JPH0985035A - Method for removing harmful gas and agent used therefor - Google Patents

Method for removing harmful gas and agent used therefor

Info

Publication number
JPH0985035A
JPH0985035A JP7242806A JP24280695A JPH0985035A JP H0985035 A JPH0985035 A JP H0985035A JP 7242806 A JP7242806 A JP 7242806A JP 24280695 A JP24280695 A JP 24280695A JP H0985035 A JPH0985035 A JP H0985035A
Authority
JP
Japan
Prior art keywords
solid
agent
harmful
detoxifying
dehydrating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7242806A
Other languages
Japanese (ja)
Other versions
JP3703538B2 (en
Inventor
Yoshiaki Sugimori
由章 杉森
Tadaharu Watanabe
忠治 渡辺
Maya Yamada
まや 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP24280695A priority Critical patent/JP3703538B2/en
Publication of JPH0985035A publication Critical patent/JPH0985035A/en
Application granted granted Critical
Publication of JP3703538B2 publication Critical patent/JP3703538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the utilization efficiency of a solid removing agent to a large extent and to efficiently and economically detoxify a harmful component by bringing gas containing a harmful component into contact with a mixture of the solid removing agent and a solid dehydrating agent capable of absorbing and desorbing moisture. SOLUTION: A solid removing agent A containing copper hydroxide as a reaction main component, a solid dehydrating agent B having moisture adsorbing and desorbing function and a solid removing agent C containing metal oxide as a reaction main component are successively laminated in one column 1 in a laminar state from a gas inlet side. The gas containing a harmful component introduced from a conduit 12 is brought into contact with the respective agents in laminated order and subjected to detoxifying treatment to be discharged from a conduit 13. In this case, moisture generated by the reaction with the solid removing agent A is prevented from exerting adverse effect on the solid removing agent C and the detoxifying treatment of the harmful component can be efficiently and certainly performed. If the solid dehydrating agent B is mixed with the solid removing agents A, C, generated moisture is immediately adsorbed and removed and dehydration efficiency can be more enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有害ガスの除害方
法及び除害剤に関し、詳しくは、半導体製造工場等から
排出される有害ガスを固体除害剤を用いた乾式処理によ
り除害する方法及びこれに用いる除害剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmful gas removing method and a harmful agent. More specifically, the harmful gas discharged from a semiconductor manufacturing plant is removed by a dry treatment using a solid harmful agent. The present invention relates to a method and a harmful agent used for the method.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】例え
ば、半導体製造工程では、シラン,アルシン,ホスフィ
ンや各種ハロゲン化物あるいは有機金属化合物等の有害
成分を使用するため、これらの有害成分を含むガスが排
気される。したがって、これらの有害成分を含む排気ガ
スを大気中に放出する際には無害化処理を行う必要があ
る。
2. Description of the Related Art For example, in a semiconductor manufacturing process, since harmful components such as silane, arsine, phosphine, various halides, and organometallic compounds are used, a gas containing these harmful components is used. Exhausted. Therefore, it is necessary to perform a detoxification process when the exhaust gas containing these harmful components is released into the atmosphere.

【0003】上記有害成分を無害化するための処理とし
ては、従来のスクラバ等による湿式乃至湿潤状態の除害
剤による半湿式から、近年は、取扱い性等に優れた固体
除害剤を用いた乾式による処理技術へと移行してきてい
る。このような乾式無害化処理を行うための固体除害剤
としては、例えば、特公平3−64166号,同3−6
4167号,同4−17082号,同4−19886号
等の各公報に示されるように、酸化銅(CuO)をはじ
めとする各種の金属酸化物を反応主成分としたものが提
案されている。
As a treatment for detoxifying the harmful components, from a conventional semi-wet method using a wet or wet state removing agent such as a scrubber, a solid removing agent which is excellent in handleability in recent years has been used. It has been shifting to dry processing technology. As the solid detoxifying agent for performing such dry detoxification treatment, for example, Japanese Patent Publication No. 3-64166 and No. 3-6.
As disclosed in Japanese Patent Publication Nos. 4167, 4-17082, 4-19886, etc., those containing various metal oxides such as copper oxide (CuO) as a reaction main component have been proposed. .

【0004】固体除害剤を用いた乾式除害処理は、固体
除害剤を充填した充填筒(カラム)内に有害成分を含む
ガスを流通させるのが一般的であり、簡単な装置構成で
実施できるなど、多くのメリットがあるため、近年広く
普及してきているが、実際の運転時に、固体除害剤が、
その能力を十分に発揮しないことがあった。
In the dry detoxification treatment using a solid detoxifying agent, a gas containing a harmful component is generally circulated in a packing cylinder (column) filled with the solid detoxifying agent, which has a simple apparatus configuration. It has been widely used in recent years because it has many merits such as being able to be carried out.
There were times when the ability was not fully exerted.

【0005】すなわち、一般的に、固体除害剤による乾
式無害化処理においては、ガスの流量及び有害成分の濃
度と、固体除害剤の除害能力及び使用量とにより、処理
能力を予め推測することができるが、固体除害剤をカラ
ムに充填して用いた場合、予測された処理能力に達する
前にカラム出口から有害成分が流出してくることがあっ
た。このため、実際の現場では、相当の余裕をもって固
体除害剤の使用量や使用時間を決定しなければならなか
った。
That is, generally, in the dry detoxification treatment with a solid detoxifying agent, the treating ability is preliminarily estimated by the gas flow rate and the concentration of harmful components, and the detoxifying ability and the amount of use of the solid detoxifying agent. However, when a solid detoxifying agent is packed into a column and used, a harmful component may flow out from the column outlet before the expected processing capacity is reached. For this reason, in the actual site, it was necessary to decide the amount and time of use of the solid detoxifying agent with a considerable margin.

【0006】本発明者らの知見によれば、この固体除害
剤の処理能力の低下の原因は、有害成分と固体除害剤と
の除害反応により生じる水分が充填層の一部を閉塞する
ことが主な原因であると考えられる。例えば、有害成分
の一種であるであるアルシンは、固体除害剤である酸化
銅に接触すると、下記の反応により無害化される際に水
分を発生させる。 2AsH3 +3CuO → Cu3 As+As+3H2
According to the findings of the present inventors, the cause of the decrease in the treatment capacity of the solid harm-removing agent is that the water generated by the harm-removing reaction between the harmful component and the solid harm-removing agent blocks a part of the packed bed. It is thought that this is the main cause. For example, arsine, which is one of the harmful components, produces water when it is rendered harmless by the following reaction when contacted with copper oxide, which is a solid harmful agent. 2AsH 3 + 3CuO → Cu 3 As + As + 3H 2 O

