metal oxide, metal hydroxide, metal carbonate, or metal basic carbonate, or a mixture of two or more of these compounds, and adding ammonia to the molded body. This is a method for removing metal hydride-containing exhaust gas, which comprises contacting an exhaust gas containing a metal hydride after absorbing water.
また、アンモニアは、気相により吸収させたことを特徴とする金属水素化物含有排ガスの除害方法である。 Ammonia is a method for removing metal hydride-containing exhaust gas characterized by being absorbed in the gas phase.
本発明の除害剤は、半導体製造工場、もしくは液晶製造工場などで発生するシラン、ホスフィン、アルシンなどの各種金属水素化物含有排ガスの除害に適用される。本発明の除害剤は、金属化合物の成型体にアンモニアを気相により吸着させることにより、効率良く金属水素化物ガスを吸収でき、吸収容量も大きいため、操業上の利用価値が高い。 The detoxifying agent of the present invention is applied to detoxification of exhaust gases containing various metal hydrides such as silane, phosphine, and arsine generated in a semiconductor manufacturing factory or a liquid crystal manufacturing factory. The detoxifying agent of the present invention has high utility value in operation because it can absorb metal hydride gas efficiently by adsorbing ammonia in a gas phase to a metal compound molded body and has a large absorption capacity.
本発明は金属酸化物、金属水酸化物、金属炭酸塩、又は金属塩基性炭酸塩の何れか一種又は二種以上のこれら化合物の混合物の成型体に、アンモニアを吸収させた除害剤に関するものである。ここで除害剤の主体をなす金属化合物としては、金属酸化物、金属水酸化物、金属炭酸塩、或いは塩基性金属炭酸塩若しくはこれらの混合物の成型体であり、その金属成分としては、安定に存在し得るものであればどのような金属でも使用することができるが、通常容易に入手できしかも安価な銅、鉄、コバルト、ニッケル、マンガン、亜鉛、クロム、等が有利に用いられる。 The present invention relates to a detoxifying agent in which ammonia is absorbed in a molded body of any one of a metal oxide, a metal hydroxide, a metal carbonate, or a metal basic carbonate, or a mixture of two or more of these compounds. It is. Here, the metal compound that forms the main component of the detoxifying agent is a molded product of metal oxide, metal hydroxide, metal carbonate, basic metal carbonate or a mixture thereof, and its metal component is stable. Any metal can be used as long as it can be present, but copper, iron, cobalt, nickel, manganese, zinc, chromium, etc., which are usually easily available and inexpensive, are advantageously used.
また、金属化合物類は市販の酸化物、水酸化物、炭酸塩、或いは塩基性炭酸塩を使用することができ、あるいは金属塩類を水溶液となした後、アルカリ化合物類水溶液との中和反応によって製造する沈殿法により生成して使用することもできる。アルカリ化合物類としてはナトリウム、カリウムの水酸化物、炭酸塩、或いはアンモニア水、等を使用するのが好ましい。中和反応によって得られた沈澱物は水洗した後、濾過、乾燥される。 In addition, as the metal compounds, commercially available oxides, hydroxides, carbonates, or basic carbonates can be used. Alternatively, after the metal salts are made into an aqueous solution, a neutralization reaction with an aqueous alkali compound solution is performed. It can also be produced and used by the precipitation method to be produced. As the alkali compounds, it is preferable to use sodium, potassium hydroxide, carbonate, or aqueous ammonia. The precipitate obtained by the neutralization reaction is washed with water, filtered and dried.
ここで、金属化合物類は上述の市販のもの、沈澱法により生成したもの共に単一化合物での使用のみならず、混合物となして使用してもよい。沈殿法による化合物類の場合、混合物としての使用においては化合物を単独で沈澱させたものを混合してもよいが、共沈法によって複数成分を含む沈澱物を得ることによる方が好ましい。 Here, as for the metal compounds, both the above-mentioned commercially available products and those produced by the precipitation method may be used not only as a single compound but also as a mixture. In the case of compounds by the precipitation method, in the case of use as a mixture, a compound obtained by precipitating the compound alone may be mixed, but it is preferable to obtain a precipitate containing a plurality of components by the coprecipitation method.
アンモニアの含有量は、除害剤全重量に対して0.1%〜5.0%の範囲であり、その含有量が0.1%以下では金属水素化物の除害能力の向上が不充分であり、又その量が5.0%以上では一層の処理性能向上効果が認められなくなるばかりでなく、飽和吸着に達するので、現実的ではない。 The content of ammonia is in the range of 0.1% to 5.0% with respect to the total weight of the pesticide, and if the content is 0.1% or less, the metal hydride removal capability is not sufficiently improved. In addition, if the amount is 5.0% or more, not only a further improvement in treatment performance is observed, but also saturation adsorption is reached, which is not realistic.