【0007】そこで本出願人は、先に、上記反応で生じ
た水分を脱水剤で除去することにより固体除害剤の処理
能力の低下を防止することを提案し、固体除害剤の処理
能力の向上に成果を得た。しかし、有害成分の濃度が高
くなったり、ガスの流速が速くなったりして負荷が増大
すると、予想される発生水分量以上の余分な脱水剤を必
要とすることも判明した。本発明は、この提案の改良に
関するものであって、実際の無害化処理の運転状況が、
例えば、1日24時間の中で、排ガスの無害化処理を行
う時間が8時間程度であり、その他の時間は乾燥窒素ガ
スを流通させるという運転状況に対応して、より経済的
に有害成分の無害化処理を行うことができる有害ガスの
除害方法及び除害剤を提供することを目的としている。
[0007] Therefore, the present applicant has previously proposed to remove the water generated in the above reaction with a dehydrating agent to prevent a decrease in the processing ability of the solid harm-removing agent. The result was improved. However, it has also been found that when the load increases due to a high concentration of harmful components or a high gas flow rate, an extra dehydrating agent in excess of the expected amount of generated water is required. The present invention relates to the improvement of this proposal, in which the actual operating status of the detoxification treatment is
For example, in 24 hours a day, the time to perform the detoxification treatment of the exhaust gas is about 8 hours, and other times, the dry nitrogen gas is circulated. It is an object of the present invention to provide a harmful gas removing method and a harmful agent that can be detoxified.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の有害ガスの除害方法は、第1の構成とし
て、固体除害剤と、水分を吸脱着可能な固体脱水剤との
混合物に接触させることを特徴とし、さらに、第2の構
成として、有害成分を含むガスを、第1の固体除害剤に
接触させた後、水分を吸脱着可能な固体脱水剤に接触さ
せ、さらに、第2の固体除害剤に接触させることを特徴
としている。
In order to achieve the above object, the harmful gas removing method of the present invention comprises, as a first configuration, a solid removing agent and a solid dehydrating agent capable of absorbing and desorbing water. Characterized in that it is brought into contact with the mixture, and as a second configuration, a gas containing a harmful component is brought into contact with the first solid detoxifying agent, and then brought into contact with a solid dehydrating agent capable of absorbing and desorbing water, Further, it is characterized in that it is brought into contact with the second solid harmful agent.

【0009】上記第2の構成において、第1の固体除害
剤と第2の固体除害剤とは、同種の固体除害剤であって
もよく、異なる固体除害剤であってもよい。異なる固体
除害剤を用いる場合は、第1の固体除害剤を水酸化銅を
反応主成分とするものとし、第2の固体除害剤を金属酸
化物を反応主成分とするものとすることが好ましい。
In the above-mentioned second construction, the first and second solid harmful agents may be the same type of solid harmful agents or different solid harmful agents. . When different solid abatement agents are used, the first solid abatement agent has copper hydroxide as a reaction main component and the second solid abatement agent has a metal oxide as a reaction main component. It is preferable.

【0010】さらに、本発明方法の第3の構成は、有害
成分を含むガスを、水酸化銅と、金属酸化物と、水分を
吸脱着可能な固体脱水剤とを混合した固体除害剤に接触
させることを特徴としている。
Furthermore, the third structure of the method of the present invention is a solid harm-removing agent in which a gas containing harmful components is mixed with copper hydroxide, a metal oxide, and a solid dehydrating agent capable of absorbing and desorbing water. It is characterized by making contact.

【0011】加えて、本発明方法の第4の構成は、有害
成分を含むガスを、水分を吸脱着可能な固体脱水剤を含
む固体除害剤に接触させて無害化処理を行うとともに、
該無害化処理を行わないときには、乾燥不活性ガスを流
通させて前記固体脱水剤に吸着している水分を脱着する
ことを特徴としている。
In addition, in the fourth aspect of the method of the present invention, a gas containing a harmful component is brought into contact with a solid detoxifying agent containing a solid dehydrating agent capable of adsorbing and desorbing water to carry out detoxification treatment,
When the detoxification treatment is not performed, a dry inert gas is passed to desorb the water adsorbed on the solid dehydrating agent.

【0012】また、本発明の有害ガスの除害剤は、固体
除害剤に、水分を吸脱着可能な固体脱水剤を添加混合し
たこと、特に、水酸化銅と金属酸化物とを混合した固体
除害剤に、水分を吸脱着可能な固体脱水剤を添加混合し
たことを特徴としている。
The harmful gas harm-removing agent of the present invention comprises a solid harm-removing agent to which a solid dehydrating agent capable of absorbing and desorbing water is added and mixed, and particularly, copper hydroxide and a metal oxide are mixed. It is characterized in that a solid dehydrating agent capable of absorbing and desorbing water is added to and mixed with the solid detoxifying agent.

【0013】まず、本発明の対象となる有害成分は、特
に、半導体製造工場等で使用される揮発性無機水素化
物,揮発性無機ハロゲン化物,有機金属化合物である。
前記揮発性無機水素化物としては、ジボラン,シラン,
ジシラン,ゲルマン,アンモニア,ホスフィン,アルシ
ン,硫化水素,セレン化水素等を挙げることができ、ま
た、揮発性無機ハロゲン化物としては、三フッ化ホウ
素,三塩化ホウ素,四フッ化ケイ素,ジクロルシラン,
トリクロルシラン,四塩化ケイ素,トリクロルアルシ
ン,六フッ化タングステン,フッ素,塩素,フッ化水
素,塩化水素,臭化水素等、ハロゲンガスも含む各種ガ
スを挙げることができる。
First, the harmful components to which the present invention is applied are, in particular, volatile inorganic hydrides, volatile inorganic halides and organometallic compounds used in semiconductor manufacturing plants and the like.
Examples of the volatile inorganic hydride include diborane, silane,
Examples thereof include disilane, germane, ammonia, phosphine, arsine, hydrogen sulfide, hydrogen selenide, and the like. As volatile inorganic halides, boron trifluoride, boron trichloride, silicon tetrafluoride, dichlorosilane,
Various gases including halogen gas such as trichlorosilane, silicon tetrachloride, trichloroarsine, tungsten hexafluoride, fluorine, chlorine, hydrogen fluoride, hydrogen chloride and hydrogen bromide can be mentioned.

【0014】さらに、有機金属化合物としては、アルキ
ル基を含むものとして、ジメチル亜鉛,ジエチル亜鉛,
トリメチルアルミニウム,トリエチルアルミニウム,ト
リメチルガリウム,トリエチルガリウム,トリメチルイ
ンジウム,トリエチルインジウム,テトラメチル錫,テ
トラエチル錫,ターシャリーブチルホスフィン,トリメ
チルアルシン,トリエチルアルシン,ターシャリーブチ
ルアルシン等を、アルコキシド基を含むものとして、ジ
メトキシ亜鉛,トリブトキシガリウム,トリメトキシボ
ロン,トリエトキシボロン,テトラメトキシシラン,テ
トラエトキシシラン,テトラメトキシゲルマン,テトラ
エトキシゲルマン,テトラターシャリーブトキシ錫,ト
リメトキシホスフィン,トリエトキシホスフィン,トリ
メトキシアルシン,トリエトキシアルシン,テトラエト
キシセレン,テトラメトキシチタン,テトラエトキシチ
タン,テトライソプロポキシチタン,テトライソプロポ
キシジルコニウム,テトラターシャリーブトキシジルコ
ニウム,ペンタメトキシタンタル,ペンタエトキシタン
タル等をそれぞれ挙げることができる。
Further, as the organometallic compound, those containing an alkyl group include dimethyl zinc, diethyl zinc,
Trimethylaluminum, triethylaluminum, trimethylgallium, triethylgallium, trimethylindium, triethylindium, tetramethyltin, tetraethyltin, tert-butylphosphine, trimethylarsine, triethylarsine, tert-butylarsine, etc., containing alkoxide groups, Dimethoxyzinc, tributoxygallium, trimethoxyboron, triethoxyboron, tetramethoxysilane, tetraethoxysilane, tetramethoxygermane, tetraethoxygermane, tetratert-butoxytin, trimethoxyphosphine, triethoxyphosphine, trimethoxyarsine, tri Ethoxyarsine, tetraethoxyselenium, tetramethoxytitanium, tetraethoxytitanium, tetraiso Ropokishichitan, tetraisopropoxy zirconium, tetra-tertiary-butoxy zirconium, pentamethoxy tantalum, pentaethoxytantalum etc. can be mentioned, respectively.