金属化合物類として市販品使用の場合は成型体、すなわち、粉状物、その成型物、或いは成型後破砕した顆粒が使用され、沈澱法による金属化合物類の場合も同様に粉状物、粉末状の金属化合物類と混練終了後、押出し、或いは打錠によって成型物とされるその成型物、若しくは成型後の破砕物としての成型体が使用される。ここで、処理剤には使用に耐え得る機械的強度を確保するために、必要に応じてシリカ、アルミナ、マグネシア、若しくはその他の強度改善に有効な無機バインダー類を加えることができる。 In the case of using a commercial product as a metal compound, a molded product, that is, a powdered product, the molded product, or a granulated granule after molding is used. After completion of kneading with the metal compound, a molded product that is formed into a molded product by extrusion or tableting, or a molded product as a crushed product after molding is used. Here, silica, alumina, magnesia, or other inorganic binders effective for improving the strength can be added to the treating agent as necessary in order to ensure mechanical strength that can withstand use.
金属化合物類へのアンモニアの吸収方法としては、上記のような粉状物、成型物、顆粒などの成型体にアンモニアガスを流通し、吸収させることができる。アンモニアガス濃度は、0.1%から100%にすることができる。 As a method of absorbing ammonia into the metal compounds, ammonia gas can be circulated and absorbed in a molded body such as a powdery product, molded product, or granule as described above. The ammonia gas concentration can be from 0.1% to 100%.
金属水酸化物、金属炭酸塩、金属塩基性炭酸塩又はこれら化合物の混合物を流通式の充填塔に詰め、事前にアンモニアガスと接触させ、次いで金属水素化物を含有する排ガスと接触させることによって金属水素化物ガスは除害される。 Metal hydroxide, metal carbonate, metal basic carbonate or a mixture of these compounds is packed in a flow-through packed tower, pre-contacted with ammonia gas, and then contacted with exhaust gas containing metal hydride. Hydride gas is detoxified.
本発明除害剤によって除害できる金属水素化物ガス類としては、シラン、アルシン、ホスフィン、ジシラン、ジボラン、セレン化水素、ゲルマン、ジクロルシラン等がある。 Examples of metal hydride gases that can be detoxified by the present detoxifying agent include silane, arsine, phosphine, disilane, diborane, hydrogen selenide, germane, dichlorosilane, and the like.
本発明者等は一連の操作によって得られた除害剤を、ステンレス製流通式反応装置に充填し、金属水素化物ガスとして、シラン、ホスフィン、ゲルマンを含有する還元性ガスを反応器に流通させ、出口ガス中の金属水素化物ガス漏洩量をブレークモニター(バイオニクス社製)によって測定、監視することによって、常温における金属水素化物含有ガスの除害性能測定試験を行った。 The inventors of the present invention filled the detoxifying agent obtained by a series of operations into a stainless steel flow reactor, and circulated a reducing gas containing silane, phosphine, and germane as a metal hydride gas to the reactor. In addition, the metal hydride containing gas leakage amount in the exit gas was measured and monitored by a break monitor (manufactured by Bionics), thereby performing a detoxification performance measurement test of the metal hydride-containing gas at room temperature.
その結果、アンモニアを含有しない金属酸化物、金属水酸化物、金属炭酸塩、塩基性金属炭酸塩系処理剤と比較して除害能力(L/kg)に優れ、しかも長時間にわたって出口ガス中に金属水素化物は検出されないことを確認して本発明を完成した。すなわち、本発明のアンモニアを吸収させた除害剤は、アンモニアを吸収させない処理剤と比較して除害能力が30乃至42L/kgとおよそ1.4倍となり、また、出口ガス中における金属水素化物が検出されるまでの時間がおよそ1.4倍と長期にわたり、非常に優れた除害能力を有する除害剤が得られた。 As a result, it is superior in detoxifying ability (L / kg) compared to metal oxides, metal hydroxides, metal carbonates and basic metal carbonate-based treatment agents that do not contain ammonia, and in the outlet gas for a long time. The present invention was completed by confirming that no metal hydride was detected. That is, the detoxifying agent that has absorbed ammonia according to the present invention has a detoxifying ability of 30 to 42 L / kg, which is about 1.4 times that of the treatment agent that does not absorb ammonia, and metal hydrogen in the outlet gas. A detoxifying agent having a very excellent detoxifying ability was obtained over a long period of time of about 1.4 times until the detection of the chemical.
また、本発明の金属化合物の成型体にアンモニアを吸収させた除害剤は、予め金属化合物に塩基性化合物を混合させた後に成型した処理剤と比較して除害能力が1.4倍となり、出口ガス中における金属水素化物が検出されるまでの時間がおよそ1.4倍となった。 In addition, the detoxifying agent in which ammonia is absorbed in the molded body of the metal compound of the present invention has 1.4 times the detoxifying ability compared to the processing agent molded after mixing the basic compound with the metal compound in advance. The time until the detection of the metal hydride in the outlet gas was about 1.4 times.
次に本発明の内容を実施例によって更に詳細に説明するが、本発明はこれに限定されるものではない。本発明除害剤の性能評価は、除害性能測定前にアンモニアガスを吸収させた後に、窒素ガス中に含まれる金属水素化物ガスの除害性能を測定することによって行った。アンモニア吸収および測定は常圧流通式の反応装置によって行い、その装置、条件、操作法は次の通りである。 Next, the content of the present invention will be described in more detail by way of examples, but the present invention is not limited to these. The performance evaluation of the present pesticide was carried out by measuring the detoxification performance of the metal hydride gas contained in nitrogen gas after ammonia gas was absorbed before the detoxification performance measurement. Ammonia absorption and measurement are performed by a normal pressure flow type reaction apparatus, and the apparatus, conditions, and operation method are as follows.
(アンモニアガスの吸収条件)
測定条件
GHSV :500hr−1
圧力 :常圧
反応温度 :常温
反応ガス組成:アンモニア 1%
N2 バランス
(Ammonia gas absorption conditions)
Measurement condition
GHSV: 500 hr −1
Pressure: Normal pressure
Reaction temperature: normal temperature
Reaction gas composition: Ammonia 1%
N2 balance
(金属水素化物ガスの除害性能測定装置、及び測定条件)
除害性能測定装置:常圧流通式反応装置
反応管のサイズ :内径28mm、長さ700mm
測定条件
使用除害剤量:60cc(充填高さ100mm)
GHSV :300hr−1
圧力 :常圧
反応温度 :常温
反応ガス組成:SiH4(シラン) 1%
N2 バランス
(Metal hydride gas abatement performance measuring equipment and measurement conditions)
Detoxification performance measuring device: Normal pressure flow reactor Reaction tube size: Inner diameter 28mm, Length 700mm
Measurement condition
Amount of pesticide used: 60cc (filling height 100mm)
GHSV: 300 hr −1
Pressure: Normal pressure
Reaction temperature: normal temperature
Reaction gas composition: SiH4 (silane) 1%
N2 balance
(金属水素化物ガスの除害性能測定操作方法及び除害性能計算法)
除害剤60ccを充填高が100mmになるように反応管内に詰めて測定装置に設置し、次いで窒素で希釈した金属水素化物ガスを除害剤充填層に流通させた。ガス流通開始後、反応管出口ガス中への金属水素化物ガス漏洩をブレークモニター(日本バイオニクス製)で測定、監視し、その出口濃度が5ppmに達するまでに流入したシランの積算量を求め、その量を処理剤1kg当りに換算した。具体的には測定結果から次の式(1)によって金属水素化物ガスの除害性能は計算した。
(Metallic hydride gas abatement performance measurement operation method and abatement performance calculation method)
60 cc of the detoxifying agent was packed in the reaction tube so as to have a filling height of 100 mm and placed in a measuring device, and then a metal hydride gas diluted with nitrogen was circulated through the packed bed of detoxifying agent. After starting the gas flow, the metal hydride gas leakage into the reaction tube outlet gas was measured and monitored with a break monitor (manufactured by Nippon Bionics), and the cumulative amount of silane that flowed in until the outlet concentration reached 5 ppm was determined. The amount was converted per 1 kg of the treatment agent. Specifically, the detoxification performance of the metal hydride gas was calculated from the measurement result by the following formula (1).
(処理剤の金属水素化物ガス除害性能計算法)
除害性能(L/kg)=A×(B/100)×(C/E)(式1)
ここで、A:測定ガス流量(L/min.)
B:金属水素化物ガス濃度(容積%)
C:金属水素化物ガスの出口濃度が所定の濃度に達するまでの累積ガス流通時間(min.)