【0015】前記固体除害剤としては、従来からこの種
の有害成分の無害化処理に用いられている金属酸化物や
金属水酸化物、金属酸化水酸化物等、各種化合物を使用
することができ、例えば、金属酸化物としては、酸化
銅,酸化マグネシウム,酸化カルシウム,二酸化チタ
ン,酸化クロム,酸化マンガン,酸化鉄,酸化ニッケ
ル,酸化亜鉛,酸化アルミニウム,二酸化ケイ素,酸化
コバルト,酸化ストロンチウム,酸化バリウム,酸化セ
リウム等を用いることができ、金属水酸化物としても各
種のものを使用可能だが、特に水酸化銅を使用すること
が好ましい。
As the solid detoxifying agent, various compounds such as metal oxides, metal hydroxides, metal oxide hydroxides, etc., which have been conventionally used for detoxifying harmful components of this kind, can be used. For example, metal oxides include copper oxide, magnesium oxide, calcium oxide, titanium dioxide, chromium oxide, manganese oxide, iron oxide, nickel oxide, zinc oxide, aluminum oxide, silicon dioxide, cobalt oxide, strontium oxide, and oxide. Barium, cerium oxide or the like can be used, and various metal hydroxides can be used, but copper hydroxide is particularly preferably used.

【0016】この水酸化銅は、ガス中の有害成分を無害
化する際の処理能力が金属酸化物に比べて高く、効率良
く無害化処理を行うことができるが、使用条件によって
は、金属酸化物に比べて処理後の有害成分の残存量が多
くなることがある。一方の金属酸化物は、有害成分を極
微量にまで除去処理することはできるが、破過に至るま
での処理量が少ない。したがって、有害成分を含むガス
を水酸化銅に接触させて有害成分の大部分を無害化処理
するとともに、残存する有害成分を金属酸化物に接触さ
せることにより、金属酸化物の負荷を低減させることが
でき、金属酸化物を単独で用いたときよりも長時間使用
することが可能になる。また、使用条件により水酸化銅
で十分に無害化処理を行えなかった場合でも、金属酸化
物で確実に有害成分を無害化することができる。
This copper hydroxide has a higher treatment capacity for detoxifying harmful components in gas as compared with metal oxides, and can perform detoxification treatment efficiently. However, depending on use conditions, metal oxidation The residual amount of harmful components after treatment may be larger than that of the product. On the other hand, the metal oxide can remove harmful components to a very small amount, but has a small amount of treatment until breakthrough. Therefore, the gas containing a harmful component is brought into contact with copper hydroxide to detoxify most of the harmful component, and the remaining harmful component is brought into contact with the metal oxide to reduce the load of the metal oxide. Therefore, the metal oxide can be used for a longer period of time than when it is used alone. Further, even if copper hydroxide cannot be sufficiently detoxified depending on use conditions, the harmful components can be reliably detoxified with the metal oxide.

【0017】上記水酸化銅は、主に水酸化第二銅(Cu
(OH)2 )を意味するが、水酸化第一銅を含んでいて
も良い。また、水酸化銅としては、結晶性のものと非晶
質のものの両方が使用できるが、結晶性のものの方が非
晶質のものより温度に対する安定性が高いので、有害成
分の濃度が高く、反応熱が高い場合に、より安定的に使
用できる。さらに、水酸化銅に、例えば、ベリリウム,
バナジウム等の単体やこれらの化合物を添加することに
より安定性を向上できるので、水酸化銅にこれらを安定
化剤として添加することもできる。
The above-mentioned copper hydroxide is mainly cupric hydroxide (Cu
It means (OH) 2 ) but may contain cuprous hydroxide. As the copper hydroxide, both crystalline and amorphous ones can be used, but the crystalline one has a higher stability against temperature than the amorphous one, so that the concentration of harmful components is high. It can be used more stably when the reaction heat is high. Further, copper hydroxide, for example, beryllium,
Since stability can be improved by adding a simple substance such as vanadium or a compound thereof, it is also possible to add them to copper hydroxide as a stabilizer.

【0018】また、水酸化銅と金属酸化物とを混合して
有害成分の無害化処理を行う場合、それぞれを単独で用
いた場合に比べてガス中の有害成分を効率よく無害化す
ることができる。通常、2成分の除害剤を混合すると、
両者の平均値が除害能力のように思えるが、この場合は
両除害剤の処理能力に相乗効果を生じ、水酸化銅又は金
属酸化物をそれぞれ単独で用いたときより処理量が増大
する。
When copper hydroxide and a metal oxide are mixed to detoxify harmful components, the harmful components in the gas can be efficiently detoxified as compared with the case where each of them is used alone. it can. Normally, when mixing two components of harmful agents,
The average value of the two seems to be the detoxifying ability, but in this case, a synergistic effect is produced on the treating ability of both detoxifying agents, and the treated amount is larger than when copper hydroxide or metal oxide is used alone. .

【0019】さらに、前記水酸化銅は、前記有害成分と
反応すると青色から黒色に変色するので、カラムを透明
な材料で作成するか、カラムに透明な窓を設けておけ
ば、反応の進行に伴って青色/黒色の破過前線が上流側
から下流側へと移動するのが観察できる。したがって、
特別な検知手段を用いずに除害剤の破過を事前に知るこ
とができ、除害剤の交換時期を的確に知ることができ
る。
Furthermore, since the copper hydroxide changes color from blue to black when it reacts with the harmful components, if the column is made of a transparent material or a transparent window is provided in the column, the reaction progresses. Along with this, it can be observed that the blue / black breakthrough front moves from the upstream side to the downstream side. Therefore,
It is possible to know in advance the breakthrough of the harm-removing agent without using a special detection means, and it is possible to accurately know the replacement time of the harm-removing agent.

【0020】前記水分を吸脱着可能な脱水剤とは、雰囲
気の湿度に応じて水分を吸脱着するものであって、図3
に示すように、雰囲気湿度が高いときには水分を吸着
し、雰囲気湿度が低いときには吸着している水分を脱着
(放出)する性質を有するものである。このような性質
を有する脱水剤は、例えば、富士シリシア化学株式会社
から、商品名「フジシリカゲルB形」、「フジシリカゲ
ルID形」として市販されており、本発明では、これら
の水分吸脱着機能を有する脱水剤を単独あるいは混合し
て、さらには他の吸湿剤(水分脱着機能を有しないもの
も含む)を適宜混合して使用することができる。
The dehydrating agent capable of adsorbing and desorbing water is one which adsorbs and desorbs water according to the humidity of the atmosphere.
As shown in (3), it has a property of adsorbing moisture when the atmospheric humidity is high, and desorbing (releasing) the adsorbed moisture when the atmospheric humidity is low. Dehydrating agents having such properties are commercially available, for example, from Fuji Silysia Chemical Ltd. under the trade names of "Fuji Silica Gel Type B" and "Fuji Silica Gel ID Type". The dehydrating agent having the above can be used alone or in combination, and further, other hygroscopic agents (including those having no water desorption function) can be appropriately mixed and used.

【0021】このような固体脱水剤により、固体除害剤
と有害成分との反応で発生した水分を除去することによ
り、水分が充填層を閉塞して固体除害剤の処理能力を低
下させることを防止できる。そして、無害化処理運転の
時間帯に発生して脱水剤に吸着した水分は、それ以外の
時間帯に乾燥不活性ガス、例えば乾燥窒素ガスを流通さ
せることによって脱水剤から脱着放出させることがで
き、脱水剤を活性化することができる。これにより、脱
水剤の長寿命化が図れるとともに、使用量の低減も図れ
る。なお、このとき放出された水分が固体除害剤に付着
したり、充填層を閉塞したりしても、乾燥ガスを連続的
に導入することにより、これらの水分を蒸発させて排出
することができる。
By removing the water generated by the reaction between the solid detoxifying agent and the harmful components with such a solid dehydrating agent, the water blocks the packed bed and reduces the processing ability of the solid detoxifying agent. Can be prevented. Then, the moisture generated in the time zone of the detoxification treatment operation and adsorbed to the dehydrating agent can be desorbed and released from the dehydrating agent by circulating a dry inert gas, for example, dry nitrogen gas in the other time zones. , The dehydrating agent can be activated. As a result, the life of the dehydrating agent can be extended and the usage amount can be reduced. In addition, even if the water released at this time adheres to the solid detoxifying agent or closes the packed bed, it is possible to evaporate and discharge the water by continuously introducing the dry gas. it can.

【0022】[0022]

【発明の実施の形態】以下、本発明を、図面を参照して
さらに詳細に説明する。図1及び図2は、本発明方法を
実施する際の固体除害剤及び固体脱水剤の充填例を示す
ものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 and FIG. 2 show examples of filling with a solid harmful agent and a solid dehydrating agent when carrying out the method of the present invention.

【0023】まず、図1は、ガスの流れの上流側から、
第1のカラム1に第1の固体除害剤、例えば水酸化銅を
反応主成分とする固体除害剤Aを、第2のカラム2に水
分吸脱着機能を有する固体脱水剤Bを、第3のカラム3
に第2の固体除害剤、例えば金属酸化物を反応主成分と
する固体除害剤Cを、それぞれ充填して導管4から導入
されるガス中の有害成分を無害化処理するものである。
First, in FIG. 1, from the upstream side of the gas flow,
In the first column 1, a first solid harmful agent, for example, a solid harmful agent A containing copper hydroxide as a reaction main component, and in the second column 2, a solid dehydrating agent B having a water adsorption / desorption function, Column 3 of 3
In addition, a second solid harmful agent, for example, a solid harmful agent C having a metal oxide as a main reaction component is filled therein to detoxify harmful components in the gas introduced from the conduit 4.

【0024】すなわち、導管4から第1のカラム1に導
入されたガス中の有害成分は、その内部に充填された水
酸化銅を反応主成分とする固体除害剤Aに接触して無害
化処理された後、導管5から第2のカラム2に導入され
て固体除害剤Aによる無害化処理で生成した水分が固体
脱水剤Bで吸着除去され、さらに、導管6から第3のカ
ラム3に導入されて金属酸化物を反応主成分とする固体
除害剤Cに接触して無害化処理され、導管7から排出さ
れる。
That is, the harmful components in the gas introduced from the conduit 4 into the first column 1 are rendered harmless by contacting the solid harm-removing agent A containing copper hydroxide as a reaction main component and filled therein. After the treatment, the water introduced into the second column 2 from the conduit 5 and produced by the detoxification treatment with the solid detoxifying agent A is adsorbed and removed by the solid dehydrating agent B, and further, the water from the conduit 6 to the third column 3 is removed. The solid detoxifying agent C having a metal oxide as a main reaction component is introduced into the detoxifying agent to be detoxified and discharged from the conduit 7.

【0025】また、図2は、一つのカラム11内に、ガ
ス入口側から層状に、水酸化銅を反応主成分とする固体
除害剤A,水分吸脱着機能を有する固体脱水剤B,金属
酸化物を反応主成分とする固体除害剤Cの順に積層した
もので、図1に示した例と同様に、導管12から導入さ
れる有害成分を含むガスは、固体除害剤A,固体脱水剤
B,固体除害剤Cの順に接触して無害化処理された後、
導管13から排出される。
FIG. 2 shows that in one column 11, a solid detoxifying agent A containing copper hydroxide as a reaction main component, a solid dehydrating agent B having a water adsorption / desorption function, and a metal are layered from the gas inlet side. A solid detoxifying agent C having an oxide as a reaction main component is laminated in this order. As with the example shown in FIG. 1, the gas containing a harmful component introduced from the conduit 12 is a solid detoxifying agent A and a solid detoxifying agent. After the dehydrating agent B and the solid detoxifying agent C are contacted in this order for detoxification,
It is discharged from the conduit 13.

【0026】なお、図1及び図2から明らかなように、
2個のカラムを使用し、上流側のカラムに固体除害剤A
及び固体脱水剤Bを層状に充填し、下流側のカラムに固
体除害剤Cのみを充填するようにしてもよく、上流側の
カラムに固体除害剤Aのみを充填し、下流側のカラムに
固体脱水剤B及び固体除害剤Cを層状に充填するように
してもよい。
As is apparent from FIGS. 1 and 2,
Two columns are used, and solid detoxifying agent A is used in the upstream column.
Alternatively, the solid dehydrating agent B may be packed in layers, and the column on the downstream side may be packed with only the solid detoxifying agent C, or the column on the upstream side may be packed with only the solid detoxifying agent A, and the column on the downstream side may be packed. Alternatively, the solid dehydrating agent B and the solid detoxifying agent C may be filled in layers.

【0027】このように、有害成分を含むガスを、固体
除害剤A,固体脱水剤B,固体除害剤Cの順に接触させ
ることにより、固体除害剤Aとの反応で生成した水分が
固体除害剤Cに悪影響を及ぼすのを防止して効率良くか
つ確実に有害成分の無害化処理を行うことができる。さ
らに、上述のように、有害成分を含むガスを、固体除害
剤A,固体脱水剤B,固体除害剤Cの順に接触させる場
合、固体除害剤Aや固体除害剤Cの部分にも、固体脱水
剤Bを混合しておけば、発生した水分を直ちに吸着除去
できるので、脱水効果をより向上させることができる。
As described above, by bringing the gas containing the harmful components into contact with the solid harm-removing agent A, the solid dehydrating agent B, and the solid harm-removing agent C in this order, the water generated by the reaction with the solid harm-removing agent A is changed. It is possible to prevent harmful effects on the solid harm-removing agent C, and to efficiently and reliably detoxify harmful components. Furthermore, as described above, when a gas containing a harmful component is brought into contact with the solid harm-removing agent A, the solid dehydrating agent B, and the solid harm-removing agent C in this order, the solid harm-removing agent A and the solid harm-removing agent C are contacted with each other. However, if the solid dehydrating agent B is mixed, the generated water can be immediately adsorbed and removed, so that the dehydrating effect can be further improved.