E:処理剤充填量(kg)
(Calculation method for metal hydride gas removal performance of treatment agents)
Detoxification performance (L / kg) = A × (B / 100) × (C / E) (Formula 1)
Here, A: Measurement gas flow rate (L / min.)
B: Metal hydride gas concentration (volume%)
C: Cumulative gas circulation time (min.) Until the outlet concentration of the metal hydride gas reaches a predetermined concentration
E: Treatment agent filling amount (kg)
実施例1
金属化合物として市販の塩基性炭酸銅を用い、ニーダー中で塩基性炭酸銅200gに純水40gを加えて充分混合した後、直径3mmのサイズに押出し成型し、120℃で乾燥した。得られた成型体を反応管に充填させて、アンモニアガスを285分間、流通した。計算上、除害剤に対して、2%アンモニアが吸収されたこととなる。このように調製した除害剤のシラン除害性能結果を表1に示した。
Example 1
Commercially available basic copper carbonate was used as the metal compound, and after adding 40 g of pure water to 200 g of basic copper carbonate and mixing well in a kneader, the mixture was extruded to a size of 3 mm in diameter and dried at 120 ° C. The obtained molded body was filled in a reaction tube, and ammonia gas was circulated for 285 minutes. In calculation, 2% ammonia is absorbed with respect to the detoxifying agent. Table 1 shows the silane abatement performance results of the abatement agent thus prepared.
実施例2
金属化合物として市販の塩基性炭酸銅を圧密し、顆粒にした後、打錠成形を行い、4.5mm×3mmのタブレットを得た。得られた成型体を反応管に充填させて、アンモニアガスを130分間、流通した。計算上、除害剤に対して、1%アンモニアが吸収されたこととなる。以下、実施例1と同様に行い、その結果を表1に示した。
Example 2
Commercially available basic copper carbonate as a metal compound was compacted and granulated, and tableting was performed to obtain a tablet of 4.5 mm × 3 mm. The obtained molded body was filled in a reaction tube, and ammonia gas was circulated for 130 minutes. In calculation, 1% ammonia is absorbed with respect to the detoxifying agent. Hereafter, it carried out like Example 1 and the result was shown in Table 1.
実施例3
硫酸銅を水溶液となし、これに合わせて準備した炭酸ナトリウムとの中和反応により塩基性炭酸銅の沈殿物を得た。次いで水洗することによって不純物類を充分除去した後濾過、120℃で乾燥し、塩基性炭酸銅を得た。得られた塩基性炭酸銅を用いた以外は、実施例1と同様に行った。アンモニアガスの流通は150分間行い、計算値として、1.2%吸収させた。この結果を表1に示した。
Example 3
Copper sulfate was used as an aqueous solution, and a basic copper carbonate precipitate was obtained by a neutralization reaction with sodium carbonate prepared accordingly. Next, impurities were sufficiently removed by washing with water, followed by filtration and drying at 120 ° C. to obtain basic copper carbonate. It carried out like Example 1 except having used the obtained basic copper carbonate. The ammonia gas was circulated for 150 minutes, and the calculated value was absorbed by 1.2%. The results are shown in Table 1.
実施例4
硫酸銅275gと硫酸マンガン214gを純水6Lに溶解した水溶液と、これに合わせて準備した炭酸ナトリウム280gを純水8Lに溶解したアルカリ水溶液との中和反応により、銅とマンガンの複合化合物の沈殿物を得た。次いで水洗することによって不純物類を十分除去した後濾過、120℃で乾燥し、300℃で焼成し、酸化銅と酸化マンガンを得た。得られた酸化銅と酸化マンガンの複合酸化物を用いた以外は、実施例1と同様に行った。アンモニアガスの流通は270分間行い、計算値として、1.7%吸収させた。この結果を表1に示した。
Example 4
Precipitation of a composite compound of copper and manganese by a neutralization reaction between an aqueous solution in which 275 g of copper sulfate and 214 g of manganese sulfate are dissolved in 6 L of pure water and an alkaline aqueous solution in which 280 g of sodium carbonate prepared according to this is dissolved in 8 L of pure water. I got a thing. Subsequently, the impurities were sufficiently removed by washing with water, followed by filtration, drying at 120 ° C., and baking at 300 ° C. to obtain copper oxide and manganese oxide. The same procedure as in Example 1 was performed except that the obtained composite oxide of copper oxide and manganese oxide was used. The ammonia gas was circulated for 270 minutes, and the calculated value was absorbed by 1.7%. The results are shown in Table 1.