【0028】また、一つのカラム内に前記固体除害剤と
前記固体脱水剤とを混合して充填した場合でも、固体除
害剤による無害化反応で発生した水を直ちに固体脱水剤
で吸着除去することができるので、水分の悪影響を排除
して十分な無害化効果を得ることができる。さらに、水
酸化銅と金属酸化物と前記固体脱水剤とを混合した除害
剤は、水酸化銅と金属酸化物との相乗効果で、それぞれ
を単独で使用した場合に比べて処理量が増大するととも
に、無害化反応で発生した水を直ちに固体脱水剤で吸着
除去することができるので、長期にわたって安定した無
害化処理を行うことができる。しかも、水酸化銅が剤全
体に分散するように混合しておくことにより、除害剤の
破過を事前に知ることができる。
Even when the solid detoxifying agent and the solid dewatering agent are mixed and packed in one column, the water generated by the detoxification reaction by the solid detoxifying agent is immediately adsorbed and removed by the solid dewatering agent. Therefore, it is possible to eliminate the adverse effect of water and obtain a sufficient detoxifying effect. Furthermore, the harm-removing agent in which copper hydroxide, a metal oxide, and the solid dehydrating agent are mixed is a synergistic effect of copper hydroxide and a metal oxide, and the treatment amount is increased as compared with the case where each is used alone. In addition, since the water generated by the detoxification reaction can be immediately adsorbed and removed by the solid dehydrating agent, a stable detoxification treatment can be performed for a long period of time. Moreover, by mixing the copper hydroxide so as to be dispersed throughout the agent, breakthrough of the harmful agent can be known in advance.

【0029】さらに、ガス流れの上流側に固体除害剤と
固体脱水剤との混合物を使用し、下流側に別の固体除害
剤のみを使用した場合でも、また、ガス流れの上流側に
固体除害剤のみを、下流側に別の固体除害剤と固体脱水
剤との混合物を使用しても、同様に効率のよい無害化処
理を行うことができる。このとき、2個のカラムにそれ
ぞれを充填するようにしてもよく、1個のカラム内にそ
れぞれを層状に充填するようにしてもよい。
Furthermore, even when a mixture of a solid detoxifying agent and a solid dehydrating agent is used on the upstream side of the gas flow and only another solid detoxifying agent is used on the downstream side, it is also used on the upstream side of the gas flow. Even if only the solid detoxifying agent is used and a mixture of another solid detoxifying agent and a solid dehydrating agent is used on the downstream side, similarly efficient detoxification treatment can be performed. At this time, each of the two columns may be packed, or each of the columns may be packed in layers.

【0030】そして、一般的な半導体製造部門や実験部
門においては、連続して有害成分を含むガスを排出する
運転を行うことはまれであり、1日24時間の中で有害
成分を含むガスが排出される実運転時間が約8時間で、
その他の時間は、装置内や配管内に大気や水分が侵入し
ないように、乾燥不活性ガス、通常は乾燥窒素ガスを流
通させておく待機運転を行っているのが実情である。ま
た、数日間の長期連続運転を行う場合でも、通常は、休
日に待機状態となる。
In general semiconductor manufacturing departments and experimental departments, it is rare to continuously perform the operation of discharging the gas containing the harmful component, and the gas containing the harmful component is discharged within 24 hours a day. The actual operating time that is discharged is about 8 hours,
At other times, it is the actual situation to carry out a standby operation in which a dry inert gas, usually dry nitrogen gas, is circulated so that the atmosphere and moisture do not enter the inside of the apparatus or the piping. In addition, even when a long-term continuous operation for several days is performed, it is usually in a standby state on a holiday.

【0031】したがって、反応により生じた水分を除去
する脱水剤(乾燥剤)として、前述のように水分吸脱着
機能を有する固体脱水剤を用いると、上記待機運転中に
導入される不活性ガスで固体脱水剤に吸着している水分
を脱着させることができる。すなわち、除害装置運転中
に固体脱水剤に吸着した水分を待機中に脱着させて固体
脱水剤を活性化できるので、1日24時間中、実運転時
間が8時間、待機時間が16時間の場合、固体脱水剤
は、最低8時間分の脱水能力を有していればよく、固体
除害剤の処理能力に関係なく、固体脱水剤の使用量を大
幅に低減することができる。また、繰返して活性化させ
ることができるので、少量の固体脱水剤を長期にわたっ
て使用することができる。
Therefore, when the solid dehydrating agent having the water adsorption / desorption function as described above is used as the dehydrating agent (drying agent) for removing the water generated by the reaction, the inert gas introduced during the standby operation is used. The water adsorbed on the solid dehydrating agent can be desorbed. That is, since the water adsorbed on the solid dehydrating agent during the operation of the abatement device can be desorbed and activated during the standby, the actual operating time is 8 hours and the standby time is 16 hours during 24 hours a day. In this case, the solid dehydrating agent only needs to have a dehydrating capacity for at least 8 hours, and the amount of the solid dehydrating agent used can be greatly reduced regardless of the treatment capacity of the solid detoxifying agent. Further, since it can be repeatedly activated, a small amount of solid dehydrating agent can be used for a long period of time.

【0032】さらに、固体除害剤の破過を検知するため
に、下流側に検知剤を充填した透明カラムを接続する場
合、有害成分と固体除害剤との反応で生じた水分が検知
剤を劣化させ、その能力を損なうことがあるが、前述の
ように固体脱水剤を使用して水分を除去することによ
り、検知剤の劣化も防止できるので、固体除害剤の破過
を確実に検知することができる。
Further, when a transparent column filled with a detecting agent is connected on the downstream side in order to detect the breakthrough of the solid removing agent, water generated by the reaction between the harmful component and the solid removing agent is connected to the transparent column. The deterioration of the detection agent can also be prevented by removing the water by using the solid dehydrating agent as described above, so the breakthrough of the solid detoxifying agent can be ensured. Can be detected.

【0033】[0033]

【実施例】以下、本発明の実施例及び比較例を説明す
る。 実施例1 内径40mmのカラム内に酸化鉄(Fe2 3 )からな
る固体除害剤400gと、水分を吸脱着可能な固体脱水
剤(富士シリシア化学株式会社製フジシリカゲルB形)
40gとをよく混合したものを充填し、窒素ガス中に塩
化水素2%を含む試験ガスを流してカラム出口で塩化水
素の濃度を測定した。試験ガスを毎秒2cmの流速で8
時間、乾燥窒素ガスを同じ流速で16時間、交互に流す
操作を4日間続けたが、固体除害剤は破過せずに無害化
処理を続けることができ、また、固体脱水剤の脱水能力
も失われていなかった。
EXAMPLES Examples and comparative examples of the present invention will be described below. Example 1 400 g of a solid detoxifying agent made of iron oxide (Fe 2 O 3 ) and a solid dehydrating agent capable of adsorbing and desorbing water (Fuji Silica Chemical B type manufactured by Fuji Silysia Chemical Ltd.) in a column having an inner diameter of 40 mm.
A mixture of 40 g and 40 g was filled, a test gas containing 2% of hydrogen chloride was caused to flow in nitrogen gas, and the concentration of hydrogen chloride was measured at the column outlet. 8 test gas at a flow rate of 2 cm / sec
Although the operation of alternately flowing dry nitrogen gas for 16 hours at the same flow rate for 4 days was continued for 4 days, the detoxification treatment of solid decontaminating agents could be continued without breaking through, and the dewatering ability of solid dewatering agents was also high. It wasn't lost.

【0034】比較例1 固体脱水剤を使用しなかった以外は、実施例1と同様に
した。その結果、7時間後に固体除害剤が破過してカラ
ムから流出するガス中の塩化水素濃度が5ppmに達し
た。
Comparative Example 1 Example 1 was repeated except that no solid dehydrating agent was used. As a result, the concentration of hydrogen chloride in the gas flowing out from the column reached 5 ppm after 7 hours, when the solid harmless agent broke through.

【0035】比較例2 固体脱水剤として、吸着した水分を脱着する機能がほと
んどないシリカゲル(富士シリシア化学株式会社製フジ
シリカゲルRD形)を80g用いた以外は、実施例1と
同様にした。その結果、試料ガスの延べ流通時間が20
時間に達した時点で固体除害剤が破過し、カラムから流
出するガス中の塩化水素濃度が5ppmに達した。この
とき、固体脱水剤は、実施例1に対して2倍量を用いた
にもかかわらず、脱水能力はほとんど残っていなかっ
た。
Comparative Example 2 The procedure of Example 1 was repeated except that 80 g of silica gel (Fuji Silica Chemical RD type manufactured by Fuji Silysia Chemical Ltd.) having almost no function of desorbing adsorbed water was used as the solid dehydrating agent. As a result, the total circulation time of the sample gas is 20
When the time was reached, the solid detoxifying agent broke through and the concentration of hydrogen chloride in the gas flowing out of the column reached 5 ppm. At this time, although the solid dehydrating agent was used in an amount twice that of Example 1, almost no dehydrating ability remained.

【0036】実施例2 内径40mmのカラム内に市販の酸化銅(CuO)粉末
を格子状に成形した固体除害剤600gと、水分を吸脱
着可能な固体脱水剤(富士シリシア化学株式会社製フジ
シリカゲルID形)40gとを充填し、このカラムの出
口にニッケル塩と金塩との混合物からなる検知剤を内径
25mmの透明なカラムに高さ30mmで充填したカラ
ムを接続した。
Example 2 600 g of a solid detoxifying agent in which a commercially available copper oxide (CuO) powder was molded into a grid in a column having an inner diameter of 40 mm and a solid dehydrating agent capable of absorbing and desorbing water (Fuji Silysia Chemical Ltd. 40 g of silica gel ID type) was filled in, and a column filled with a detection agent consisting of a mixture of nickel salt and gold salt at a height of 30 mm in a transparent column having an inner diameter of 25 mm was connected to the outlet of this column.

【0037】窒素ガス中にアルシン2%を含む試験ガス
を毎秒1cmの流速で8時間、乾燥窒素ガスを同じ流速
で16時間、交互に流す操作を4日間続けたが、検知剤
の変色は観察されず、出口ガス中のアルシンを測定器
(日本酸素製HD−1)で測定したがアルシンは検出さ
れなかった。したがって、固体除害剤の能力がいまだ有
効であり、無害化処理をさらに続けることが可能であっ
た。また、固体脱水剤の脱水能力も失われていなかっ
た。
The test gas containing 2% arsine in nitrogen gas was alternately flowed at a flow rate of 1 cm / sec for 8 hours and dry nitrogen gas at the same flow rate for 16 hours for 4 days, but discoloration of the detection agent was observed. However, the arsine in the outlet gas was measured with a measuring device (HD-1 manufactured by Nippon Oxygen), but arsine was not detected. Therefore, the ability of the solid detoxifying agent was still effective, and the detoxification treatment could be further continued. Further, the dehydrating ability of the solid dehydrating agent was not lost.

【0038】比較例3 固体脱水剤を使用しなかった以外は、実施例2と同様に
した。その結果、6時間後にカラム出口のアルシン濃度
が50ppbとなり固体除害剤が破過したことが判明し
たが、検知剤は変色していなかった。このことから、無
害化反応で生成した水分が固体除害剤の処理能力を低下
させるだけでなく、検知剤の検知能力も低下させること
がわかった。
Comparative Example 3 The procedure of Example 2 was repeated except that the solid dehydrating agent was not used. As a result, after 6 hours, it was found that the concentration of arsine at the outlet of the column became 50 ppb and the solid detoxifying agent broke through, but the color of the detecting agent did not change. From this, it was found that the water generated in the detoxification reaction not only reduces the processing ability of the solid detoxifying agent but also the detection ability of the detecting agent.

【0039】比較例4 固体脱水剤として、吸着した水分を脱着する機能がほと
んどないシリカゲル(富士シリシア化学株式会社製フジ
シリカゲルRD形)を80g用いた以外は、実施例2と
同様にした。その結果、試料ガスの延べ流通時間が20
時間に達した時点でカラム出口のアルシン濃度が50p
pbに達するとともに検知剤が黒色に変色した。このと
き、固体脱水剤の脱水能力は、極僅かしか残っていなか
った。
Comparative Example 4 The same procedure as in Example 2 was carried out except that 80 g of silica gel (Fuji Silica Chemical RD type manufactured by Fuji Silysia Chemical Ltd.) having almost no function of desorbing adsorbed water was used as the solid dehydrating agent. As a result, the total circulation time of the sample gas is 20
When the time is reached, the arsine concentration at the column outlet is 50p
The detection agent turned black as it reached pb. At this time, the dehydrating ability of the solid dehydrating agent was very small.

【0040】実施例3 試験ガスとして窒素ガス中にホスフィン1.5%を含む
ガスを用いた以外は、実施例2と同様にした。その結
果、4日後でも無害化処理を続けることができた。
Example 3 The same as Example 2 except that a gas containing 1.5% of phosphine in nitrogen gas was used as a test gas. As a result, the detoxification treatment could be continued even after 4 days.