実施例5
硫酸鉄480gと硫酸マンガン160gを純水2Lに溶解した水溶液と、これに合わせて準備した炭酸ナトリウム350gを純水1.7Lに溶解したアルカリ水溶液との中和反応により、鉄とマンガンの複合化合物の沈殿物を得た。次いで水洗することによって不純物類を十分除去した後濾過、120℃で乾燥し、500℃で焼成し、酸化鉄と酸化マンガンを得た。得られた酸化鉄と酸化マンガンの複合酸化物を用いた以外は、実施例1と同様に行った。アンモニアガスの流通は130分間行い、計算値として、1.0%吸収させた。この結果を表1に示した。
Example 5
A composite compound of iron and manganese by a neutralization reaction between an aqueous solution in which 480 g of iron sulfate and 160 g of manganese sulfate are dissolved in 2 L of pure water and an alkaline aqueous solution in which 350 g of sodium carbonate prepared according to this is dissolved in 1.7 L of pure water. A precipitate was obtained. Subsequently, the impurities were sufficiently removed by washing with water, followed by filtration, drying at 120 ° C., and baking at 500 ° C. to obtain iron oxide and manganese oxide. The same operation as in Example 1 was performed except that the obtained composite oxide of iron oxide and manganese oxide was used. The ammonia gas was circulated for 130 minutes, and the calculated value was absorbed by 1.0%. The results are shown in Table 1.
実施例6
硫酸銅280gと硫酸亜鉛160gを純水0.8Lに溶解した水溶液と、これに合わせて準備した炭酸ナトリウム240gを純水3Lに溶解したアルカリ水溶液との中和反応により、銅と亜鉛の複合化合物の沈殿物を得た。次いで水洗することによって不純物類を十分除去した後濾過、120℃で乾燥し、300℃で焼成し、酸化銅と酸化亜鉛を得た。得られた酸化銅と酸化亜鉛の複合酸化物を用いた以外は、実施例1と同様に行った。アンモニアガスの流通は90分間行い、計算値として、0.5%吸収させた。この結果を表1に示した。
Example 6
A composite compound of copper and zinc is obtained by a neutralization reaction between an aqueous solution in which 280 g of copper sulfate and 160 g of zinc sulfate are dissolved in 0.8 L of pure water and an alkaline aqueous solution in which 240 g of sodium carbonate prepared according to this is dissolved in 3 L of pure water. A precipitate was obtained. Subsequently, the impurities were sufficiently removed by washing with water, followed by filtration, drying at 120 ° C., and baking at 300 ° C. to obtain copper oxide and zinc oxide. The same procedure as in Example 1 was performed except that the obtained composite oxide of copper oxide and zinc oxide was used. The circulation of ammonia gas was performed for 90 minutes, and 0.5% was absorbed as a calculated value. The results are shown in Table 1.
比較例1〜6
実施例1〜6において、アンモニアガスを流通させないこと以外は、実施例1〜6と全く同様にして、実験を行った。この結果を表1に示した。
Comparative Examples 1-6
In Examples 1 to 6, experiments were performed in the same manner as in Examples 1 to 6, except that ammonia gas was not circulated. The results are shown in Table 1.
比較例7
金属化合物として市販の塩基性炭酸銅を用い、ニーダー中で塩基性炭酸銅200gに水酸化ナトリウム2gを純水40gに溶解した水溶液を加えて充分混合した後、直径3mmのサイズに押し出し成型し、120℃で乾燥した。得られた水酸化ナトリウム含浸塩基性炭酸銅は、アンモニアガスを流通させない以外は、実施例1〜6と全く同様にして、実験を行った。この結果を表1に示した。
Comparative Example 7
Using commercially available basic copper carbonate as a metal compound, an aqueous solution obtained by dissolving 2 g of sodium hydroxide in 40 g of pure water was added to a basic copper carbonate 200 g in a kneader and mixed sufficiently, and then extruded to a size of 3 mm in diameter. Dry at 120 ° C. The obtained sodium hydroxide-impregnated basic copper carbonate was tested in the same manner as in Examples 1 to 6, except that ammonia gas was not passed. The results are shown in Table 1.