【0041】実施例4 1モル/リットルの硫酸銅溶液と、1モル/リットルの
水酸化ナトリウム溶液とを混合して得た沈澱物(水酸化
銅)を乾燥した後、押出成型機によって、直径1mm、
長さ5mmのペレットに成型し、水酸化銅を反応主成分
とする第1の固体除害剤とした。また、硝酸銅,硝酸ア
ルミニウム,炭酸ナトリウムの3種の水溶液を混合して
得られた沈澱物を焼成し、酸化第二銅をアルミナに担持
させて金属酸化物(酸化第二銅)を反応主成分とする第
2の固体除害剤とした。固体脱水剤には、水分を吸脱着
可能な脱水剤として、富士シリシア化学株式会社製のフ
ジシリカゲルID形を用いた。
Example 4 A precipitate (copper hydroxide) obtained by mixing a 1 mol / liter copper sulfate solution and a 1 mol / liter sodium hydroxide solution was dried, and then the diameter was measured by an extruder. 1 mm,
It was molded into a pellet having a length of 5 mm, which was used as a first solid harm-removing agent containing copper hydroxide as a main reaction component. In addition, a precipitate obtained by mixing three kinds of aqueous solutions of copper nitrate, aluminum nitrate and sodium carbonate is calcined, and cupric oxide is supported on alumina to react with metal oxide (cupric oxide). It was used as a second solid harmful agent as a component. For the solid dehydrating agent, Fuji Silica Chemical Co., Ltd. Fuji Silica Gel ID type was used as a dehydrating agent capable of absorbing and desorbing water.

【0042】上記第1の固体除害剤を500g,固体脱
水剤Bを30g,第2の固体除害剤を100gの順序で
内径50mmのカラムに層状に充填し、第1の固体除害
剤側から、窒素中にシラン1%を含む試験ガスを8時間
と、乾燥窒素ガスを16時間とを、交互に毎秒2cmの
流速で流した。この操作を7日間続けたが、両固体除害
剤は破過することなく、また、固体脱水剤の脱水能力も
失われていなかった。
The first solid harm-removing agent was packed into a column having an inner diameter of 50 mm in the order of 500 g of the first solid harm-removing agent, 30 g of the solid dehydrating agent B, and 100 g of the second solid harm-removing agent. From the side, a test gas containing 1% silane in nitrogen for 8 hours and a dry nitrogen gas for 16 hours were alternately flowed at a flow rate of 2 cm / sec. This operation was continued for 7 days, but neither of the solid detoxifying agents broke through and the dewatering ability of the solid dewatering agent was not lost.

【0043】比較例5 脱水剤として、吸着した水分を脱着する機能がほとんど
ないシリカゲル(富士シリシア化学株式会社製フジシリ
カゲルRD形)を60g用いた以外は、実施例4と同様
にした。その結果、試料ガスの延べ流通時間が40時間
に達した時点でカラム出口のシラン濃度が5ppmにな
った。
Comparative Example 5 The procedure of Example 4 was repeated, except that 60 g of silica gel (Fuji Silica Gel RD type manufactured by Fuji Silysia Chemical Ltd.) having almost no function of desorbing adsorbed water was used as the dehydrating agent. As a result, the silane concentration at the column outlet became 5 ppm when the total flow time of the sample gas reached 40 hours.

【0044】実施例5 実施例4における第1の固体除害剤500g,固体脱水
剤30g,第2の固体除害剤100gを十分に混合して
カラムに充填した以外は、実施例4と同様にした。その
結果、実施例4と同様に7日後でも固体除害剤は破過せ
ず、固体脱水剤の脱水能力も失われていなかった。
Example 5 The same as Example 4 except that 500 g of the first solid detoxifying agent, 30 g of the solid dehydrating agent and 100 g of the second solid detoxifying agent in Example 4 were sufficiently mixed and packed in a column. I chose As a result, as in Example 4, the solid detoxifying agent did not break through even after 7 days, and the dewatering ability of the solid dewatering agent was not lost.

【0045】実施例6 試験ガスとして窒素中にトリメチルアルミニウム2%を
含むガスを用いた以外は、実施例5と同様にした。その
結果、4日後でも無害化処理を継続することができた。
Example 6 The same as Example 5 except that a gas containing 2% of trimethylaluminum in nitrogen was used as a test gas. As a result, the detoxification treatment could be continued even after 4 days.

【0046】実施例7 市販の水酸化銅粉末を直径1mm、長さ5mmのペレッ
トに成型した固体除害剤と、水分を吸脱着可能な固体脱
水剤(富士シリシア化学株式会社製フジシリカゲルID
形)とを用い、直径30mmのカラムの上流側から、前
記固体除害剤100gと固体脱水剤5gとの混合物/固
体脱水剤5g/前記固体除害剤100gと固体脱水剤5
gとの混合物の順に層状に積層した。実施例4と同様
に、窒素中にシラン1%を含む試験ガスを8時間と、乾
燥窒素ガスを16時間とを、交互に毎秒1cmの流速で
流したところ、3日後でも破過しなかったが、上流側の
固体除害剤(水酸化銅)は、ほとんどが元の青色から黒
色に変色しており、破過が近付いていることがわかっ
た。
Example 7 A solid detoxifying agent obtained by molding commercially available copper hydroxide powder into pellets having a diameter of 1 mm and a length of 5 mm and a solid dehydrating agent capable of absorbing and desorbing water (Fuji Silica Chemicals Co., Ltd. Fuji Silica Gel ID
And a mixture of 100 g of the solid detoxifying agent and 5 g of the solid dewatering agent / 5 g of the solid dehydrating agent / 100 g of the solid detoxifying agent and 5
The mixture with g was laminated in the order of layers. In the same manner as in Example 4, a test gas containing 1% silane in nitrogen for 8 hours and a dry nitrogen gas for 16 hours were alternately flowed at a flow rate of 1 cm / sec, and no breakthrough occurred even after 3 days. However, it was found that most of the upstream solid detoxifying agents (copper hydroxide) changed from the original blue color to black, and breakthrough was approaching.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
固体除害剤を使用した乾式による無害化処理において、
少量の脱水剤を使用することにより、固体除害剤の処理
能力を十分に発揮させることが可能となり、固体除害剤
の利用効率を大幅に向上させることができ、有害成分を
効率良くかつ経済的に無害化することができる。
As described above, according to the present invention,
In the detoxification process by dry method using a solid detoxifying agent,
By using a small amount of dehydrating agent, it is possible to fully demonstrate the treatment capacity of the solid harmless agent, and it is possible to greatly improve the utilization efficiency of the solid harmless agent, efficiently and economically remove harmful components. Can be rendered harmless.

【図面の簡単な説明】[Brief description of drawings]

【図1】 固体除害剤及び固体脱水剤を充填したカラム
の配置例を示す説明図である。
FIG. 1 is an explanatory diagram showing an arrangement example of columns packed with a solid harmful agent and a solid dehydrating agent.

【図2】 カラム中の固体除害剤及び固体脱水剤の充填
例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of packing a solid harmful agent and a solid dehydrating agent in a column.

【図3】 水分を吸脱着可能な固体脱水剤の吸着等温線
の一例を表す図である。
FIG. 3 is a diagram showing an example of an adsorption isotherm of a solid dehydrating agent capable of absorbing and desorbing water.