表1の結果より、金属酸化物、金属水酸化物、金属炭酸塩、塩基性金属炭酸塩系化合物の成型体にアンモニアガスを流通させた除害剤は、アンモニアガスを流通させない金属酸化物、金属水酸化物、金属炭酸塩、塩基性金属炭酸塩系化合物の成型体の除害剤と比較して除害能力(L/kg)に優れ、しかも長時間にわたって出口ガス中に金属水素化物は検出されないことが証明された。 From the results of Table 1, the detoxifying agent in which ammonia gas was circulated through a molded body of metal oxide, metal hydroxide, metal carbonate, and basic metal carbonate compound was a metal oxide that did not circulate ammonia gas, Compared with the detoxifying agent of metal hydroxide, metal carbonate and basic metal carbonate compound, the detoxifying ability (L / kg) is excellent, and the metal hydride is in the outlet gas for a long time. It was proved not to be detected.
また、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩などをアルカリ金属など塩基性化合物で修飾した除害剤と比較しても同様に除害能力が向上していた。 Further, even when compared with a detoxifying agent obtained by modifying a metal hydroxide, a metal carbonate or a basic metal carbonate with a basic compound such as an alkali metal, the detoxifying ability was improved.
Claims (6)
6. The exhaust gas abatement method for metal hydride according to claim 5, wherein ammonia is absorbed by the gas phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007153911A JP2008302338A (en) | 2007-06-11 | 2007-06-11 | Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007153911A JP2008302338A (en) | 2007-06-11 | 2007-06-11 | Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008302338A true JP2008302338A (en) | 2008-12-18 |
Family
ID=40231515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007153911A Pending JP2008302338A (en) | 2007-06-11 | 2007-06-11 | Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008302338A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015164724A (en) * | 2015-04-03 | 2015-09-17 | クラリアント触媒株式会社 | Agent and method for detoxifying metal hydride-containing exhaust gas |
JP5833313B2 (en) * | 2009-02-10 | 2015-12-16 | クラリアント触媒株式会社 | Detoxifying agent and method for exhaust gas containing metal hydride |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06319939A (en) * | 1993-05-11 | 1994-11-22 | Japan Pionics Co Ltd | Method fort cleaning harmful gas |
-
2007
- 2007-06-11 JP JP2007153911A patent/JP2008302338A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06319939A (en) * | 1993-05-11 | 1994-11-22 | Japan Pionics Co Ltd | Method fort cleaning harmful gas |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5833313B2 (en) * | 2009-02-10 | 2015-12-16 | クラリアント触媒株式会社 | Detoxifying agent and method for exhaust gas containing metal hydride |
JP2015164724A (en) * | 2015-04-03 | 2015-09-17 | クラリアント触媒株式会社 | Agent and method for detoxifying metal hydride-containing exhaust gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110267738B (en) | Halogen gas remover, method for producing same, and system for removing halogen gas | |
JP4488545B2 (en) | Treatment method, treatment agent and treatment apparatus for exhaust gas containing halogen fluoride | |
JP3340510B2 (en) | Hazardous gas purification method | |
JP2008302338A (en) | Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas | |
JP2001017831A (en) | Treating agent for halogen gas | |
KR20110011858A (en) | A depurator for harmfulness gas removal and its manufacturing method | |
JP6006492B2 (en) | Exhaust gas abatement agent containing volatile inorganic hydride and exhaust gas abatement method containing volatile inorganic hydride | |
JP5833313B2 (en) | Detoxifying agent and method for exhaust gas containing metal hydride | |
JP3838977B2 (en) | Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment method | |
JP4430948B2 (en) | Exhaust gas treatment agent containing metal hydride and exhaust gas treatment method containing metal hydride | |
JP6908820B2 (en) | Formic acid treatment method and formic acid treatment equipment | |
JP2691927B2 (en) | How to remove harmful components | |
JP6043398B2 (en) | Detoxifying agent and method for exhaust gas containing metal hydride | |
KR20180066907A (en) | Adsorbent for acid exhaust gas removal and its manufacturing method | |
KR101979343B1 (en) | Adsorbent for acid exhaust gas removal and its manufacturing method | |
JPS61129026A (en) | Purification of exhaust gas | |
JP2008119628A (en) | Cleaning agent and cleaning method of toxic gas | |
KR101139017B1 (en) | Absorbent for treatment of hazardous gas and preparing method thereof and treating method of hazardous gas using thereof | |
JPH10249144A (en) | Method of purifying harmful gas | |
TW202432230A (en) | Waste gas treatment method and waste gas treatment device | |
JPH0985035A (en) | Method for removing harmful gas and agent used therefor | |
TW202434356A (en) | Waste gas treatment method and waste gas treatment device | |
JP2702461B2 (en) | Exhaust gas purification method | |
JPH06327931A (en) | Purifying method of waste gas | |
JP2000271433A (en) | Agent and method for treating waste gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120829 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121219 |