【符号の説明】[Explanation of symbols]

A…水酸化銅を反応主成分とする第1の固体除害剤、B
…水分を吸脱着可能な固体脱水剤、C…金属酸化物を反
応主成分とする第2の固体除害剤
A: a first solid detoxifying agent containing copper hydroxide as a main reaction component, B
... a solid dehydrating agent capable of absorbing and desorbing water, C ... a second solid detoxifying agent containing a metal oxide as a main reaction component

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有害成分を含むガスを、固体除害剤と、
水分を吸脱着可能な固体脱水剤との混合物に接触させる
ことを特徴とする有害ガスの除害方法。
1. A gas containing a harmful component and a solid detoxifying agent,
A method for removing harmful gases, which comprises contacting water with a mixture of a solid dehydrating agent capable of absorbing and desorbing water.
【請求項2】 有害成分を含むガスを、第1の固体除害
剤に接触させた後、水分を吸脱着可能な固体脱水剤に接
触させ、さらに、第2の固体除害剤に接触させることを
特徴とする有害ガスの除害方法。
2. A gas containing a harmful component is brought into contact with a first solid detoxifying agent, then brought into contact with a solid dehydrating agent capable of absorbing and desorbing water, and further brought into contact with a second solid detoxifying agent. A method for removing harmful gases, which is characterized in that
【請求項3】 前記第1の固体除害剤は、反応主成分と
なる固体除害剤と、水分を吸脱着可能な固体脱水剤との
混合物であることを特徴とする請求項2記載の有害ガス
の除害方法。
3. The first solid harm-removing agent is a mixture of a solid harm-removing agent which is a reaction main component and a solid dehydrating agent capable of absorbing and desorbing water. How to remove harmful gases.
【請求項4】 前記第2の固体除害剤は、反応主成分と
なる固体除害剤と、水分を吸脱着可能な固体脱水剤との
混合物であることを特徴とする請求項2記載の有害ガス
の除害方法。
4. The second solid harm-removing agent is a mixture of a solid harm-removing agent which is a reaction main component and a solid dehydrating agent capable of absorbing and desorbing water. How to remove harmful gases.
【請求項5】 前記第1の固体除害剤は、水酸化銅を反
応主成分とすることを特徴とする請求項2記載の有害ガ
スの除害方法。
5. The harmful gas removing method according to claim 2, wherein the first solid removing agent has copper hydroxide as a reaction main component.
【請求項6】 前記第2の固体除害剤は、金属酸化物を
反応主成分とすることを特徴とする請求項2記載の有害
ガスの除害方法。
6. The harmful gas removing method according to claim 2, wherein the second solid harmful agent contains a metal oxide as a main reaction component.
【請求項7】 有害成分を含むガスを、水酸化銅と、金
属酸化物と、水分を吸脱着可能な固体脱水剤とを混合し
た固体除害剤に接触させることを特徴とする有害ガスの
除害方法。
7. A harmful gas containing a harmful component is brought into contact with a solid harm-removing agent in which copper hydroxide, a metal oxide and a solid dehydrating agent capable of adsorbing and desorbing water are mixed. Harmful method.
【請求項8】 有害成分を含むガスを、水分を吸脱着可
能な固体脱水剤を含む固体除害剤に接触させて無害化処
理を行うとともに、該無害化処理を行わないときには、
乾燥不活性ガスを流通させて前記固体脱水剤に吸着して
いる水分を脱着することを特徴とする有害ガスの除害方
法。
8. A detoxifying treatment is performed by contacting a gas containing a harmful component with a solid detoxifying agent containing a solid dehydrating agent capable of adsorbing and desorbing water, and when the detoxifying treatment is not performed,
A method for removing harmful gas, characterized in that a dry inert gas is circulated to desorb the water adsorbed on the solid dehydrating agent.
【請求項9】 固体除害剤に、水分を吸脱着可能な固体
脱水剤を添加混合したことを特徴とする有害ガスの除害
剤。
9. A harmful gas detoxifying agent comprising a solid detoxifying agent mixed with a solid dehydrating agent capable of absorbing and desorbing water.
【請求項10】 前記固体除害剤は、水酸化銅と金属酸
化物とを混合したものであることを特徴とする請求項9
記載の有害ガスの除害剤。
10. The solid harm-removing agent is a mixture of copper hydroxide and a metal oxide.
Harmful gas remover described.
JP24280695A 1995-09-21 1995-09-21 Hazardous gas removal method and removal agent Expired - Fee Related JP3703538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24280695A JP3703538B2 (en) 1995-09-21 1995-09-21 Hazardous gas removal method and removal agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24280695A JP3703538B2 (en) 1995-09-21 1995-09-21 Hazardous gas removal method and removal agent

Publications (2)

Publication Number Publication Date
JPH0985035A true JPH0985035A (en) 1997-03-31
JP3703538B2 JP3703538B2 (en) 2005-10-05

Family

ID=17094569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24280695A Expired - Fee Related JP3703538B2 (en) 1995-09-21 1995-09-21 Hazardous gas removal method and removal agent

Country Status (1)

Country Link
JP (1) JP3703538B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080706A1 (en) * 2006-01-11 2007-07-19 Taiyo Nippon Sanso Corporation Emission gas treating apparatus
JP2022169836A (en) * 2021-04-28 2022-11-10 SyncMOF株式会社 Gas treating system, gas treating method, and control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007080706A1 (en) * 2006-01-11 2007-07-19 Taiyo Nippon Sanso Corporation Emission gas treating apparatus
JP2022169836A (en) * 2021-04-28 2022-11-10 SyncMOF株式会社 Gas treating system, gas treating method, and control device

Also Published As

Publication number Publication date
JP3703538B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
KR960003147B1 (en) Method of purifying exhaust gases
US4786483A (en) Process for removing hydrogen sulfide and mercury from gases
US5779998A (en) Method and apparatus for concentration and recovery of halocarbons from effluent gas streams
US4743435A (en) Method for cleaning exhaust gases
US20030082918A1 (en) Harm-removing agent and method for rendering halogen-containing gas harmless and uses thereof
JP2001338910A (en) Abatement agent for halogen type gas, abatement method and its use
JP3340510B2 (en) Hazardous gas purification method
JPH0985035A (en) Method for removing harmful gas and agent used therefor
JP2972975B2 (en) Hazardous exhaust gas abatement method and abatement agent
JP3574973B2 (en) Method and apparatus for removing harmful components in exhaust gas discharged from semiconductor manufacturing plants and liquid crystal manufacturing plants
JP2691927B2 (en) How to remove harmful components
JPS63185431A (en) Removal of silicon hydride and gas treatment apparauts used therein
JP3260825B2 (en) How to purify harmful gases
JPS63302923A (en) Method for purifying exhaust gas
JPS62286520A (en) Method for purifying exhaust gas
JPS61129026A (en) Purification of exhaust gas
JPS62286521A (en) Method for purifying exhaust gas
JPH06154535A (en) Method for purifying harmful gas
JP2702461B2 (en) Exhaust gas purification method
WO2010109671A1 (en) Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JPS62286523A (en) Method for purifying exhaust gas
JPH04161224A (en) Dry treatment agent of halogen type exhaust gas
JP2008302338A (en) Detoxifying agent for metal hydride-containing exhaust gas, and detoxifying method for metal hydride-containing exhaust gas
JPS629367B2 (en)
JPS6372338A (en) Adsorbent for harmful gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050720

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110729

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120729

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130729

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees